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ABSTRACT

Viscoacoustic least-squares reverse time migration (Q-
LSRTM) linearly inverts for the subsurface reflectiv-
ity model from lossy data. Compared to the conven-
tional migration methods, it can compensate for the
amplitude loss in the migrated images because of the
strong subsurface attenuation. However, the adjoint Q
propagators used for backward propagating the resid-
ual data during Q-LSRTM are also attenuative. Thus,
the inverted images from Q-LSRTM are often observed
to have lower resolution when compared to the acous-
tic LSRTM images from acoustic data. To increase
the resolution and accelerate the convergence of Q-
LSRTM, we propose using viscoacoustic deblurring fil-
ters as a preconditioner for Q-LSRTM. These filters
can be estimated by matching a simulated migration
image to its reference reflectivity model. Numerical
tests on synthetic and field data demonstrate that Q-
LSRTM combined with viscoacoustic deblurring filters
can produce images with higher resolution and more
balanced amplitudes than images from acoustic RTM,
acoustic LSRTM and Q-LSRTM when there is strong
attenuation in the background medium. The proposed
preconditioning method is also shown to improve the
convergence rate of Q-LSRTM by more than 30 percent
in some cases.

INTRODUCTION

Migration deconvolution (MD) is used to deblur migration
images corrupted by artifacts due to coarse source and re-
ceiver sampling, limited aperture width, strong velocity
contrasts, and uneven subsurface illumination (Hu et al.,
2001). The MD filter assumes a homogeneous layered
medium around the image point and a sufficiently wide
recording aperture. In this case, the migration Green’s

function (Schuster and Hu, 2000), sometimes denoted as
a point spread function (PSF) (Jansson and Richardson,
1997), can be efficiently computed by invoking a layered-
medium assumption localized around the trial image point.
Therefore, the migration process can approximated as a
convolution between the reflectivity model and the migra-
tion Green’s function. Using the above assumptions, the
MD operation can be used as an approximation to the
inverse of the Hessian and can sometimes be used as an
alternative to least-squares migration (LSM) to mitigate
migration artifacts.
Hu and Schuster (1998) and Hu et al. (2001) designed a

migration deconvolution operator in the space-wavenumber
domain to suppress the migration artifacts for poststack
migration. Yu et al. (2006) extended the application of
MD from poststack to prestack depth migration. Instead
of using MD in the space-wavenumber domain, Guitton
(2004) approximate the inverse of the Hessian in the space
domain with a bank of matching filters. These filters
are similar to deblurring filters and have been used as
a preconditioner for conventional LSM (Aoki and Schus-
ter, 2009). For multisource LSM, Dai et al. (2009) and Dai
et al. (2011) used deblurring filters to reduce the crosstalk
noise and accelerate the convergence of multisource LSM.
Previous works on MD assumed a lossless background

medium. However, strong subsurface attenuation can sig-
nificantly distort the amplitudes and phases of seismic
waves (Aki and Richards, 1980). In this case, conventional
acoustic reverse time migration (RTM) and least-squares
reverse time migration (LSRTM) cannot correct for the
attenuation loss.
To account for attenuation, Dai et al. (1994), Yu et al.

(2002), Wang (2007) and Valenciano et al. (2011) used
one-way wave-equation migration in the frequency domain
for attenuation compensation. For reverse time migra-
tion, Zhang et al. (2010), Suh et al. (2012), Fletcher et al.
(2012), Zhu et al. (2014) and Zhu and Harris (2015) pro-
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posed different viscoacoustic wave equations with sepa-
rate controls over phase and amplitude to compensate for
the attenuation loss. Dutta and Schuster (2014) and Sun
et al. (2015) used iterative Q-LSRTM to successfully com-
pensate for amplitude loss and phase distortion caused by
attenuation. Viscoacoustic least-squares reverse time mi-
gration, also denoted as Q-LSRTM, has been shown to
compensate for the attenuation loss and produce images
with more balanced amplitudes and accurately positioned
reflectors than standard migration techniques (Dutta and
Schuster, 2014; Dai et al., 2015; Sun et al., 2016). How-
ever, the inverted images from Q-LSRTM sometimes have
lower resolution when compared to the reference acoustic
LSRTM images. This is because the adjoint Q propa-
gators used for backpropagating the data residual during
Q-LSRTM are also attenuative. Hence, a large number
of least-squares iterations are required to get the desired
uplift in the image quality, which makes the Q-LSRTM
technique computationally expensive when compared to
standard RTM.
To mitigate these problems, we propose using viscoa-

