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ABSTRACT

Wave-equation migration velocity analysis (WEMVA)
based on subsurface-offset, angle domain or time-lag
common image gathers (CIGs) requires significant com-
putational and memory resources because it computes
migration images with extra dimensions in the ex-
tended image domain. To mitigate this problem, a
WEMVA method using plane-wave CIGs is presented.
Plane-wave CIGs reduce the computational cost and
memory storage because they are directly calculated
from prestack plane-wave migration, and the number
of plane waves is much less than the number of shots.
In the case of an inaccurate migration velocity, the
moveout of plane-wave CIGs is automatically picked
by a semblance analysis method, which is then linked
to the migration velocity update by a connective func-
tion. Numerical tests on two synthetic datasets and a
field dataset validate the efficiency and effectiveness of
this method.

INTRODUCTION

An accurate estimate of the background velocity model
is important to obtain focused images with migration.
Wave-equationmigration velocity analysis (WEMVA) (Biondi
et al., 1999; Mulder and Ten Kroode, 2002; Sava and
Biondi, 2004; Shen and Symes, 2008) inverts for the mi-
gration velocity using a non-linear iterative scheme that
maximizes the similarities of a collective of images at the
same location. This image group is referred to as common
image gathers (CIGs), with at least three types: angle-
domain (Xu et al., 2001; Sava and Fomel, 2003; Biondi and
Symes, 2004), subsurface-offset (Rickett and Sava, 2002)
and time-lag CIGs (Sava and Fomel, 2006).
Subsurface-offset and time-lag CIGs require an extended

imaging condition in the space-lag and time-lag domain
for each shot. Besides the physical dimensions in x-y-z,
an extended image for a single shot has extra dimensions
for space or time lags, which requires a significant increase
in memory storage space. Angle-domain CIGs are com-
puted by a slant stack of the subsurface-offset CIGs (Sava
and Fomel, 2003), or by calculating wavefield propaga-
tion directions during migration (Xu et al., 2011; Dickens
and Winbow, 2011; Zhang, 2014). The final CIGs result
from stacking all the shot gathers together. Computing
these CIGs for WEMVA has a high computational cost
and memory storage requirement for large 3D datasets.
To mitigate this problem, plane-wave migration (Whit-

more, 1995; Duquet et al., 2001; Zhang et al., 2005; Liu
et al., 2006) can be applied to form plane-wave CIGs. This
method combines multiple shot gathers into a compos-
ite plane-wave gather and migrates the plane-wave gath-
ers with different ray parameters p to obtain plane-wave
CIGs. The benefit is that there is no need for the extra
dimensions in the extended image domain. Moreover, the
number of plane waves is much less than the number of
shots in the survey. Because of these two reasons, plane-
wave CIGs save computational cost and memory space
compared to CIGs in other domains.
Plane-wave technology has been used in the exploration

geophysics community to save computational cost in full
waveform inversion (Vigh and Starr, 2008) and least-squares
migration (Dai and Schuster, 2013; Wang et al., 2014).
Jiao et al. (2002) applied residual migration velocity anal-
ysis in the plane-wave domain, where the migration veloc-
ities were scanned and picked to flatten plane-wave CIGs
by a moveout correction based on an analytical moveout
formula. However, this formula is only valid for a 1D ve-
locity model or a 2D model with small dip angles.
To overcome this limitation, we present a WEMVA

method using plane-wave CIGs, denoted as PWEMVA.
PWEMVA inverts for the migration velocity by minimiz-
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ing the objective function which is the squared summation
of the local shifts between a plane-wave migration image
and a reference image. This objective function is based
on the principle that an accurate migration velocity leads
to horizontally aligned CIGs for different p values. The
local shift at a given image point is computed by choosing
a parabola which best fits the moveout of the plane-wave
CIG. Similar approaches have been used by Zhang and
Biondi (2013) and Zhang et al. (2015), except for that
they extracted the moveout of the shot and angle-domain
CIGs. A connective function (Luo and Schuster, 1991) is
used to link the local shifts with the velocity update so
that the gradient of the objective function is derived.
After the introduction, the theory section summarizes

the theory of plane-wave migration, introduces the ob-
jective function ǫ of the PWEMVA method and derives
the gradient of ǫ. The formula for updating the veloc-
ity model is given and a workflow is presented for imple-
menting the PWEMVA method. This is followed by the
numerical results section which presents the results of ap-
plying PWEMVA to synthetic data and a marine data
set recorded in the Gulf of Mexico. The last two sections
include the discussions and conclusions.

