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ABSTRACT

The problem of estimating relative time (or depth) shifts
between two seismic images is ubiquitous in seismic data
processing. This problem is especially difficult where shifts
are large and vary rapidly with time and space, and where
images are contaminated with noise or for other reasons are
not shifted versions of one another. A new solution to this
problem requires only simple extensions of a classic dy-
namic time warping algorithm for speech recognition. A
key component of that classic algorithm is a nonlinear
accumulation of alignment errors. By applying the same
nonlinear accumulator repeatedly in all directions along
all sampled axes of a multidimensional image, I obtain a new
and effective method for dynamic image warping (DIW). In
tests where known shifts vary rapidly, this new method is
more accurate than methods based on crosscorrelations of
windowed images. DIW also aligns seismic reflectors well
in examples where shifts are unknown, for images with dif-
ferences not limited to time shifts.

INTRODUCTION

In seismic data processing we often must estimate relative shifts
in time (or depth) between seismograms. Those shifts often vary
with time and space coordinates. Examples cited by Liner and
Clapp (2004) include alignment of synthetic and recorded seismo-
grams, registration of P- and S-wave images, residual normal move-
out correction, and alignment of images computed for different
source-receiver offsets or propagation angles. They proposed a
dynamic programming solution to this problem in the case where
pairwise alignment of seismic traces is sufficient.
A different dynamic programming solution was developed by

Sakoe and Chiba (1978) in the context of speech recognition, and
is today widely known as dynamic time warping (DTW) (e.g.,
Müller [2007] chapter 4). Significantly, DTW imposes constraints

on the rate at which shifts may vary in time, and these constraints
often enable DTW to accurately estimate shifts from sequences that
are contaminated with noise, or that in some other ways are not
warped versions of each other.
The use of DTW to estimate shifts in geophysical time series and

other sequences is not new. Several applications of DTW to pro-
blems in geophysics were proposed by Anderson and Gaby
(1983), who called this algorithm “dynamic waveform matching.”
Unfortunately, the most straightforward extension of DTW to the

problem of estimating shifts in multidimensional images has been
shown to have no computationally feasible solution (Keysers and
Unger, 2003). Specifically, time required to compute an exact solu-
tion grows exponentially with image dimensions. Therefore, numer-
ous authors have proposed practical solutions to problems that
approximate this intractable problem. Pishchulin (2010) provides
a recent summary.
In this paper, I propose an extension of an approximate solution

developed by Mottl et al. (2002). Their solution and my extension
for dynamic image warping (DIW) are especially simple, requiring
very little software beyond what would already be available to
implement DTW.
I first review the DTW algorithm, giving special attention to the

so-called accumulation and backtracking parts of this algorithm. I
then show how the accumulation part of DTW can be used to im-
plement a nonlinear smoothing of alignment errors computed for
two multidimensional images, and how this leads to a new method
for DIW.
In tests with pairs of images related by shifts that are known,

large, and rapidly varying, I demonstrate the accuracy with which
DIW can estimate the known shifts. In further tests, I show that
DIW can be more accurate than methods based on local crosscor-
relations, especially when shifts vary rapidly in time or space.
Crosscorrelation methods, such as those proposed by Hall (2006)
and Hale (2009) to estimate shifts in time-lapse seismic images, are
accurate only where shifts are more slowly varying.
I then illustrate DIW with applications to two problems, the

estimation of displacements associated with geologic faults and
the registration of PP and PS images. Although the shifts in these
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two examples are unknown, improved alignment after warping
demonstrates the accuracy and robustness of DIW where differ-
ences between two images cannot be attributed to time shifts alone.

DYNAMIC TIME WARPING

Consider the two synthetic seismograms f½i� and g½i� with length
N ¼ 500 samples displayed in Figure 1. I computed the sequence
f½i� by convolving a Ricker wavelet with a random reflectivity
sequence. I then applied time-varying shifts s½i� to that reflectivity
sequence and convolved again with the same wavelet to obtain the
sequence g½i�. The two sequences are therefore approximately (but
not exactly) related by f½i� ≈ g½iþ s½i��.
In practice, these two sequences might be a recorded seismogram

f½i� and a synthetic seismogram g½i� derived from well logs. Or they
might be two sequences of sample values extracted from a seismic
image on opposite sides of a fault. In any case, the practical problem
considered here is estimation of the shifts s½i� given only the two
sequences f½i� and g½i�.
In the example of Figure 1, the shifts s½i� are a simple sinusoidal

function that is apparent in Figure 2a, which is an image of align-
ment errors defined by

e½i; l� ≡ ðf½i� − g½iþ l�Þ2: (1)

Note that these alignment errors are nearly zero where the integer
lag l approximately equals the shift s½i�. Also note the constant
extrapolation of errors in the corners of e½i; l�, where iþ l < 0

or iþ l ≥ N.
In most discussions of DTW (e.g., Sakoe and Chiba, 1978),

alignment errors are defined in a different way by e½i; j�≡
ðf½i� − g½j�Þ2, and are computed for all indices i and j for which
samples f½i� and g½j� are available. I favor the alternative definition
in equation 1 because in most applications to seismic data proces-
sing we can process the sequences f and g to be approximately
aligned before using DTW. This implies that the number of lags
L for which we must compute alignment errors via equation 1 is

much smaller than the number of time samples N, which leads
to significant savings in memory and computation time.
The definition of alignment errors in equation 1 can be modified

by changing the power 2 or by using some other nonnegative func-
tion of the differences f½i� − g½iþ l�, without changing the DTW
algorithm. For example, we might use the absolute values of those
differences. I have squared the differences in all of the examples
shown in this paper, as in equation 1.

