
Automatic seismic phase picking based on unsupervised machine-learning
classification and content information analysis

Eduardo Valero Cano1, Jubran Akram2, and Daniel B. Peter1

ABSTRACT

Accurate identification and picking of P- and S-wave arriv-
als is important in earthquake and exploration seismology.
Often, existing algorithms are lacking in automation, multi-
phase classification and picking, as well as performance ac-
curacy. We have developed a new fully automated four-step
workflow for efficient classification and picking of P- and S-
wave arrival times on microseismic data sets. First, time in-
tervals with possible arrivals on waveform recordings are
identified using the fuzzy c-means clustering algorithm. Sec-
ond, these intervals are classified as corresponding to P-, S-,
or unidentified waves using the polarization attributes of the
waveforms contained within. Third, the P-, S-, and unidenti-
fied-waves arrival times are picked using the Akaike informa-
tion criterion picker on the corresponding intervals. Fourth,
unidentified waves are classified as P or S based on the arriv-
als moveouts. The application of the workflow on synthetic
and real microseismic data sets indicates that it yields accurate
arrival picks for high and low signal-to-noise ratio waveforms.

INTRODUCTION

Hypocenter locations are in most cases estimated either using
arrival times (e.g., by linearized inversion grid-search methods;
see Buland, 1976; Pavlis, 1986; Moser et al., 1992; Oye and Roth,
2003) or waveform-based approaches (e.g., by time-reverse migra-
tion; see Artman et al., 2010; Nakata and Beroza, 2016). In the for-
mer approach, accurate arrival picking of P- and S-waves is critical
for the accurate estimation of hypocenter locations. These picked

arrival times are used in the polarization analysis for receiver ori-
entations and back azimuths, in the velocity model calibration, and
ultimately in the direct estimation of hypocenter locations. There-
fore, any errors in the arrival-time picks can cause significant
uncertainty in the estimated hypocentral parameters.
The arrival picking of P- and S-waves on microseismic data sets is,

nonetheless, a challenging endeavor due to the poor signal-to-noise
ratio (S/N) of the waveforms and large data volumes (days to weeks
of continuous recordings). Previously, numerous automatic arrival
picking methods have been proposed (see, e.g., Akram and Eaton
[2016] who compare different algorithms such as the short- and long-
term average ratio [STA/LTA], Akaike information criterion [AIC],
phase arrival identification-kurtosis [PAI-K], and crosscorrelation
pickers). Recently, many supervised and unsupervised machine-learn-
ing methods have also gained considerable popularity. Gentili and
Michelini (2006) pick P- and S-phases using shallow neural networks
with four manually defined input features, including variance, abso-
lute values of skewness and kurtosis, and a combination of skewness
and kurtosis. Similarly, Maity et al. (2014) use a neural network with
two hidden layers and four input features including the variance of the
sum of absolute values and other attributes based on the wavelet co-
efficients and envelope functions. More recently, many applications of
deep-learning algorithms for arrival picking have been developed
(e.g., Ross et al., 2018; Wang et al., 2019; Zhu and Beroza, 2019).
Neural network approaches typically belong to supervised ma-

chine-learning methods (e.g., artificial neural networks) and have
a high success rate, in cases in which a good training data set is
available. Because the ground truth is known a priori for the training
set, direct quantification of the accuracy of the learning algorithm
is possible (Ross et al., 2018). Nonetheless, the availability of an
adequate training set often serves as a potential bottleneck, affecting
the learning process. Research is ongoing on how to construct an
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optimal training data set for a given problem. Supervised deep-
learning applications thus generally contain ad hoc choices and as-
sumptions on the neural network architecture as well as a sparse
coverage of the parameter model space represented by a training
data set. In addition, training sets need manual labeling, which
can take a considerable amount of user time.
Conversely, unsupervised machine-learning methods can be used

in arrival picking without requiring any training data set because
they rely on the data itself. For instance, Zhu et al. (2016) and Chen
(2020) pick first arrivals on raw, noisy microseismic data using the
fuzzy c-means (FCM) clustering algorithm. In the arrival picking
context, the FCM method computes a time series, called the mem-
bership function, in which abrupt increases indicate wave arrivals.
Although FCM is efficient in detecting arrivals, accurate identifica-
tion of the instance at which the membership function increases is
challenging, causing picking inaccuracies. In addition, some data
sets (e.g., downhole microseismic monitoring) require picking of
P- and S-waves, which the above method cannot determine reliably
in its current state. For P- and S-arrival picking, additional modi-
fications to the current workflow, as described in Zhu et al. (2016)
and Chen (2020), are therefore necessary.
Here, we present a new fully automated workflow capable of

picking P and S arrivals not only on events in which both phases
are present but also on events in which only one of them exists
(single-phase events). First, we use the FCM as described in Chen
(2020) to identify multiple signal intervals (if present) in the analy-
sis window. Second, we classify these intervals either as P-, S-, or an
unidentified wave using polarization analysis on the waveforms in
the signal intervals. Third, we pick the arrival times of the P-, S-,
and unidentified waves using the AIC picker on the waveforms in
the corresponding intervals. Fourth, we fit the P and S moveouts
with a quadratic function and use them to classify unidentified picks
as P or S. Finally, to evaluate the workflow performance, accuracy,
and computational cost, we test it on synthetic and real microseis-
mic data, and, for the synthetic data, we conduct a hypocenter lo-
cation analysis.