THEORY

Plane-wave migration

For a 2D medium, let Sk(ω,x) represent the source-side
wavefield of a single shot located at (xk, z = 0) at the sur-
face. The plane-wave source-side wavefield S̄(ω,x) is the
summation of all the delayed shot wavefields from single
shots:

S̄(ω,x) =

ns∑

k=1

eiωp(xk−x0)Sk(ω,x), (1)

where ns represents the shot number, i is the imaginary
unit, ω denotes the angular frequency and (x0, 0) is the
location at the surface where the plane-wave is initiated
at t = 0. Here, p = sin θ/v is the ray parameter of the
plane wave, where θ is referred to as the shooting angle
and v is the velocity at the surface.
Similarly, the plane-wave receiver-side wavefield R̄(ω,x)

is the summation of all the delayed backward-extrapolated
receiver-side wavefieldsRk(ω,x) excited by the source wave-
field Sk(ω,x):

R̄(ω,x) =

ns∑

k=1

eiωp(xk−x0)Rk(ω,x). (2)

This plane-wave receiver wavefield at the receiver position
xg is referred to as a plane-wave gather.
The prestack plane-wave migration image is obtained

by multiplying the plane-wave source-side wavefield with
the complex conjugate of the receiver-side wavefield in the
frequency domain and summing over all frequencies:

m(x) = ℜ
{∑

ω

S̄(ω,x)R̄(ω,x)∗
}

, (3)

where ℜ{} represents the real part.

Objective function and gradient

The objective function ǫ for PWEMVA is defined as the
squared summation of the vertical local shift ∆wj(x0) be-
tween two patches B(x0) centered at x0 of a plane-wave
migration image mj and the reference image m0:

ǫ =
1

2

np∑

j=1

∑

x0∈B

∆wj(x0)
2, (4)

where j denotes the plane-wave index, np represents the
number of plane waves and B stands for the set of all
patches in the migration image. The local vertical shift
∆wj(x0) aligns m0(x, z+∆wj(x0)) with mj(x, z) for x ∈
B(x0), where B(x0) is of the width and height of a wave-
length.
The gradient of the objective function with respect to

the slowness c(x′) (reciprocal of the migration velocity) is

∂ǫ

∂c(x′)
=

np∑

j=1

∑

x0∈B

∂∆wj(x0)

∂c(x′)
∆wj(x0). (5)

In order to calculate the Fréchet derivative of the lo-
cal shift of the window centered at x0 with respect to
the slowness perturbation at x

′, a connective function is
defined as the local cross-correlation between m0(B(x0))
and mj(B(x0)):

fj(c(x
′), wj(x0)) =

∑

x∈B(x0)

m0(x, z + wj(x0))mj(x, z),

(6)
where x = (x, z) and wj(x0) is a random local shift. The
correct image shift ∆wj(x0) aligns m0(x, z + ∆wj(x0))
with mj(x, z) within B(x0), so that the connective func-
tion in equation 6 is maximized. This means that the
derivative of fj with respect to wj(x0) should be zero at
∆wj(x0):

f̄j(c(x
′),∆wj(x0)) =

∑

x∈B(x0)

∂fj(c(x
′), wj(x0))

∂wj(x0)

∣
∣
∣
wj(x0)=∆wj(x0)

=
∑

x∈B(x0)

mj(x, z)ṁ0(x, z +∆wj(x0))

= 0,

where the dot represents the derivative with respect to z.
The implicit function theorem gives

∂∆wj(x0)

∂c(x′)
= − ∂f̄j/∂c(x

′)

∂f̄j/∂∆wj(x0)
, (7)

where the denominator is given by

∂f̄j
∂∆wj(x0)

=
∑

x∈B(x0)

m̈0(x, z +∆wj(x0))mj(x, z). (8)
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Here the double dots represent the second-order derivative
with respect to z.
Assuming only mj is a function of the migration slow-

ness, the numerator of equation 7 is

∂f̄j
∂c(x′)

=
∑

x∈B(x0)

ṁ0(x, z +∆wj(x0))
∂mj(x)

∂c(x′)
. (9)

Inserting equations 7, 8 and 9 into equation 5 yields

∂ǫ

∂c(x′)
=

np∑

j=1

∑

x0∈B

−
∑

x∈B(x0)

∆wj(x0)ṁ0(x, z +∆wj(x0))
∂mj(x)

∂c(x′)
∑

x∈B(x0)

m̈0(x, z +∆wj(x0))mj(x)
.