Constrained optimization

The simplest DTW computes a sequence u½0∶N − 1�≡
ðu½0�; u½1�; : : : ; u½N − 1�Þ of integer shifts by solving the following
optimization problem

u½0∶N − 1� ¼ argmin
l½0∶N−1�

Dðl½0∶ N − 1�Þ; (2)

where

Dðl½0∶N − 1�Þ ≡
XN−1

i¼0

e½i; l½i��; (3)

subject to the constraint

ju½i� − u½i − 1�j ≤ 1: (4)

As illustrated in Figure 2b, DTW yields a minimizing sequence of
integer shifts u½0∶N − 1� that well approximates the (here, known)
sequence of shifts s½0∶N − 1�.
The first and last shifts (s½0� and s½N − 1�) in this sequence need

not be zero, although they are zero in this example. Zero-value
boundary conditions are often assumed (e.g., Sakoe and Chiba,
1978) but this assumption is unnecessary. The DTW algorithm
described below works as well to estimate a sequence of shifts that
neither begins nor ends with zero.

Figure 1. Two synthetic seismograms f½i� (a) and g½i� (b) corre-
sponding to misaligned reflection coefficients, used as inputs to
the DTW algorithm. Reflections in the sequence f½i� appear to
be squeezed toward the middle of the sequence g½i�.

Figure 2. Alignment errors e½i; l� (a) are small along the sinusoidal
path corresponding to known shifts between reflections in the two
sequences shown in Figure 1. DTW (b) yields (solid white) esti-
mated integer shifts u½i� that approximate well the (dotted white)
known shifts s½i� in reflection coefficients.
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The function D defined by equation 3 is often referred to as dis-
tance, which makes sense if we think of the image e½i; l� in Figure 2a
as representing topography. Large values in e½i; l� then correspond
to tall hills (misalignments) that we wish to avoid as we choose a
path from left to right, that is, from i ¼ 0 to N − 1. In this sense,
DTW chooses a path u½0∶N − 1� to minimize the total distance tra-
veled, subject to the constraint (equation 4) that the shifts cannot
change too rapidly from one sample to the next.
The constraint equation 4 is analogous to the simplest slope con-

straint of Sakoe and Chiba (1978). This constraint is slightly dif-
ferent here only because I define alignment errors by e½i; l�≡
ðf½i� − g½iþ l�Þ2 (equation 1), instead of by e½i; j� ≡ ðf½i� − g½j�Þ2.
Here, this constraint ensures that the argument iþ u½i� in
ðf½i� − g½iþ u½i��Þ2 neither decreases nor increases too rapidly with
increasing sample index i.
This constraint is important. Where u½i� − u½i − 1� ¼ 1, we

stretch by 100%, such that two adjacent samples in the sequence
f½i� correspond to two nonadjacent samples in the sequence g½i�.
Where u½i� − u½i − 1� ¼ −1, we squeeze by 100%, such that two
adjacent samples in the sequence f½i� correspond to only one
sample in the sequence g½i�. In many practical applications, 100%
is an unreasonably large amount of strain, and we will see below
how to reduce this upper bound.
It is significant that the sequence u½0∶N − 1� computed by DTW

minimizes exactly the distance D defined by equation 3, while sa-
tisfying the constraint equation 4. Differences in Figure 2b between
the integer shifts u½0∶N − 1� and the known shifts s½0∶N − 1� are
due entirely to the restriction of u½0∶N − 1� to be integers and the
approximation f½i� ≈ g½iþ s½i��, not to any approximation in the
optimization algorithm.

Dynamic programming

As its name implies, DTW is a dynamic-programming algorithm
(e.g., Cormen et al., 2001). The essential trait of this algorithm is
decomposition of a problem into a sequence of nested and smaller
subproblems.
Let u½0∶N − 1� denote the sequence of shifts l that minimizes the

distance D defined by equation 3. To identify the sequence of smal-
ler subproblems nested within this larger minimization problem, we
consider a subpath u½0∶m� of the minimizing path u½0∶N − 1� and
observe that

u½0∶m� ¼ argmin
l½0∶m�

Xm
i¼0

e½i; l½i��: (5)

For if u½0∶m� were not a minimizing subpath, then we could replace
that part of u½0∶N − 1� and thereby reduce the total distance D,
which implies that u½0∶N − 1� does not minimize D; a contra-
diction.
This observation is important because it implies that we need not

test all possible (roughly, 3N) paths l½0∶N − 1� that satisfy the con-
straint equation 4 in our search for the minimizing path u½0∶N − 1�.
Instead, we can find this minimizing path in two steps: accumula-
tion and backtracking.