coustic deblurring filters as a preconditioner for Q-LSRTM.
A reference reflectivity model is first constructed using a
uniform distribution of point scatterers while the back-
ground velocity models is kept the same. The viscoacous-
tic data generated from these reference velocity and Q
model are then migrated by viscoacoustic reverse time mi-
gration (Q-RTM) to obtain a reference migration image.
The viscoacoustic deblurring filters are then estimated for
different parts of the migration image by locally matching
the simulated migration image to its reference reflectiv-
ity model using matched filters. These filters are then
used as a preconditioner during the Q-LSRTM iterations.
The estimation of these local filters can be done in par-
allel using MPI, which makes the preconditioning process
very efficient. Results with these debluring filters show a
much faster convergence rate for Q-LSRTM and a much
improved image for Q-RTM. These benefits only require
the extra computational cost of constructing the deblur-
ring filters, which is no more than one migration of the
data.
This paper is divided into four sections. After the in-

troduction, the second section presents the theory of Q-
LSRTM with viscoacoustic deblurring filters. Numeri-
cal tests on synthetic and field data are then used to
demonstrate the advantages of the proposed precondition-
ing method and the conclusions are in the last section.

THEORY

Under the Born approximation, the observed data d(rs|rg, ω)
recorded at a receiver at rg and for a source at rs is given
by

d(rs|rg, ω) =

∫

V0

w(ω)G(rg |r0, ω)G(r0|rs, ω)m(r0)dV0,

(1)

where ω denotes angular frequency, w(ω) denotes the frequency-
domain representation of the second time derivative of the
source wavelet, m(r0) is the reflectivity distribution at the
subsurface location r0 and V0 is the 3D integration vol-
ume. G(rg|rs, ω) denotes the Green’s function computed
for background. Using a matrix-vector notation, equation
1 can also be written as

d = Lm0, (2)

where L represents a linear modeling operator and m0 is
the subsurface reflectivity model. The migration image
mmig is computed by applying a migration operator LT

to the observed data and is represented by

mmig = LTd =

blurring operator
︷︸︸︷

LTL m0. (3)

Using Green’s function notation, equation 3 can also be
expressed as

mmig(r) =

∫

V0

∫ ∞

−∞

dω
∑

g

∑

s

w(ω)w(ω)∗G∗(rg|r, ω)G
∗(r|rs, ω)

(4)

G(rg|r0, ω)G(r0|rs, ω)m(r0)dV0,

=

∫

V0

Γ(r|r0)m(r0)dV0,

where

Γ(r|r0) =

∫ ∞

−∞

dω
∑

g

∑

s

w(ω)w(ω)∗G∗(rg|r, ω)G
∗(r|rs, ω)

(5)

G(rg |r0, ω)G(r0|rs, ω).

Here, Γ(r|r0) denotes the migration Green’s function at lo-
cation r = (x, y, z) for a point scatterer at r0 = (x0, y0, z0).
Since the adjoint operator LT in equation 3 is not the

inverse of the forward modeling operator, the computed
migration image mmig is a blurred version of the true re-
flectivity model m0. Here, the blurring operator is defined
as the LTL operator in equation 3 or Γ(r|r0) in equation
5, the blurring operator blurs the true reflectivity model
m0 to give the migration image mmig which often suf-
fers from artifacts because of poor acquisition sampling
and uneven illumination. The blurring can be mostly cor-
rected by applying the inverse of LTL to the migration
image as

m0 =

deblurring operator
︷ ︸︸ ︷

(LTL)−1 mmig. (6)

However, computing the direct inverse of LTL is compu-
tationally prohibitive for practical seismic imaging prob-
lems. One possible solution is iterative least-squares mi-
gration (Nemeth et al., 1999), which typically requires
an order-of-magnitude more computations than standard
migration. To accelerate the convergence, deblurring op-
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Figure 1: (a) Reference reflectivity model consisting of
point scatterers and (b) migration image of the reference
model. The migration responses for trial image points at
the same depth location are assumed to be the same.