(10)

Substituting the Fréchet derivative ∂mj(x)/∂c(x
′) derived

in Appendix A into equation 10, the gradient of the ob-
jective function is

∂ǫ

∂c(x′)
=

np∑

j=1

∑

x0∈B

∑

x∈B(x0)

g1 + g2

∑

x∈B(x0)

m̈0(x, z +∆wj(x0))mj(x)
,

where

g1 = ℜ
{∑

ω

2ω2c(x′)S̄(ω,x′)
[
upward-propagated receiver wavefield

︷ ︸︸ ︷

G(x′|x)∗M(x)R̄(ω,x)
]∗}

,

and

g2 = ℜ
{∑

ω

2ω2c(x′)

upward-propagated source wavefield
︷ ︸︸ ︷

G(x′|x)M(x)S̄(ω,x) R̄(ω,x′)∗
}

,

(11)

in which M(x) = −∆wj(x0)ṁ0(x, z +∆wj(x0)).
(12)

Here, G(x′|x) represents the Green’s function recorded
at x

′ due to a harmonic point source at x oscillating at
a specific angular frequency ω. The gradient in equa-
tion 11 has two terms. The first term g1 corresponds to
the source-side wavepath, which is the dot product at x′

between the downward-propagated source-side wavefield
S̄(ω,x′) and the upward-propagated receiver-side wave-
field. The upward propagated receiver-side wavefield is
generated by a virtual source at the image point x, which
is redatumed from the receivers at the surface as shown
in Figure 1a. Similarly, the second term g2 can be in-
terpreted as the receiver-side wavepath, which is the dot
product at x′ between the downward-propagated receiver-
side wavefield R̄(ω,x′) and the upward-propagated source-
side wavefield. The upward propagated source-side wave-
field is excited by a virtual source at the image point x,
which is redatumed from the sources at the surface as
shown in Figure 1b. The migration slowness is updated

by smearing the energy of the local image shifts at x along
its plane-wave paths associated with the sources and re-
ceivers as shown in Figure 1c.
The derivations from equations 4 to 12 are for the ver-

tical shifts between 2D images. To be more general, the
local shift between 3D images is a three-component vector,
and the objective function in equation 4 can be general-
ized as the squared summation of the length of the shift
vector. In this case, the corresponding gradient with re-
spect to the migration slowness is derived in Appendix
B.

M(x)

x
′

G(x′|x)

Source

Receiver

(a) Illustration of g1

S̄(ω,x′)

M(x)

x
′

(b) Illustration of 

R̄(ω,x′)

G(x′|x)

S̄(ω,x)

g2

(c) Illustration of  g1 + g2

R̄(ω,x)

Figure 1: Wavepath diagrams illustrate (a) g1, (b) g2 and
(c) g1+ g2, where M(x) is an interface of a positive value
as shown by the black horizontal line in panels (a) and
(b).

Given the gradient, the steepest-descent method (No-
cedal and Wright, 2006) can be used to iteratively up-
date the migration slowness until the shifts in plane-wave
CIGs are sufficiently small. An alternative is the conju-
gate gradient method (Nocedal and Wright, 2006) which
is typically much faster than the steepest-descent method.

WORK FLOW

This section describes the workflow of the PWEMVAmethod,
which is summarized into 3 steps: calculate the objective
function, the gradient, and the step length. The imple-
mentations of the first two steps are described in detail.

1. Calculate the objective function

First, the shot profile seismic data are transformed
into plane-wave gathers based on equation 2. Then
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plane-wave prestack reverse time migration (RTM)
is applied to each plane-wave gather to obtain plane-
wave CIGs. The poorly illuminated boundary areas
of the migration images are masked.

The objective function in equation 4 requires calcu-
lating the local shifts between the same event in a
plane-wave migration image and a reference image.
In practice, the reference image is assumed to be the
plane-wave migration image with p = 0, because it
usually suffers the least from velocity errors.

We use semblance analysis method to calculate the
shifts in the plane-wave CIGs. The semblance spec-
trum is calculated by scanning over different curva-
tures α of a parabola to fit the plane-wave CIGs:

∆w̃j(x) = αp2, (13)

where ∆w̃j(x, z) is the local shift which alignsm0(x, z)
with mj(x, z + ∆w̃j(x, z)). ∆w̃j(x, z) can then be
transformed into ∆wj(x, z) by

∆wj(x, z) = −∆w̃j(x, z −∆w̃j(x, z)). (14)

The reason for fitting the plane-wave CIG with a
parabola is explained in Appendix C. However, equa-
tion 13 implicitly assumes the apex of the parabola
at the image with p = 0, and this is not accurate for
a large dip-angle interface. In such case, equation 13
is replaced with

∆w̃j(x) = α(p− p0)
2,

where p0 = sinβ/v(x).
(15)

Here p0 is the ray parameter of the plane-wave re-
flecting off the interface with a dipping angle β per-
pendicularly and v(x) is the migration velocity at x.
β can be computed from the migration image.

After calculating the semblance spectrum, the cur-
vature corresponding to the maximum energy is au-
tomatically picked using the method proposed by
Fomel (2009). As an example, Figure 2a shows a
semblance spectrum computed from a plane-wave
CIG shown in Figure 2b and the picked curvature
parameters are then transformed into the shift based
on equations 13 or 15 as shown in Figure 2c.