Accumulation

In the first accumulation step of DTW, we recursively compute
from the array of alignment errors e½i; l� an array of distances d½i; l�
as follows

d½0; l� ¼ e½0; l�;

d½i; l� ¼ e½i; l� þmin

8>><
>>:

d½i − 1; l − 1�
d½i − 1; l�
d½i − 1; lþ 1�

;

for i ¼ 1; 2; : : : ; N − 1: (6)

For each index i, we cannot yet know in this first step whether or not
the lag l lies on the minimizing path u½0∶N − 1�, so that l ¼ u½i�.
Therefore, we must compute and store distances d½i; l� for all lags,
assuming for the moment that lag l may lie on the minimizing path.
Figure 2b shows distances d½i; l� computed in this way for the align-
ment errors shown in Figure 2a.
The constraint equation 4 implies that, when computing d½i; l� as

in equation 6, we must consider only three previously computed
distances d½i − 1; l − 1�, d½i − 1; l�, and d½i − 1; lþ 1�. In other
words, if lag l lies on the minimizing path at sample index i, then
either lag l − 1, l or lþ 1must lie on the minimizing path at sample
index i − 1.
The computational complexity of this first step is OðN × LÞ,

where L is the number of lags l for which alignment errors
e½i; l� and distances d½i; l� are computed.
I call this first step “accumulation” because the distances d½i; l�

are running sums of alignment errors e½i; l�. At the end of this first
step, we can loop over all lags l to find the minimum distance

D ¼ min
l

d½N − 1; l�: (7)

Backtracking

The second step in DTW is to find the minimizing path, the se-
quence of shifts u½0∶N − 1�, beginning with the last shift u½N − 1�
and ending with the first shift u½0�

u½N − 1� ¼ argmin
l

d½N − 1; l�;

u½i − 1� ¼ argmin
l∈fu½i�−1;u½i�;u½i�þ1g

d½i − 1; l�;

for i ¼ N − 1; N − 2; : : : ; 1: (8)

This backtracking step begins with a simple loop over lags l to find
the last shift u½N − 1� in the sequence of shifts u½0∶N − 1�. Because
this last shift must be on the minimizing path, it must equal the lag
at which we found the minimum distance D. We then recursively
find previous shifts u½i − 1� in this sequence, comparing the three
distances d½i − 1; l − 1�, d½i − 1; l� and d½i − 1; lþ 1� to determine
which of these was used in equation 6 to compute the minimum
distance d½i; l�.
The computational complexity of backtracking is only OðNÞ be-

cause, for each sample index i, we compute a shift u½i� by compar-
ing only three distances. Therefore, the complexity of DTW is the
OðN × LÞ complexity of the accumulation step, which is propor-
tional to the number of samples in the array of alignment
errors e½i; l�.

Dynamic warping of seismic images S107

D
ow

nl
oa

de
d 

10
/2

8/
15

 to
 1

09
.1

71
.1

37
.2

10
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



REFINEMENTS

Figure 3 displays the same two synthetic seismograms f½i� and
g½i� shown in Figure 1, after adding different sequences of bandlim-
ited random noise to each of them. The rms signal-to-noise ratio
(S/N) is 2∶1. Although this level of noise obscures somewhat
the sinusoidal warping path in the plot of alignment errors e½i; l�
in Figure 4a, the shifts u½i� estimated using DTW roughly approx-
imate the known shifts s½i�.
Again, it is important to remember that DTW solves exactly the

constrained optimization problem of equations 2, 3, and 4. Differ-
ences in Figure 4 between estimated and known shifts are primarily
due to errors in the approximation f½i� ≈ g½iþ s½i�� caused by the
addition of random noise. The sequence g½i� in Figure 3b is not a
warped version of the sequence f½i� in Figure 3a.

Limiting strain

The robustness of DTW in the presence of random noise is due
largely to the constraint equation 4. The number of shift sequences
u½0∶N − 1� that satisfy this constraint (≈3N) is far less than the
number that would be possible without it (≈LN).
Of course, the constraint that strain (stretch or squeeze) be less

than 100% is useful only when satisfied by the actual shifts s½i� that
we wish to estimate. However, in many practical applications, this
constraint is more than reasonable. Indeed, a strain as high as 100%
may be unreasonably high, and we may be able to improve the ac-
curacy of shifts estimated in DTW by reducing this upper bound on
strain to a more reasonable value.
The simplest way to more tightly bound strain in DTW is to sam-

ple lags lmore finely at some fraction of the time sampling interval.
For example, if that fraction were 1

2
, then we would compute align-

ment errors e½i; l� for lags l ¼ : : : ;−1;− 1
2
; 0; 1

2
; 1; : : : :. The max-

imum strain permitted would then be 50%, as the constraint
equation 4 would become

ju½i� − u½i − 1�j ≤ 1

2
: (9)