erators can be designed to approximate the inverse of the
Hessian operator (LTL)−1, which can then be used as a
preconditioning operator (Hu et al., 2001; Guitton, 2004;
Yu et al., 2006; Aoki and Schuster, 2009; Dai et al., 2009).
If the subsurface velocity model is laterally homoge-

neous and the recording aperture is sufficiently wide, the
migration Green’s function is approximately shift invari-
ant in the horizontal direction, i.e., the migration responses
for a point scatterer at the same depth zi are same. As an
example, it can be seen from Figure 1 that the migration
responses for trail image points at the same depth loca-
tion are same. Under this assumption equation 3 can be
written as a 2D convolution in the x− and y− coordinates
as (Hu et al., 2001):

mmig(r0) =

∫ zmax

zmin

∫

(x0,y0)∈Ω

Γ(x− x0, y − y0, z|0, 0, z0)

(7)

m(x, y, z0)dx0dy0dz0,

where Ω denotes the horizontal coordinates in the model
space, zmin and zmax represents the lower and upper verti-
cal boundary of the assumed lateral homogeneous medium.
Applying a 2D Fourier transform in x− and y− to equa-
tion 7 gives

m̂mig(kx, ky, z) =

∫ zmax

zmin

Γ̂(kx, ky, z|0, 0, z0)m̂(kx, ky, z0)dz0,

(8)
where the caret indicates a function in the wavenumber-
space domain. The final deblurred image m̂(x, y, z) can
obtained by first applying the inverse operator [

∫ zmax

zmin

Γ̂

(kx, ky, z0|0, 0, z0)dz0]
−1 to the migration image m̂mig(kx, ky,

z) and then taking the inverse Fourier in the x− and y−
coordinates (Yu et al., 2006).
However, this method assumes a v(z) medium, which

means that the deconvolution operators are horizontally
invariant. To account for lateral variations in the velocity
model, Hu et al. (2001) and Yu et al. (2006) developed mi-
gration deconvolution filters for large overlapping patches
in the model, and blended them together to get MD filters
for laterally invariant media.
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Figure 2: Illustration of local matching filters that trans-
form the migration image to its reference model.

As an alternative, Guitton (2004) and Aoki and Schus-
ter (2009) proposed localized deblurring filters which de-
blur the migration image in the space domain. The de-
blurring filter is estimated using a reference model and its
migration image. Following Aoki and Schuster (2009), the
reference reflectivity model is constructed using a uniform
distribution of point scatters as shown in Figure 2a. The
reference data dref are generated from these reference re-
flectivity and background velocity models, which are then
migrated to get a reference migration image mmig

−
ref as

mmig
−
ref = LTLmref = LTdref . (9)

As shown in Figure 2, mref and mmig
−
ref are divided

into subdomains. A subdomain or a local window is cho-
sen such that a point scatterer is at the center of the
window. Within the local window, the migration Green’s
function can be assumed constant. The deblurring filter
for each local window is then estimated by locally match-
ing the reference migration image with the true reference
reflectivity model as (Dai et al., 2011)

Fi ∗ [mref
−
mig]i = [mref ]i, (10)

where i indicates the ith local window and [mmig
−
ref ]i

and [mref ]i denotes the reference reflectivity model and
the reference migration image within the local window.
Same as the localized migration Green’s function, each
deblurring filter is also constant within its corresponding
local window.
Since convolution operation is commutative, so that

Fi ∗ [mref
−
mig]i = [mref

−
mig]i ∗ Fi, (11)

This means that the reference migration image in the local
window (shown as the black dashed square in Figure 2)
can be formulated as a convolution matrix Mref

−
mig with

size of (N+M−1)×N and the corresponding small local
deblurring filter (shown as the red dash square in Figure
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2) can be reformed into a vector f with size ofN×1, where
N = fx × fz and M = wx × wz. fx and fz is the filter
length in horizontal and vertical direction, respectively.
wx and wz is the window size in horizontal and vertical
direction, respectively. Therefore we can rewrite equation
10 in matrix-vector notation as

[Mref
−
mig]ifi = [mref ]i, (12)

where now [mref ]i is the vector form of the reference re-
flectivity model in the same window with size of (N +
M − 1)× 1. Multiply [Mref ]

T
i on both side of equation 12

changes it to the form of normal equation

[Mref
−
mig]

T
i [Mref

−
mig]ifi = [Mref

−
mig]

T
i [mref ]i. (13)

The unknown deblurring filters can be achieved by solv-
ing this normal equation with LU decomposition method,
which approximate the inverse of the Hessian within the
local window.