2. Calculate the gradient

When calculating the gradient in practice, equation
12 is simplified as

M(x) = −∆wj(x0)ṁj(x), (16)

by assuming ṁ0(x, z + ∆wj(x0)) ≈ ṁj(x, z). The
denominator of equation 11 is also omitted in imple-
mentation because dividing an image can be unsta-
ble.

The Green’s functions in equation 11 are computed
by solving the two-way acoustic wave equation in the

time domain while the background slowness model
needs to be smoothed to avoid reflection events in
the Green’s functions. Given the gradient, a nu-
merical line search method is used to calculate the
step length and update the slowness model by the
steepest-descent or the conjugate gradient method
(Nocedal and Wright, 2006).

(a) (b) (c)

Figure 2: (a) A semblance spectrum calculated from (b)
a plane-wave CIG. (c) The vertical shift of the CIG calcu-
lated from the picked curvature parameters in panel (a).
The data are generated for a laterally homogeneous 6-layer
velocity model, and then migrated using a homogeneous
velocity slower than the true velocity. The curvature pa-
rameters corresponding to the maximum energy of the
spectrum are picked automatically as shown by the red
line in panel a, and then transformed into the shift values
in panel c. The dashed red lines in panel b represent the
depth calculated from the shift values, which match well
with the depths of the migrated events.

NUMERICAL RESULTS

The PWEMVAmethod is applied to two synthetic datasets
and a marine dataset recorded in the Gulf of Mexico.
These tests are designed to demonstrate the strengths and
limitations of this velocity analysis method.

Synthetic test 1

PWEMVA method is first tested on the data generated
from a simple 2D model, which is 2 km wide and 0.5
km deep. Synthetic shot gathers are computed by finite-
difference solutions to the 2D acoustic wave equation for
the velocity model shown in Figure 3a. The source wavelet
is a Ricker wavelet with a 40-Hz peak frequency, and there
are 201 shots with 402 active receivers per shot. The
sources and receivers are evenly distributed on the surface
with an interval of 10 m and 5 m, respectively. The shot
profile data are transformed into 41 plane-wave gathers
with -0.471 s/km ≤ p ≤ 0.471 s/km and shooting angles
changing from -45 to 45 degrees. The plane-wave gather
with p = 0 is shown in Figure 3b, and the initial velocity
model is homogeneous with v = 1.5 km/s. These CIGs us-
ing the initial velocity model are shown in Figure 4a. The
semblance spectra and the moveout residuals computed



Plane-wave WEMVA 113

from the CIGs at two locations are shown in Figures 4b
and 4c. The inverted velocity models after 10 and 20 iter-
ations are shown in Figures 5a and 5b, respectively, where
the final tomogram accurately resembles the true velocity
model. Figure 5c depicts the objective function at each
iteration, and the plane-wave CIGs shown in Figure 6 are
mostly flattened using the inverted velocity model after
20 iterations.

Synthetic test 2

The second test inverts the synthetic data generated by
a staggered-grid acoustic modeling algorithm. The veloc-
ity and density models are shown in Figure 7 with the
width of 21 km and the depth of 7.9 km taken from a por-
tion of the BP2004 model. The source wavelet is a Ricker
wavelet with a 15-Hz peak frequency. There are 690 shots
with 2070 receivers per shot. The shots and receivers are
evenly distributed on the surface at 30 m and 10 m in-
tervals, respectively. These data are transformed into 81
plane-wave gathers with the ray parameters ranging from
-0.33 s/km to 0.33 s/km and the shooting angles varying
from -30 to 30 degrees. The laterally homogeneous veloc-
ity model shown in Figure 8a is the initial velocity, which
produces the plane-wave CIGs with strong residual move-
outs between 2 km to 8 km and 12.5 km to 15.5 km along
the horizontal distance as shown in Figure 8b. Figure 9
depicts the semblance spectra and the picked curvatures
at different horizontal locations. During the inversion, the
water-layer around 100 meters deep is fixed.
The inverted velocity models after 5 and 10 iterations

are shown in Figures 10a and 10b, respectively. After 10
iterations, the tomogram recovers most of the low wavenum-
ber components of the true velocity model in Figure 7a.
Figure 10c shows the objective function at each iteration,
and the plane-wave CIGs associated with the inverted ve-
locity after 10 iterations are mostly flattened as shown in
Figure 11.