Although straightforward, this method for reducing the upper
bound on strain requires a significant increase in computational
cost. For a limit of 50%, computation time and memory will double
if we compute errors e½i; l� and distances d½i; l� for twice as many
lags. The increase in memory will be especially significant as we
extend the DTW algorithm to the problem of multidimensional
image warping.
A more efficient way to limit strain is to implement constraints

much like the slope constraints proposed by Sakoe and Chiba
(1978). As an example, for a limit of 50% strain, any change in shift
for one sample should be preceded by no change in shift for the
previous sample. To enforce this constraint for all samples (except
those near the beginning), we need only modify the two branches of
the accumulator in equation 6 that correspond to a change in shift

d½0; l� ¼ e½0; l�;

d½1; l� ¼ e½1; l� þmin

8><
>:

d½0; l − 1�
d½0; l�
d½0; lþ 1�

;

d½i; l� ¼ e½i; l� þmin

8><
>:

d½i − 2; l − 1� þ e½i − 1; l − 1�
d½i − 1; l�
d½i − 2; lþ 1� þ e½i − 1; lþ 1�

;

for i ¼ 2; 3; : : : ; N − 1: (10)

A corresponding change is required in the backtracking step, in
which we must now compute and compare the three expressions
inside the min function of equation 10, to determine which of these
was used to compute the distance d½i; l�. With backtracking imple-
mented in this way, DTW is constrained to shift sequences in blocks
of two or more samples. If any sample is shifted by the warping,

Figure 3. Same as Figure 1, except that bandlimited random noise
sequences have been added to the synthetic seismograms f½i�
(a) and g½i� (b). In this example the rms S/N is 2∶1.

Figure 4. Known sinusoidal warping is obscured in alignment
errors e½i; l� (a) computed for the noisy synthetic seismograms of
Figure 3. DTW (b) yields (solid white) estimated integer shifts
u½i� that roughly approximate the (dotted white) known shifts
s½i� in reflection coefficients.
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then at least one of the adjacent samples must be shifted by the same
amount. We may uniformly distribute this shift over these two
adjacent samples, thereby reducing strain to satisfy the constraint
equation 9.
Modifications similar to equation 10 can be easily and efficiently

implemented for any strain limit of the form 1∕b, where b is a po-
sitive integer. Figure 5 shows how strain limits implemented in this
way can improve the accuracy of shifts estimated by DTW. Note,
however, that the strain limit of 1

5
used to estimate shifts u½i� shown

in Figure 5c is almost equal to the maximum strain in the known
shifts s½i�. Any further reduction in the strain limit would yield poor
shift estimates because strain for the correct shifts would exceed that
limit. In practice, lacking any a priori limit on strain, we must take
care to not reduce this limit so much that we prohibit estimates of
the correct shifts.

Smoothing alignment errors

To further improve the accuracy of estimated shifts u½i�, we might
attempt to attenuate noise in the two sequences f½i� and g½i�, or we
might instead try to attenuate noise in the alignment errors e½i; l�.
Considering the second option, suppose that we apply some sort of
smoothing filter to the alignment errors e½i; l�. Can we improve the
accuracy of the estimated shifts u½i� by applying such a filter
before DTW?
This question is suggested by the accumulation step in DTW

defined by equation 6. Each distance d½i; l� computed in this step
is a sum of alignment errors, which implies that the distances d½i; l�
vary less rapidly with index i than do the alignment errors e½i; l�. In
other words, the accumulation step is a smoothing filter.
This recursive smoothing filter is one-sided because each d½i; l� in

equation 6 depends on only previous and present alignment errors,
those with sample indices less than or equal to i. This filter is also
nonlinear because of the min function in equation 6. In effect, this
one-sided nonlinear smoothing filter already attenuates noise in
alignment errors caused by noise in the two sequences to be aligned
by warping.
One way we might improve this smoothing filter would be to

make it two-sided and symmetric. We can implement such a
two-sided symmetric smoothing filter by applying a one-sided filter
in forward and reverse directions. Smoothing in the forward direc-
tion is the same as computing distances d½i; l� via equation 6

~ef½0; l� ¼ e½0; l�;

~ef½i; l� ¼ e½i; l� þmin

8><
>:

~ef½i − 1; l − 1�
~ef½i − 1; l�
~ef½i − 1; lþ 1�

;

for i ¼ 1; 2; : : : ; N − 1: (11)

Smoothing in the reverse direction is similar

~er½N − 1; l� ¼ e½N − 1; l�;

~er½i; l� ¼ e½i; l� þmin

8><
>:

~er½iþ 1; l − 1�
~er½iþ 1; l�
~er½iþ 1; lþ 1�

;

for i ¼ N − 2; N − 3; : : : ; 0: (12)

Two-sided smoothing is then defined by

~e½i; l� ¼ ~ef½i; l� þ ~er½i; l� − e½i; l�: (13)