Deblurring filters in a viscoacoustic medium

Previous MD research concentrated on assuming a loss-
less media. However, strong subsurface attenuation can
significantly distort the amplitudes and phases of seismic
waves (Aki and Richards, 1980). To mitigate this prob-
lem, Q-LSRTM (Dutta and Schuster, 2014) was developed
to generate migration images with more balanced ampli-
tudes and accurately positioned reflectors than standard
migration techniques. However, the inverted images from
Q-LSRTM sometimes tend to have lower resolution when
compared to the benchmark acoustic LSRTM images be-
cause the adjoint Q propagators used for backpropagating
the data residual during Q-LSRTM are also attenuative.
This loss in resolution can be explained by analyzing the

migration Green’s function for a viscoacoustic media. For
a homogeneous medium with velocity v0 and a monochro-
matic point source at rs = (xs, zs) with angular frequency
ω, the acoustic Green’s function G(r, rs) is given by

G(r, rs) =
exp{iω |rs−r|

v0
}

|rs − r|
. (14)

If the medium is lossy, the viscoacoustic Green’s function
can be derived by replacing the acoustic phase-velocity
v0 with the complex phase velocity given by (Aki and
Richards, 1980):

v(ω) = v0[1 +
1

πQ
ln

ω

ω0
](1−

i

2Q
). (15)

where Q is the quality factor which is used to describe the
attenuative of the subsurface medium and ω0 is the refer-
ence reference frequency. After substituting equation 15
into equation 14, we get the viscoacoustic Green’s function
as

G(r, rs) =

phase distortion
︷ ︸︸ ︷

exp{
iω|rs − r|

v0ξ
}

amplitude/frequency attenuation
︷ ︸︸ ︷

exp{−
ω|rs − r|

2Qv0ξ
} ,

(16)
where ξ = [1 + 1

πQ (ln( ω
ω0

))][1 + 1
4Q2 ]. The first exponen-

tial term is the phase distortion term and the second expo-
nential term represents the amplitude/high-frequency loss
term. Therefore, the viscoacoustic and acoustic migration
Green’s function are given by

ΓQ =
exp{i ω

v0ξ
(rr − rr0)} exp{−

ω
2Qv0ξ

(rr + rr0)}

rr · rr0
, (17)

Γacou =
exp{i ω

v0
( rrξ − rr0)} exp{−

ω
2Qv0ξ

(rr)}

rr · rr0
, (18)

where rr = |rs − r|+|rg − r| and rr0 = |rs − r0|+|rg − r0|.
Equation 18 shows that if acoustic migration is used to mi-
grate viscoacoustic data, the reflection energy will be fo-
cused at the wrong subsurface location rr

ξ = rr0, instead
of rr0 . However, if viscoacoustic migration (Q-RTM) is
used, the reflector will be imaged at the right subsurface
location rr0. However, the backward propagated receiver
wavefield in Q-RTM is further attenuated because of the
exp{− ω

2Qv0ξ
(rr0)} term on the RHS in equation 16. Thus,

images from Q-LSRTM will have lower resolution when
compared to the images computed by acoustic LSRTM
on acoustic data.
To increase the resolution of the Q-LSRTM image and

accelerate the convergence of the least-squares iterations,
we propose the use of local viscoacoustic deblurring fil-
ters. Similar to the way we estimate the acoustic deblur-
ring filter, an evenly distributed point scatterer model is
chosen as the reference reflectivity model. The viscoa-
coustic synthetic data dQ

−
ref are generated using this

reference reflectivity model and the background velocity
and Q model. The data are then migrated by Q-RTM to
obtain a reference Q-RTM image. Viscoacoustic deblur-
ring filters for different subsection of the Q-RTM image
are then estimated using matching filters as described in
the previous section. The viscoacoustic deblurring filters
at ith window (or subsection) are estimated in the space
domain by solving the system of equations given by

[FQ]i ∗ (L
T
QdQ

−
ref )i ≈ [mref ]i. (19)

As the reference migration image is generated from the
same source-receiver configuration as the original field ex-
periment and by using the same velocity and Q models,
the application of these deblurring filters to the migration
image is an acceptable approximation to the true inverse
Hessian operator LT