Field data test

The third example is for a 2D marine data set recorded
in the Gulf of Mexico. The streamer data consist of 496
shots with a shot interval of 37.5 m. Each shot has 480
hydrophones with a receiver interval of 12.5 m. The max-
imum source-receiver offset is approximately 6 km, the
nearest offset is 198 m, and the recording time is 5 sec-
onds. Figure 12a shows a recorded common shot gather
(CSG), where the 496 shot gathers are transformed into
common midpoint profiles (CMPs) and a 2D spline inter-
polation is used to fill in the near-offset trace gap after
normal moveout correction (Yilmaz, 2001). The interpo-
lated CMPs are then transformed into common receiver
gathers (CRGs) with a split-spread acquisition geometry
using reciprocity (Liu et al., 2004). In the CRGs, each
trace is multiplied by

√

i/ω in the frequency domain and
then scaled by

√
t in the time domain to correct for the

3D geometrical spreading (Dai, 2012). A tau-p transform

is applied to each CRG to generate 51 plane-wave gathers
with -0.33 s/km ≤ p ≤ 0.33 s/km. The shooting angles
vary from -30 to 30 degrees, and a plane-wave gather is
shown in Figure 12b. The plane-wave gathers are filtered
with a Wiener filter to transform the original wavelet to
a Ricker wavelet with a 25-Hz peak frequency.
The initial velocity model shown in Figure 13a is ob-

tained by inverting the traveltimes of the first arrivals.
The plane-wave CIGs calculated by plane-wave RTM are
shown in Figure 13b, with significant residual moveouts
below 2 km and between 1 km to 9 km along the hor-
izontal axis. The semblance analysis of the plane-wave
CIGs illustrated in Figure 14 is used to calculate the spa-
tial shifts for the migration image. After 10 iterations,
the inverted velocity model is shown in Figure 15a, which
produces the plane-wave CIGs shown in Figure 15b, with
more flattened events especially below 2 km and between
1 to 9 km along the horizontal distance.
We now compare the shot profile RTM images from

the initial and the inverted velocities, as shown in Fig-
ures 16a and 16b, respectively. The magnified views of
the two images are compared in Figure 17. The compari-
son clearly shows that the RTM image using the inverted
velocity model is better focused than that using the trav-
eltime tomogram. Figures 18a and 18b show the angle-
domain CIGs calculated by the method proposed by Sava
and Fomel (2003) using the traveltime tomogram and the
inverted velocity model, respectively. The angle-domain
CIGs associated with the inverted velocity model have
more flattened events, especially in the region surrounded
by the red and yellow dashed squares in Figure 18. The
magnified views of these two regions are compared in Fig-
ure 19.

DISCUSSIONS

In this section we discuss three issues which require atten-
tion for implementing the PWEMVA method. The first
issue is the range of shooting angles and the number of
plane waves. The second issue is the PWEMVA perfor-
mance with a time-domain two-way wave equation com-
pared to that with a one-way equation in the frequency do-
main. The third topic is the limitations of the PWEMVA
method.
The maximum shooting angle α2 for a plane wave usu-

ally ranges between 30 to 45 degree. The shooting angle
does not need to be too large, since the velocity of the
real earth typically increases with depth, so that a large
shooting angle will reach a critical angle at certain shallow
depths and fail to penetrate below. On the other hand,
if the maximum shooting angle is too small, plane-wave
CIGs will not have sufficient moveout information for the
inversion. The minimum shooting angle α1 is the nega-
tive of the maximum shooting angle. After determining
the maximum and minimum shooting angles, the num-
ber of plane waves will determine the efficiency of the
PWEMVA method. Zhang et al. (2005) state that the
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number of plane waves Np must satisfy the constraint

Np ≥ Lsf(sinα2 − sinα1)

vs
, (17)

where Ls is the length of a CRG and f is the frequency.
This criterion ensures that the stacked plane-wave im-
age is similar to a common-shot migration image. Since
the PWEMVA method does not involve stacking, the re-
quired number of plane waves is fewer than Np and can be
decided by a trial-and-error procedure. An oversampled
number of plane waves is inefficient while an undersam-
pled number will generate significant aliasing artifacts in
the CIGs.
In this paper, we migrate the plane-wave gathers and

calculate the Green’s functions by solving the two-way
wave equation in the time domain. The alternative im-
plementation is to solve the one-way wave equation in the
frequency domain. The time-domain method is more ac-
curate, yet requires more computational resources. This
problem is more severe for surveys with a large source-
receiver offset because, when computing a plane-wave gather,
the delay time of a shot gather with a source at (xs, 0) is
equal to p ∗ (xs − x0). This means that the longer source-
receiver offset in a CRG, the longer the delay time, so that
more computation time is required for the time-domain
method. On the other hand, a frequency-domain imple-
mentation is immune to this problem, hence it is much
faster than the time-domain method. However, solving
the one-way wave equation in the frequency domain is an
approximation to the two-way wave equation so that it is
less accurate.
One disadvantage of the PWEMVA method is the ar-