Subtraction of e½i; l� in equation 13 ensures that this value is not
counted twice as, for all i, it appears in ~ef½i; l� and ~er½i; l�. In this
way, each smoothed error ~e½i; l� is a sum of past, present, and future
alignment errors.
Like the accumulator in DTW, this two-sided smoothing filter is

nonlinear because it uses the min function in equations 11 and 12 to
determine which errors to sum. Figure 6 displays smoothed align-
ment errors for the two noisy sequences shown in Figure 3. Observe
that the known sinusoidal warping path is somewhat more apparent
in these smoothed errors than in the unsmoothed alignment errors
displayed in Figure 4a. We might therefore expect the shifts u½i�
estimated by DTW from the smoothed errors ~e½i; l� would be more
accurate than those estimated from the unsmoothed errors e½i; l�.
However, this sort of smoothing does not improve DTW.

Although not shown here, the shifts u½i� computed by DTW for
the smoothed alignment errors shown in Figure 6c are identical
to those computed for the unsmoothed alignment errors in Figure 4a.
The benefit of this two-sided smoothing lies in the extension of
dynamic warping to multidimensional images.

Figure 5. Shifts u½i� estimated by DTW for different limits on
strain, the rate at which shifts can change with sample index i.
As we reduce the upper bound on this strain from 1 (a) to 1

2
(b) to 1

5
(c), the (solid white) estimated shifts u½i� better approximate

the (dotted white) known shifts s½i�.
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DYNAMIC IMAGE WARPING

The simplest way to extend DTW for image processing is to think
of an image as a collection of vertical columns and to estimate
vertical shifts by applying DTW to each of those columns indepen-
dently. We could likewise apply DTW to image rows to obtain
estimates of horizontal shifts.
Figure 7 illustrates the application of this simple method for

DIW for two seismic shot records, where the first record shown
in Figure 7a has been warped to obtain the second record shown
in Figure 7b. DTW applied to each corresponding pair of columns
from these images yields the estimated shifts shown in Figure 7c.
Except for small source-receiver offsets where seismograms are
missing, these estimated shifts approximate well the known shifts
shown in Figure 7d.
These shifts are large, up to eight times larger than the dominant

period (about 40 ms) of most reflection events. Many of the events
in the shot records (such as those for small offsets and late times) are
ringy, almost periodic, which can make estimation of the shifts dif-
ficult. Nevertheless, DTW applied independently to each pair of
seismograms in these shot records accurately recovers the correct
shifts.
When applying dynamic warping to either sequences or images,

upper and lower bounds for shifts must be specified, and in
this example all shifts were assumed to lie in the range
½−480; 480� ms. Although it is important that these bounds include

the range of actual shifts, which for this test is ½0; 320� ms, the latter
range need not be known precisely.
The success of the simple column-by-column method for DIW

depends primarily on the fact that each pair of seismograms in these
shot records satisfies exactly the DTW assumption that one
sequence is a warped version of the other. When this assumption
is not satisfied, this simple method for DIW can fail miserably.
For example, if we add different bandlimited random noise images
to each of the shot records before DIW, we obtain the results shown
in Figure 8. In this example, the rms S/N is 1∶1. For this noise level,
it is difficult to estimate well the correct shifts from each pair of
noisy seismograms in the two shot records. Therefore, the estimated
shifts vary significantly for different offsets, and imply an unlimited
amount of strain in the horizontal direction.
To improve these estimated shifts, we would like to limit strain in

horizontal as well as vertical directions. In other words, we would
like to minimize alignment errors as in equations 2 and 3 while
satisfying constraints like those in equations 4 or 9 in horizontal and
vertical directions. Unfortunately, this constrained optimization
problem has been shown to have no computationally feasible exact
solution (Keysers and Unger, 2003). We must therefore make

Figure 6. Alignment errors for the noisy sequences in Figure 3 after
smoothing in the forward (a), reverse (b), and both directions (c).
Smoothing in the forward direction is equivalent to the accumula-
tion step in DTW, in which we compute distances d½i; l� via
equation 6.

Figure 7. A recorded seismic shot record before (a) and after
(b) warping with shifts that vary with time and are up to eight times
larger than the dominant period of seismic reflections. Except for
small offsets where data are missing, shifts (c) computed from
seismograms in these two images by the DTW algorithm approx-
imate well the known shifts (d) used to perform the actual warping.
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approximations to this intractable problem, and methods for DIW
differ in their approximations.