QLQ.
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Q-LSRTM using viscoacoustic deblurring

filters

The misfit function for Q-LSRTM is given by (Dutta and
Schuster, 2014)

ǫ =
1

2
‖LQm

(k) − dobs
Q ‖2, (20)

where dobs
Q denotes the observed data that have suffered

from attenuation, mk represents the migration image at
the kth iteration and LQ is the linearized viscoacoustic
forward modeling operator. The Gauss-Newton gradient
for this misfit function is given by

(LT
QLQ)∆m(k) = LT

Q[LQm
(k) − dobs

Q ] = g(k). (21)

It can be seen from this equation that the update at each
iteration g(k) is a blurred version of the desired update
∆m(k). The blurring is because of the viscoacoustic mi-
gration Green’s function LT

QLQ. Thus, a preconditioner
for the gradient in equation 21 can be written as the de-
blurring approximation [LT

QLQ]
−1 ≈ fQ, so that the pre-

conditioned gradient in equation 21 can be used in the
iterative update equation

m(k+1) = m(k) − αFQ ∗ (LT
Q(LQm

(k) − dobs
Q )), (22)

Here α is the step length.

NUMERICAL RESULTS

The effectiveness of Q-LSRTM with viscoacoustic deblur-
ring filters is now demonstrated with synthetic data gener-
ated from the Marmousi II model, the benchmark viscoa-
coustic data released by Schlumberger for the BP2004Q
model and field data recorded in a crosswell experiment in
Friendswood, Texas. The data are migrated using acous-
tic RTM, acoustic LSRTM, Q-RTM, Q-LSRTM and Q-
LSRTM with viscoacoustic deblurring filters. The migra-
tion results in the same figure are compared at the same
colorbar scale.

Marmousi II model

The preconditioned Q-LSRTM method is first tested on
the Marmousi II model. Figure 3 shows the true veloc-
ity and Q models, respectively, used for generating the
observed data. The Q model is chosen such that the
attenuation layers overly the deeper anticlines. We use
time-domain viscoacoustic finite-difference modeling algo-
rithm with one standard linear solid model for both data
simulation and migration. A Ricker wavelet with a peak
frequency of 15 Hz is used as the source wavelet. A fixed-
spread acquisition geometry is used where there are 150
sources evenly distributed on the surface at an interval of
50 m. The data are recorded by 800 receivers for each
shot uniformly distributed every 10 m on the surface.
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Figure 3: The Marmousi model: (a) true velocity model
and (b) true Q model.

Conventional acoustic RTM and LSRTM images ob-
tained from the viscoacoustic data are shown in Figures
4a and 4b, respectively. Both these images fail to recover
the amplitudes of the reflectors at the deeper parts. The
Q-LSRTM image, shown in Figure 4d, shows improvement
in the deeper layers when compared to the acoustic migra-
tion results. However, the Q-LSRTM image has lower res-
olution for the reflectors below the Q anomaly when com-
pared to the benchmark acoustic LSRTM image, shown
in Figure 4f, that has been obtained from acoustic data
generated using the same velocity model in Figure 3a. As
discussed in the previous section, this low resolution prob-
lem with Q-LSRTM is due to the attenuation properties
of the adjoint operator LT

Q. However, the preconditioned
Q-LSRTM image in Figure 4e obtained using viscoacous-
tic deblurring filters has better resolution when compared
to the Q-LSRTM image in Figure 4d. The amplitudes in
the preconditioned Q-LSRTM image are also better bal-
anced when compared to the acoustic RTM and LSRTM
images in Figures 4a and 4b, respectively. The magni-
fied views of these images are compared in Figures 5 and
6. The black arrows in these figures point to the areas
in which noticeable improvements in the resolution can
be seen. Figure 5e shows the wavenumber spectrum of a
vertical slice at x = 3.11 km in Figure 5. The wavenum-
ber spectrum clearly shows the improvement in resolu-
tion with preconditioned Q-LSRTM. Figure 6e shows the
wavenumber spectrum of a vertical slice at x = 5.13 km
in Figure 6. It is evident from these plots that the high-
wavenumber details in the image are successfully recov-
ered in the preconditioned Q-LSRTM image and these
images have a similar resolution as the benchmark image
obtained from using acoustic LSRTM on acoustic data.
The residual as a function of iteration number for LSRTM,