tifacts in the plane-wave CIGs. Each trace in a CIG is
computed by prestack plane-wave migration, thus it suf-
fers from less signal-to-noise ratio and more cross-talk ar-
tifacts compared to traces in the angle domain, subsurface
offset or time-lag CIGs, which is the result from stacking
across all the shots. These artifacts in the plane-wave
CIGs might bias the extraction of the moveout informa-
tion. Another disadvantage is that the plane-wave gath-
ers calculated from the CSGs with sparse source distri-
bution are usually aliased. This problem is more severe
in the cross-line direction when extending the PWEMVA
method to 3D velocity inversion. To mitigate this prob-
lem, CSGs need to be interpolated first and then trans-
formed into plane-wave gathers as the data processing pro-
cedure applied to the Gulf of Mexico marine data set.

CONCLUSIONS

A WEMVA method using plane-wave CIGs is presented
which reduces the computational cost and memory storage
space, compared to the MVA analysis of CIGs in angle,
subsurface-offset and time-lag domains. These benefits re-
sult from the following two properties. First, plane-wave
CIGs are the direct output of prestack plane-wave migra-
tion, which does not require an imaging condition in the

extended dimension or extra processing of the extrapo-
lated wavefields during migration. Second, the number
of plane waves is significantly fewer than the number of
shots. In the second numerical test and the field data ex-
ample, the number of plane waves is only approximately
10 percent of the number of shots, so that in these cases
PWEMVA saves at least 90 percent of the computational
time compared to other types of WEMVA method. The
performance of the PWEMVA method largely depends
on the quality of the plane-wave CIGs, thus the disad-
vantage of this method is that the artifacts in the plane-
wave CIGs might bias the computation of the moveout
information. One future work direction is to extend the
PWEMVA method to 3D cases.
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Figure 3: (a) True velocity model and (b) the plane-wave
gather with p = 0.
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Figure 4: (a) Plane-wave CIGs migrated using a homoge-
neous velocity model. The calculated semblance spectra
and the picked curvatures at 0.75 km and 1 km are shown
in (b) and (c).
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Inverted Velocity at 10th Iteration
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Figure 5: (a) Inverted velocity after 10 iterations and (b)
20 iterations. (c) The objective function at each iteration.

CIGs from Inverted Velocity

X (km)

0.2 0.4 0.5 0.6 0.8 0.9 1.0 1.1 1.2 1.4 1.5 1.6 1.8

Z
 (

k
m

)

0

0.125

0.25

0.375

0.5

Figure 6: Plane-wave CIGs using the inverted velocity
model shown in Figure 5b.
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Semblance Spectra
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Figure 9: Semblance spectra at (a) x = 3.5 km, (b) x =
6.5 km, (c) x = 9.5 km, (d) x = 12.5 km and (e) x = 15.5
km. The red lines represent the picked curvatures of the
maximum energy.
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Figure 10: Inverted velocity model after (a) 5 iterations
and (b) 10 iterations. Panel (c) shows the objective func-
tion at each iteration.
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Figure 12: (a) A CSG recorded in the Gulf of Mexico data
and (b) a plane-wave gather with p = −0.04 s/km.
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Figure 13: (a) The initial velocity model computed by
inverting the traveltimes of the first arrivals and (b) the
associated plane-wave CIGs.

Figure 14: Plane-wave CIGs are used to calculate the sem-
blance spectra and the shifts of CIGs.
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CIGs from Inverted Velocity
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Figure 15: (a) The inverted velocity model after 10 itera-
tions and (b) the associated plane-wave CIGs.
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Figure 16: Shot profile RTM images based on the (a) trav-
eltime tomogram in Figure 13a and (b) inverted velocity
model shown in Figure 15a.
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Image from Traveltime Tomography
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Figure 17: (a), (c), and (e) are the zoom-in view of the red,
green and the yellow squares in Figure 16a, respectively.
(b), (d), and (f) are the zoom-in view of the red, green
and the yellow squares in Figure 16b, respectively.
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Figure 18: Angle-domain CIGs calculated from the (a)
traveltime tomogram in Figure 13a and (b) inverted ve-
locity shown in Figure 15a.
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18b.
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APPENDIX A

DERIVATION OF THE MIGRATION IMAGE

CHANGE WITH RESPECT TO THE

MIGRATION SLOWNESS PERTURBATION

Based on the plane-wave migration imaging condition in
equation 3, the Fréchet derivative of the image at x with
respect to the slowness perturbation at x′ consists of two
terms:

∂m(x)

∂c(x′)
=

γ1
︷ ︸︸ ︷

ℜ
{∑

ω

∂S̄(ω,x)