Tree-sequential dynamic programming

One such approximation is that proposed by Mottl et al. (2002),
and this approximation and its solution are today often referred to as
“tree-sequential dynamic programming” (TSDP) (e.g., Pishchulin,
2010). Given software for DTW, implementation of the TSDP al-
gorithm for DIW is almost trivial in the case considered here, where
we seek to estimate only vertical shifts. The TSDP algorithm begins
by computing alignment errors as for DTW. It then smooths those
alignment errors in the vertical direction, by applying the nonlinear
two-sided smoothing equations 11, 12, and 13 independently for
each image column. TSDP ends by applying the DTWalgorithm to
the smoothed errors, but now in the horizontal direction, accumu-
lating and backtracking for each image row, again independently. In
this way, TSDP processes a multidimensional image with a cascade
of 1D smoothing, accumulation, and backtracking.
Time shifts estimated by TSDP are shown in Figure 9a. For this

example, I used strain limits of 25% in the vertical direction and
100% in the horizontal direction, and these values are close to the

maximum strains in the known shifts displayed in Figure 8d.
Compared to the estimated shifts shown in Figure 8c, the shifts from
TSDP shown in Figure 9a better approximate the known shifts.
The most obvious improvement is in reduced horizontal strain,

greater continuity of shifts in the horizontal direction. This improve-
ment is not surprising because TSDP as described above ends by
applying DTW independently for each image row, and we know
that DTW satisfies strain limits precisely. However, because TSDP
ends by applying DTW independently for each row, we have no
guarantee that vertical strain limits (here 25%) will be satisfied.
Vertical discontinuities in shifts are in fact apparent in Figure 9a.
Although vertical smoothing of alignment errors in TSDP reduces
the likelihood that such discontinuities will occur, it does not
entirely eliminate them.
Rather than smoothing vertically and then applying DTW

horizontally, we might instead smooth horizontally and apply DTW
vertically. Shifts estimated by this alternative implementation of
TSDP are not shown here, but are significantly less accurate than
those shown in Figure 9a. The reason to first smooth vertically is
that, for each offset, a pair of image columns (seismograms) typi-
cally contains multiple events that will indicate a path of minimum
alignment error like that apparent in Figure 2a, but the same is not

Figure 8. Same as Figure 7, except that different bandlimited ran-
dom noise records have been added to the two shot records (a) and
(b). Because these noisy seismograms are not related by time shifts,
the shifts (c) estimated by the DTW algorithm vary wildly for
different offsets, unlike the known shifts (d).

Figure 9. Time shifts estimated by DTW after vertical (a), vertical-
horizontal (b), vertical-horizontal-vertical (c), and vertical-horizontal-
vertical-horizontal (d) smoothings of alignment errors. Insignificant
differences between shifts (c) and (d) indicate that this process of
smoothing in alternating directions before DTW has converged.
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true for each pair of image rows. By first smoothing alignment
errors vertically, we extend these paths of minimum error to times
for which little information about vertical alignment may be avail-
able, so that DTW applied horizontally can then more accurately
estimate the shifts. Nevertheless, vertical discontinuities apparent
in the estimated shifts shown in Figure 9a suggest that further
improvement is possible.

Improving TSDP

The key to improving TSDP lies in recognizing that it first
smooths alignment errors in one direction before it applies DTW in
another direction. Although I have not seen TSDP described in this
way, the description is accurate. So why not first smooth in both
vertical and horizontal directions?
Figure 9b shows the result of smoothing vertically and horizon-

tally before applying DTW vertically to each column of smoothed
alignment errors. As expected, vertical discontinuities in shifts are
now eliminated, but a few horizontal discontinuities are apparent.
However, if we apply more vertical and horizontal smoothings,
this process quickly converges to the smooth shifts shown in
Figure 9c and 9d.
Although we have no guarantee that this smoothing process will

converge, I have not found a practical example in which more than

four smoothings (vertical-horizontal-vertical-horizontal) yielded
any significant changes in shifts. The convergence shown in
Figure 9 is typical. Therefore, in practice, the computational com-
plexity of this method for DIW remains OðN × LÞ where N is now
the number of image pixels, and L is again the number of lags.
Still, even assuming that the smoothing process does converge,

we cannot guarantee that estimated shifts will minimize alignment
errors while satisfying vertical and horizontal strain limits, as we
recall that this constrained optimization problem has no feasible
solution (Keysers and Unger, 2003).
To my knowledge TSDP has never been described as nonlinear

smoothing followed by DTW. However, the new DIW method pro-
posed here is truly an extension of the TSDP method proposed by
Mottl et al. (2002). Indeed, one way to view this new method is that
it is TSDP with a larger tree, in which each vertical or horizontal
smoothing before DTW represents a new level of branches.

Dynamic warping and crosscorrelation

In tests of DIW discussed above, shifts are large (much larger than
the dominant period of reflections) and vary rapidly with time and
offset. Recalling that strain is the rate at which shift changes, themax-
imum strain in time is about 25%, and themaximum strain in offset is
almost 100%. That is, time shifts change by as much as a quarter of
one time sample fromone sampled time to thenext, and by almost one
time sample from one sampled offset to the next.
Where shifts are not so rapidly varying, methods based on local

crosscorrelation of images may be used instead to obtain accurate
shift estimates. Figure 10 displays shifts estimated from noisy shot
records like those in Figure 8a and 8b, using DIW and local cross-
correlations. The local crosscorrelation method used here is that de-
scribed by Hale (2009), which finds shifts that maximize correlation
coefficients computed for seamlessly overlapping windows of
images. In these tests, those windows are Gaussian with half-widths
equal to 320 ms in time and 240 m in offset.
Figure 10 illustrates how the success of this crosscorrelation