Q-LSRTM and preconditioned Q-LSRTM is plotted in
Figure 7. The convergence rate for preconditioned Q-
LSRTM is much faster than Q-LSRTM especially at first
several iterations. The residuals in the 3rd and 9th it-
eration of preconditioned Q-LSRTM are almost equal to
the residuals in the 6th and 20th iterations of Q-LSRTM,
respectively. Thus, a speedup of around 50% can be seen
with the proposed preconditioning method. The conver-
gence rate for preconditioned Q-LSRTM is better than
that of standard Q-LSRTM because the Hessian effect is
accounted for by the viscoacoustic deblurring filters.
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Figure 4: Comparison between images on viscoacoustic
data from (a) acoustic RTM, (b) acoustic LSRTM, (c) Q-
RTM, (d) Q-LSRTM, (e) Q-LSRTM using viscoacoustic
deblurring filters as a preconditioner, 20 least-squares it-
erations are carried out in all cases. (f) Acoustic LSRTM
on acoustic data, which is used as benchmark image.

BP viscoacoustic benchmark data

The preconditioned Q-LSRTM method is now tested on
the B2004Q dataset generated by Schlumberger (Billette
and Brandsberg-Dahl (2005); Cavalca et al. (2013)). The
velocity and Q models used for migration are shown in
Figures 8a and 8b, respectively. The observed data are
generated using a Ricker wavelet with a peak frequency
of 19Hz. The original dataset has 1348 shots and each
shot is recorded by 2401 receivers. The shot spacing is 50
m while the receivers are distributed on both sides of a
shot at a spacing of 12.5 m. The sources and receivers are
placed at a depth of 12.5 m.
For our numerical tests, we only use 236 shots. The

true reflectivity model, shown in Figure 9f, is used to com-
pare the acoustic and Q-LSRTM images. In the acoustic
LSRTM image in Figure 9b, it is difficult to delineate
the reflectors near the salt flank. The Q-LSRTM image,
shown in Figure 9d, has better balanced amplitudes than
the acoustic LSRTM image. However, the preconditioned
Q-LSRTM image in Figure 9e has reflectors with better
balanced amplitudes and better resolution than the stan-
dard Q-LSRTM and the acoustic LSRTM images. Mag-
nified views of these images, showns in Figure 10a-10d,
also illustrate the same. Figure 10e shows the wavenum-
ber spectrum of a vertical slice at x = 17.05 km in Figure
10. The brown curve which represent the spectrum of
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Figure 5: Magnified views of the black boxes in Figure
4. The black arrows point to the areas in which improve-
ments can be seen. Figure 5e shows the wavenumber spec-
trum of a vertical slice at x = 3.11 km in above four pic-
tures.

the preconditioned Q-LSRTM image clearly shows an im-
provement in resolution when compared with Q-LSRTM
indicated by the blue line.
The zoomed views also reveal some artifacts parallel to

the salt boundary that got amplified in the preconditioned
Q-LSRTM image. When observed carefully, these arti-
facts can also be seen in the acoustic RTM and LSRTM
images. The residual as a function of iteration number
for LSRTM, Q-LSRTM and preconditioned Q-LSRTM is
plotted in Figure 11. The convergence rate for precon-
ditioned Q-LSRTM is much faster than Q-LSRTM and
acoustic LSRTM especially for the first few iterations.

Friendswood crosswell field data

As a final example, we test our preconditioned Q-LSRTM
method on the Friendswood crosswell field dataset. Two
305-m-deep cased wells separated by 183 m were used as
the source and receiver wells. Downhole explosive source
of 10-g charges were fired at intervals of 3 m from 305 m
to 9 m in the source well, the receiver well had 96 receivers
placed at depths ranging from 293 m to 3 m. The data
were recorded with a sampling interval of 0.25 ms for a
total recording time of 0.375 s (Chen et al., 1990). Dur-
ing processing. the data are Wiener-filtered to transform
the original wavelet to a Ricker wavelet with a 200-Hz
peak frequency. The migration velocity and Q models are
shown in Figures 12a and 12b, respectively. The migra-
tion velocity model is estimated by early-arrival waveform
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(a) LSRTM on Acoustic Data
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(c) Q-LSRTM on Q Data
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(d) Preconditioned Q-LSRTM
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Figure 6: Magnified views of the red boxes in Figure 4.
The black arrows point to the areas in which improve-
ments can be seen. Figure 6e shows the wavenumber
spectrum of a vertical slice at x = 5.13 km in above four
pictures.