∂c(x′)
R̄(ω,x)∗

}

+

γ2
︷ ︸︸ ︷

ℜ
{∑

ω

∂R̄(ω,x)∗

∂c(x′)
S̄(ω,x)

}

,

(A-1)

where the subscript j representing the plane-wave index
is silent.
To derive the formula for γ1, we note that equation 1

leads to

∂S̄(ω,x)

∂c(x′)
=

ns∑

k=1

eiωp(xk−x0)
∂Sk(ω,x)

∂c(x′)
. (A-2)

The wavefield Sk(ω,x) is initiated by a point source lo-
cated at xk = (xk, 0) at the surface and is defined as

Sk(ω,x) = G(x|xk)W (ω), (A-3)

where G(x|xk) represents the Green’s function recorded
at x due to a harmonic point source at xk, and W (ω) rep-
resents the source spectrum. Here, we assume the source
is zero phase. Inserting equation A-3 into equation A-2
leads to

∂S̄(ω,x)

∂c(x′)
=

ns∑

k=1

eiωp(xk−x0)
∂G(x|xk)

∂c(x′)
W (ω). (A-4)

The perturbed Green’s function ∆G(x|xk) can be ex-
pressed under the Born approximation as

∆G(x|xk) =

∫

2ω2c(x′′)G(x|x′′)G(x′′|xk)∆c(x′′)dx′′,

(A-5)
where ∆c(x′′) is the slowness perturbation. Assuming

∆c(x′′) = ∆cδ(x′′ − x
′), (A-6)

we obtain

∂G(x,xk)

∂c(x′)
= 2ω2c(x′)G(x|x′)G(x′|xk). (A-7)

Substituting the combination of equations A-4 and A-7

into the expression of γ1 in equation A-1 yields

γ1 =ℜ
{∑

ω

2ω2c(x′)W (ω)

ns∑

k=1

eiωp(xk−x0)G(x′|xk)G(x|x′)R̄(ω,x)∗
}

.

(A-8)

Inserting equations 1 and A-3 into equation A-8 and using
the reciprocity property of the Green’s function G(x|x′) =
G(x′|x), equation A-8 is simplified as

γ1 = ℜ
{∑

ω

2ω2c(x′)S̄(ω,x′)[G(x′|x)∗R̄(ω,x)]∗
}

. (A-9)

The formula for γ2 is derived in a similar way. Based
on equation 2

∂R̄(ω,x)

∂c(x′)
=

ns∑

k=1

eiωp(xk−x0)
∂Rk(ω,x)

∂c(x′)
, (A-10)

and Rk(ω,x) =
∑

xg

G(x|xg)
∗d(ω,xg ,xk), (A-11)

where Rk(ω,x) is the backward extrapolated wavefield
computed by the time-reversed propagation of the data
d(ω,xg,xk) recorded at xg excited by the source at xk.
Similar to equation A-7, Born modeling gives

∂G(x,xg)

∂c(x′)
= 2ω2c(x′)G(x|x′)G(x′|xg). (A-12)

Substituting equations A-11 and A-12 into equation A-10
gives

∂R̄(ω,x)

∂c(x′)
=

ns∑

k=1

eiωp(xk−x0)2ω2c(x′)G(x|x′)∗

∑

xg

G(x′|xg)
∗d(ω,xg,xk),

= 2ω2c(x′)G(x|x′)∗R̄(ω,x′).

(A-13)

Inserting equation A-13 into the expression of γ2 in equa-
tion A-1 and using the reciprocity property G(x|x′) =
G(x′|x) yields

γ2 = ℜ
{∑

ω

2ω2c(x′)[S̄(ω,x)G(x′|x)]R̄(ω,x′)∗
}

.

(A-14)
Summarizing the previous derivations, we have

∂m(x)

∂c(x′)
= γ1 + γ2,

where γ1 = ℜ
{∑

ω

2ω2c(x′)S̄(ω,x′)[G(x′|x)∗R̄(ω,x)]∗
}

,

and γ2 = ℜ
{∑

ω

2ω2c(x′)[S̄(ω,x)G(x′|x)]R̄(ω,x′)∗
}

.