method depends on whether or not shifts vary rapidly within the
windows used to compute the correlation coefficients. The sinusoi-
dal pattern of variation used for these tests is the same as that shown
in Figure 8d, but the rates at which shifts change with time and off-
set (the strains) are smaller because the magnitudes of the shifts are
smaller.
Where shifts vary slowly, as in Figure 10a and 10b (where the

maximum time shift is less than four samples), DIWand local cross-
correlation yield estimated shifts that approximate well the known
shifts. Shifts estimated using the crosscorrelation method show sig-
nificant errors only for small times and large offsets where no re-
flections exist. Where shifts vary rapidly, as in Figure 10c and 10d
(10 times more rapidly than for Figure 10a and 10b), shifts esti-
mated using the local crosscorrelation method are unstable and in-
accurate, whereas those obtained by DIW again approximate well
the known shifts.
One way to stabilize shifts estimated in crosscorrelation methods

is maximize a weighted sum of image correlation and shift smooth-
ness. Hall (2006), for example, used such a regularization to
improve the stability and accuracy of small shifts estimated from
time-lapse seismic images. Regularization is, however, not the same
as constraints in DTW, and it does not solve the fundamental
problem in using crosscorrelation windows to estimate shifts that
vary rapidly within those windows. For such shifts, correlation

Figure 10. Time shifts estimated from noisy shot records by DIW
(a, c) and by local crosscorrelation (b, d). Local crosscorrelation
without constraints yields reasonable estimates where shifts vary
slowly (b), but not where shifts vary rapidly (d).
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coefficients will be low for all lags because the two windowed
images cannot be well aligned for any one of them. If we try to
solve this problem by using smaller windows, then noise will de-
grade our shift estimates, and in any case we must use correlation
windows that are at least as large as the shifts we seek to estimate. In
summary, local correlation methods require that we choose a win-
dow size; for shifts that vary rapidly, as for Figure 10d, a suitable
choice may not exist.
In contrast, dynamic time and image warping require no win-

dows. We need not specify a window size when using the DIW al-
gorithm proposed in this paper.
Another difference between crosscorrelation and dynamic warp-

ing methods is that correlation peaks are easily found with subsam-
ple precision, but dynamic warping yields only integer shifts. For
this reason, I smooth the integer shifts estimated with dynamic
warping using Gaussian filters with half-widths equal to image
sampling intervals divided by maximum strains used to constrain
the shifts.

APPLICATIONS

In all tests discussed in the previous section, shot records fðt; xÞ
and gðt; xÞ input to the DIW algorithm are related by known shifts
uðt; xÞ, where t denotes time and x denotes offset. More precisely,
fðt; xÞ ≈ gðtþ uðt; xÞ; xÞ, and the approximation is necessary only
because the records f and g include the addition of independent
bandlimited random noise. These tests illustrate the accuracy of
DIW in the presence of such noise.
In practice, however, the shifts uðt; xÞ are unknown, and differ-

ences between the two images fðt; xÞ and gðt; xÞ cannot be attrib-
uted entirely to time shifts and random noise. Here, I consider the
fidelity of DIW with two examples of practical applications.

Registration of PP and PS images

One example is the misalignment of seismic reflectors in PP and
PS images caused by differences in P-wave velocities VP and
S-wave velocities VS. These velocity differences cause differences
in reflection amplitudes that one may wish to analyze in estimations
of rock properties. To facilitate such an analysis of amplitudes, we
often align reflectors in the PS image with corresponding reflectors
in the PS image. In doing so, we assume that any subsurface reflector
creates PP and PS reflections, but that amplitudes and phases of these
reflections may differ, due to differences in reflection coefficients.
Several authors, including Gaiser (1996), Fomel et al. (2003,

2005), and Nickel and Sonneland (2004), have described methods
for registration (alignment) of PP and PS images and the correspond-
ing estimation of VP∕VS ratios. Here, I illustrate briefly the applica-
tion of DIW to only the image registration problem.
Figure 11a and 11b displays short one-second windows of PS and

PP images, respectively. Both images are actually eight seconds long,
but these short windows facilitate visual comparisons before and
after warping. Amplitudes in these two images have been normalized
so that rms amplitudes equal one within seamlessly overlapping 2D
windows that decay smoothly to zero. The PS image has been
converted from PS time TPS to PP time TPP using the ratio
TPP∕TPS ¼ 2∕3, which corresponds to a constant ratio VP∕VS ¼ 2.
Within the one-second window displayed here, average VP∕VS

ratios are greater than two, so that reflectors in the PS image of
Figure 11a appear at PP times greater than those in the PP image

of Figure 11b. Letting fðt; xÞ denote the PP image and gðt; xÞ de-
note the PS image (both functions of PP time t ¼ TPP), DIW yields
the warped PS image gðtþ uðt; xÞ; xÞ shown in Figure 11c, for the
estimated time shifts uðt; xÞ displayed in Figure 11d. These
estimated time shifts imply an average VP∕VS ≈ 2.5 within this
short time window, with a slight decrease from left to right.
Significantly, reflectors in the warped PS image of Figure 11c are

well aligned with those in the PP image of Figure 11b, despite
differences in noise, spectral bandwidth, and reflection amplitudes