inversion and the migration Q model is estimated by a
wave-equation Q tomography (Dutta and Schuster, 2016)
.
The comparison between the acoustic LSRTM and Q-

LSRTM images after 20 iterations are shown in Figure 13a
and 13b, respectively. Similar to the synthetic examples,
the amplitudes are more balanced in the Q-LSRTM image
in Figure 13d than in the acoustic RTM and LSRTM im-
ages in Figure 13a and 13b, respectively While the resolu-
tion becomes lower. The preconditioned Q-LSRTM image
is shown in Figure 13e. When compared to the standard
Q-LSRTM image, the preconditioned LSRTM image has
better resolution at depths of 10-80 m. Magnified views
of these areas are shown in Figure 14 that further validate
the improvement in resolution with our proposed precon-
ditioning method. The black arrows in these figures depict
the areas that have become clearer in the preconditioned
Q-LSRTM image.
As a sanity check, reflectivity slices from the precondi-

tioned Q-LSRTM image are compared to the well log data
taken at a distance of 12 m from the source well. The
comparison between the well log profile and the standard
Q-LSRTM and the preconditioned Q-LSRTM reflectivity
profiles are shown in Figure 15a and 15b, respectively. It
is evident from this figure that the well log agrees bet-
ter with the preconditioned Q-LSRTM image than with
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Figure 7: Convergence curve for acoustic LSRTM, Q-
LSRTM and preconditioned Q-LSRTM for the Marmousi
II model.
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Figure 8: BP2004Q model: (a) true velocity model and
(b) true Q model.

the Q-LSRTM images. The black arrows in this figure
highlight the same.

CONCLUSIONS

A preconditioned Q-LSRTM method is presented that
uses viscoacoustic deblurring filters to compensate for the
amplitude and resolution loss due to strong subsurface at-
tenuation. Numerical tests on synthetic and field data val-
idate that the proposed preconditioning method mitigates
the problem of low resolution associated with standard
Q-LSRTM and can produce images with better balanced
amplitudes and better resolution than acoustic RTM and
LSRTM. The viscoacoustic deblurring filters are estimated
from a reference model with evenly distributed point-scatterers
and its Q-RTM image using local matched filters. The
proposed preconditioning method is also shown to im-
prove the convergence rate of the least-squares iterations
by more than 30 percent in some cases. Similar to stan-
dard Q-LSRTM, a fairly accurate estimation of the back-
ground Q model is required to see noticeable improve-
ments in the image quality with the proposed precondi-
tioned Q-LSRTM method.
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(a) Acoustic RTM
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Figure 9: Comparison between images from (a) acoustic
RTM, (b) acoustic LSRTM, (c) Q-RTM, (d) Q-LSRTM,
(e) preconditioned Q-LSRTM and (f) the true reflectivity
model. The black boxes indicate the areas for the magni-
fied views.
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(b) Acoustic LSRTM
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(c) Q-LSRTM
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(d) Preconditioned Q-LSRTM
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Figure 10: Magnified views of the black boxes in Figure
9. The black arrows point to the reflectors below the high
attenuation area where improvements from the precondi-
tioned Q-LSRTM method can be seen. Figures 10e shows
the wavenumber spectra of a vertical slice at x = 17.05
km in above four pictures.
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Figure 11: Convergence curve for LSRTM, Q-LSRTM and
Preconditioned Q-LSRTM for the BP2004Q benchmark
data.
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(a) Velocity Model
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Figure 12: (a) The estimated migration velocity and (b)
Q models for the Friendswood crosswell dataset.
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Figure 13: Comparison between images from (a) acosutic
RTM, (b) acoustic LSRTM, (c) Q-RTM, (d) Q-LSRTM
and (e) preconditioned Q-LSRTM. 20 least-squares itera-
tions are carried out in all the cases.
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Figure 14: Magnified views of the black boxes in Figure
13. The black arrows point to the reflectors where the
improvement in resolution can be seen from the precondi-
tioned Q-LSRTM method.
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Figure 15: Comparison between the true reflectivity ob-
tained from a well log (represented by the blue line) and
the inverted reflectivity (represented by the red line) from
(a) Q-LSRTM and (b) preconditioned Q-LSRTM. The
well log is at a distance of 12 m from the source well
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