(A-15)
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APPENDIX B

EXTENSION OF THE OBJECTIVE

FUNCTION AND GRADIENT TO 3D CASES

The local shift between two small cubes B(x0) centered at
x0 of a 3D plane-wave migration image mj(x) and a refer-
ence image m0(x) is a three-component vector ∆uj(x0) =
(∆uj(x0),∆vj(x0),∆wj(x0)), where ∆uj, ∆vj and ∆wj

are the components in the x, y and z directions, respec-
tively. Similar to equation 4, the objective function is
defined as

ǫ =
1

2

np∑

j=1

∑

x0∈B

‖∆uj(x0)‖2, (B-1)

where ‖‖ denotes the length of the vector. The local shift
vector ∆uj(x0) aligns m0(x + ∆uj(x0)) with mj(x) for
x ∈ B(x0), where the size of B(x0) is a wavelength. The
gradient of the objective function with respect to the mi-
gration slowness c(x′) is

∂ǫ

∂c(x′)
=

np∑

j=1

∑

x0∈B

{∂∆uj(x0)

∂c(x′)
∆uj(x0)+

∂∆vj(x0)

∂c(x′)
∆vj(x0) +

∂∆wj(x0)

∂c(x′)
∆wj(x0)

}

.

(B-2)

The connective function is defined as

fj(c(x
′),uj(x0)) =

∑

x∈B(x0)

m0(x+ uj(x0))mj(x), (B-3)

where uj(x0) is a random local shift vector. The correct
image shift ∆uj(x0) aligns m0(x+∆uj(x0)) with mj(x).
This means that the gradient of fj with respect to uj(x0)
should be zero at ∆uj(x0):

f̄j(c(x
′),∆uj(x0)) = ∇fj(c(x

′),uj(x0))
∣
∣
∣
uj(x0)=∆uj(x0)

= (fxj , fyj , fzj)

=
∑

x∈B(x0)

mj(x)∇m0(x+∆uj(x0))

= (0, 0, 0)
(B-4)

From the implicit function theorem we have






∂∆uj(x0)
∂c(x′)

∂∆vj(x0)
∂c(x′)

∂∆wj(x0)
∂c(x′)




 = −








∂fxj

∂∆uj(x0)

∂fxj

∂∆vj(x0)

∂fxj

∂∆wj(x0)
∂fyj

∂∆uj(x0)

∂fyj

∂∆vj(x0)

∂fyj

∂∆wj(x0)
∂fzj

∂∆uj(x0)

∂fzj

∂∆vj(x0)

∂fzj

∂∆wj(x0)








−1








∂fxj

∂c(x′)
∂fyj

∂c(x′)
∂fzj

∂c(x′)








.

(B-5)

Inserting the expressions of fxj , fyj and fzj in equation

B-4 into equation B-5 yields






∂∆uj(x0)
∂c(x′)

∂∆vj(x0)
∂c(x′)

∂∆wj(x0)
∂c(x′)




 = −A−1










∑

x∈B(x0)

∂mj(x)
∂c(x′)

∂m0(x+∆uj(x0))
∂x

∑

x∈B(x0)

∂mj(x)
∂c(x′)

∂m0(x+∆uj(x0))
∂y

∑

x∈B(x0)

∂mj(x)
∂c(x′)

∂m0(x+∆uj(x0))
∂z










,

where

A =
∑

x∈B(x0)

mj(x)







∂2m0(x+∆uj(x0))
∂x2

∂2m0(x+∆uj(x0))
∂x∂y

∂2m0(x+∆uj(x0))
∂x∂z

∂2m0(x+∆uj(x0))
∂y∂x

∂2m0(x+∆uj(x0))
∂y2

∂2m0(x+∆uj(x0))
∂y∂z

∂2m0(x+∆uj(x0))
∂z∂x

∂2m0(x+∆uj(x0))
∂z∂y

∂2m0(x+∆uj(x0))
∂z2







.

(B-6)

Substituting equation B-6 into equation B-2 gives the
gradient of the objective function in equation B-1.

APPENDIX C

MOVEOUT ANALYSIS OF PLANE-WAVE

CIGS

For a stack of N horizontal layers, Jiao et al. (2002) shows
that the migration image depth zmN (p) of the plane-wave
gather with the ray parameter p is

zmN (p) =

N∑

i=1

∆zti

√
(

cti

)2

− p2

√
(

cmi

)2

− p2
, (C-1)

where cti (c
m
i ) represents the correct (incorrect) migration

slowness at the i-th layer.
Using the Taylor expansion and truncating after the

second term gives

√
(

cti

)2

− p2

√
(

cmi

)2

− p2
≈ α

(0)
i + α

(2)
i p2, (C-2)

where

α
(0)
i = cti/c

m
i ,

α
(2)
i =

1

2
(

cmi

)2

( cti
cmi

− cmi
cti

)

. (C-3)

Substituting equation C-2 into equation C-1 yields

zmN (p) ≈
N∑

i=1

∆zti

(

α
(0)
i + α

(2)
i p2

)

. (C-4)

Based on equation C-4, the depth shift between the plane-
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wave migration images with ray parameters of p and 0 is

zmN (p)− zmN (p = 0) =
( N∑

i=1

α
(2)
i

)

p2, (C-5)

which suggests that the moveout of the plane-wave CIG
can be approximated by a parabola.