Figure 11. Seismic reflectors in PS (a) and PP (b) images remain
misaligned after converting PS time TPS to PP time TPP for a
constant ratio TPP∕TPS ¼ 2∕3. Alignment with reflectors in the
PP image (b) is improved in the warped PS image (c), using addi-
tional time shifts (d) estimated by DIW.
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apparent in the two images. However, the estimated shifts in
Figure 11d vary rather slowly, so that for this example we might
expect correlation-based methods to perform as well.

Estimation of fault throws

Figure 12 provides a similar sequence of images for a rather
different problem, that of estimating fault throws. The 2D image
in Figure 12a was extracted from a 3D seismic image along the
hanging-wall side of a fault surface. The 2D image in Figure 12b

was extracted along the footwall side of the same surface. Neither
2D image is axis-aligned, and neither corresponds to a vertical slice
of the 3D image because the fault surface is curvi-planar and nowhere
vertical.
Because the fault in this example is a normal fault, reflectors in

the hanging-wall image of Figure 12a are displaced downward re-
lative to those in the footwall image of Figure 12b. Letting fðt; xÞ
denote the hanging-wall image and gðt; xÞ denote the footwall im-
age, DIW yields the warped hanging-wall image gðtþ uðt; xÞ; xÞ
shown in Figure 12c, for the estimated time shifts uðt; xÞ displayed
in Figure 12d.
Zeros near the bottom of the warped hanging-wall image in

Figure 12c occur because the maximum time displayed equals the
maximum time for which the 3D seismic image is sampled. As sam-
ples in the hanging-wall image are warped upward, no image sam-
ples exist to replace the samples near the bottom.
Estimated time shifts in Figure 12d are related to vertical compo-

nents of fault throw vectors, which in this example are positive be-
cause the fault is a normal fault. Although generally increasing with
time, the estimated shifts (and corresponding fault throws) vary sig-
nificantly within this short time window. Strong reflectors in the
warped hanging-wall image in Figure 12c arewell alignedwith those
in the footwall image in Figure 12b, which confirms visually that the
shifts estimated using DIWand displayed in Figure 12d are correct.
As others have observed (e.g., Borgos et al., 2003; Admasu,

2008), the problem of estimating fault throws is difficult. Part of the
difficulty lies in detecting fault surfaces alongside which we may
extract footwall and hanging-wall images. Moreover, in my experi-
ence, even after finding fault surfaces, 2D images like those dis-
played in Figure 12a and 12b may be impossible to construct
because one part of a fault surface may lie in front of another part
of the same surface. This situation is not unusual, and where it oc-
curs a fault surface has, in effect, not two but four (or more) sides.
Fortunately, the DIWalgorithm proposed here can be modified to

compute displacements alongside such fault surfaces. The modifi-
cation is beyond the scope of this paper, but the key step is again
nonlinear accumulation, up-down along fault dip and left-right
along fault strike, of alignment errors computed from samples of
the 3D seismic image adjacent to the fault surface.

CONCLUSION

An appealing feature of DTW is that it solves exactly the con-
strained optimization problem of equations 2, 3, and 4. Although
a practical and exact solution is unlikely to exist for the correspond-
ing optimization problem for images, examples shown above indi-
cate that the approximate dynamic warping solution proposed in
this paper can produce accurate estimates of shifts from images,
even where those shifts are large and rapidly varying.
The examples in this study are for 2D images, but DIW is easily

applied to 3D images as well. We smooth alignment errors along all
three image dimensions before eventually using DTW to estimate
the shifts. For each dimension, this smoothing and DTW is espe-
cially efficient on computers with multiple processors, as each row
or column of alignment errors can be processed in parallel.
As for 2D images, computational complexity for 3D images

remains OðN × LÞ, except that N is now the number of samples
(voxels) in the 3D images. The amount of computer memory
required is also OðN × LÞ and, in practice, this requirement may
exceed the amount of RAM available. In this case, we may either

Figure 12. Reflectors in hanging-wall (a) and footwall (b) images
extracted from a 3D seismic image alongside a curvi-planar normal
fault are misaligned due to fault throw. Reflectors in the footwall
image (b) are well aligned with those in the warped hanging-wall
image (c), using shifts (d) estimated by DIW.
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use slower computer memory or process large 3D images in smaller
overlapping blocks, alternatives that are widely used today in other
methods for 3D seismic image processing.
In this paper, I have assumed that images can be aligned with

only vertical warping. However, the DIW algorithm proposed here
can also be used to estimate shift vectors with vertical and horizon-
tal components. Estimating shift vectors requires computation of
alignment errors for multiple components of lag, but this computa-
tion and corresponding modifications to the image warping algo-
rithm are straightforward.
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