FCM CLUSTERING

FCM clustering partitions a set of N points X ¼ x1; : : : ;
xk; : : : ; xN in a F-dimensional Euclidean space into C clusters
by minimizing the objective function (Dunn, 1973; Zadeh, 1977;
Bezdek, 1981; Bezdek et al., 1984; Zhu et al., 2016; Cano et al.,
2019; Chen, 2020):

JðU;VÞ ¼
XN
k¼1

XC
i¼1

ðuikÞmkxk − vik2; (1)

where U is the partition matrix in which elements uik ∈ ½0;1�
indicate the degree of membership of the point xk to the cluster i,
V ¼ v1; : : : ; vi; : : : ; vC is a set of C points vi that represent the
centroid of cluster i, xk is the kth point of X, m ∈ ð1;∞Þ is the
controller of cluster fuzziness, and k · k is any norm.
One approach to minimize J is to update the set of centroids V

and the partition matrix U via iterations of

vi ¼
P

N
k¼1 u

m
ikxkP

N
k¼1 u

m
ik

; 1 ≤ i ≤ C; (2)

uik ¼
1

P
C
j¼1

�
kxk−vik
kxk−vjk

� 2
m−1

; 1 ≤ k ≤ N; 1 ≤ i ≤ C; (3)

where equation 3 has the constraint
P

C
i¼1 uik ¼ 1 for all k.

The similarity metric of the points and the shape of the clusters
depend on the choice of norm k · k. Here, we use the L2 norm,
which induces a similarity metric based on the Euclidean distance
and clusters of hyperspherical shape.

AIC PICKER

AIC is a model selection technique developed by Akaike (1973),
which also can be used for picking the onset of seismic phases on a
1C trace. It assumes that a seismic trace can be divided into locally
stationary segments in which each is modeled as an autoregressive
process. The onset time of a wave arrival separates two different
segments and is associated with the minimum of the AIC values
(Sleeman and Eck, 1999; Oye and Roth, 2003; Akram and Eaton,
2016).
Typically, calculation of the AIC function requires the estimation

of autoregressive model coefficients, but Maeda (1985) uses the fol-
lowing relation to calculate the AIC function directly from the input
trace (waveform):

AICðkÞ ¼ k logðvarfxð1; kÞgÞ
þ ðN − k − 1Þ logðvarfxðkþ 1; NÞgÞ; (4)

where x is a trace of N samples, k ranges from 1 to N, and varfxg is
the variance function. In this study, we use equation 4 to pick the
onset of P- and S-wave arrivals. Because AIC picks on the global
minimum, it is important that we first identify P and S intervals and
then apply the picker to the corresponding intervals (Akram and
Eaton, 2016).

AUTOPICKING WORKFLOW

The automatic arrival-time picking workflow (explained in Fig-
ure 1) comprises four main stages: (1) signal identification, (2) wave
classification, (3) arrival-time picking, and (4) unidentified pick
classification. For an adequate performance, our workflow requires
a provisionally detected event in which the P- and S-wave arrivals
occur only once. This is a regular strategy that usually simplifies
arrival picking (Akram and Eaton, 2016). In addition, because
we determine S-wave picks as the average of picks on the SV
and SH components, our method is limited to isotropic media to
avoid inaccuracies due to S-wave splitting.
For the binary clustering problem of signal identification, we de-

fine the samples k ¼ 1; : : : ; N, of a trace dðkÞ as a set of points
X ¼ x1; : : : ; xk; : : : ; xN , in an F-dimensional Euclidean space.
The elements of xk represent the value of some feature of dðkÞ
(e.g., mean) at the sample k. The term F represents the number
of features and N is the total number of samples in the analysis
window. We denote the cluster number by i, where i ¼ 1 is the noise
cluster and i ¼ 2 is the signal cluster, and we denote the centroid of
cluster i by vi. Among many existing features, we use the following
three in this study:
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• the mean of the absolute value of the amplitude:

MðkÞ ¼ 1

N

Xkþw

k−w
jdðkÞj; (5)

• the peak power spectral density:

PðkÞ ¼ maxðjDðk;ωÞj2Þ; (6)

• the STA/LTA ratio:

QðkÞ ¼ STA

LTA
¼

1
SW

PkþSW
j¼k jdðjÞj

1
LW

P
k
j¼k−LW jdðjÞj ; (7)

where, in equation 5, the constant w is half the length of a window
around the sample k; in equation 6, Dðk;ωÞ is the modulus of the
discrete short-time Fourier transform of dðkÞ; and in equation 7, SW
and LW are the lengths of the short- and long-term windows, re-
spectively. For a correct signal identification, we suggest estimating
the dominant period of the arrival of interest (i.e., using time-
frequency analysis), Tdom, and set w ≈ 0.5 × Tdom,
SW ≈ 1.5 × Tdom, and LW ≈ 5 × SW. After computing the features
of dðkÞ, we define the points

xk ¼ ½MðkÞ; PðkÞ; QðkÞ�T; (8)

and we apply fuzzy clustering (equations 1–3) to obtain
u2ðkÞ ¼ ui¼2;k, the membership degree of the sample k to the signal
cluster. For a 3C record, we carry this process on the components
c ¼ 1; 2; 3, and, assuming that the signal arrives simultaneously on
the three components, we stack their signal-cluster membership
degrees u2cðkÞ to highlight the wave arrivals:

usðkÞ ¼
1

3

X3
c¼1

u2cðkÞ; (9)

where usðkÞ is the stacked signal-cluster membership degree at
sample k. Finally, we apply a threshold β to identify the signal in-
tervals. Any continuous interval in which us is greater than β for at
least 1.5 times Tdom duration is considered to contain a possible
wave arrival; therefore, the other remaining intervals are deemed
noise and are discarded from further analysis. Here, we set β be-
tween 1.0 and 2.0 times the mean value of us, depending on the
S/N of the data.
Because one or both P- and S-waves can exist in the analysis

window, we need some criteria to identify the intervals correspond-
ing to the desired arrivals. We do so by computing the rectilinearity
of the waveforms contained in each interval. First, we form an
(Ni × 3) matrix D, where Ni is the number of samples in the ana-
lyzed interval. In our workflow,Ni is determined automatically. The
limits of each signal interval, and thus Ni, are defined by the inter-
section points of the threshold β with the peak of us corresponding
to the interval of interest. Each column of D contains one of the
three waveforms in the interval. After D is created, we compute
the rectilinearity as follows:

R ¼ 1 −
σ23
σ21

; (10)

where R is the rectilinearity and σ21;3 is the first and third eigenvalues
of D (Jurkevics, 1988). Then, we determine the first signal interval
with an acceptable high rectilinearity value as the first arrival. If
there are no intervals at a later time than the first arrival, we label
it as unidentified and classify it as P- or S-wave at the end of the
workflow. This is because, in this situation and at this stage, it is
complicated to determine whether the first arrival is a P- or S-wave
because both waves can exhibit large rectilinearity values. Other-
wise, if an interval exists later than the first arrival, we assume
the first arrival to be a P-wave. Then, we rotate the waveforms
to ray-centered coordinates (p, s1, s2) using the polarization infor-
mation from the selected P interval and find the interval with the
maximum S energy on the s1 and s2 components.
Following the wave-interval classification, we pick the onset of

the P-, S-, and unidentified waves in the corresponding intervals.
Although a threshold-based arrival-picking methodology from us
(as given in Chen, 2020) can be adopted, the results it yields
can be highly unstable for noisy data sets. Therefore, we apply
the AIC algorithm to the P interval on the p components to pick
the P-wave arrival time. For the S arrival time, we average the
AIC picked times from the S interval on s1 and s2 components.
In the case of unidentified waves, we obtain the arrival time using
the AIC method on the component with the highest S/N on the cor-
responding interval. It is worth mentioning that the AIC is not the
only algorithm that we can use. Other algorithms, such as PAI-K
(Saragiotis et al., 2002) and crosscorrelation-based (VanDecar
and Crosson, 1990; Song et al., 2010) pickers, will work equally
as well.

Figure 1. Arrival-picking workflow.
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Figure 2 illustrates the application of the autopicking workflow
on 3C waveforms from a single receiver level. The P and S phases
on the input waveforms have strong amplitudes on each of the three
components (Figure 2a). For each of these components, the mean,
power spectral density, and STA/LTA features are computed. Fig-
ure 2b shows the features for one of the components. In this case, all
features and the signal-cluster memberships (Figure 2c) show a
clearly distinguished response for the intervals containing P and
S arrivals. These arrivals are easily identified by applying a thresh-
olding criterion (Figure 2d). After the polarization analysis on the
identified intervals, a P-wave interval is selected based on the order
of occurrence and a high rectilinearity value. The data are then ro-
tated into ray-centered coordinates to maximize the amplitudes of
the P- and S-waves on the corresponding components (Figure 2e).
The P- and S-wave arrival times are accurately picked using the AIC
picker on the p components and the s1 and s2 components, respec-
tively.
Once all of the P and S arrivals on the event are picked, we clas-

sify any unidentified picks as P or S, as illustrated in Figure 3. First,
we temporarily label unidentified picks as S picks (Figure 3b).
Then, we estimate the S-wave moveout by fitting the S picks with
a quadratic function using the random sample consensus (RAN-
SAC) method (Fischler and Bolles, 1987). For an explanation of
how RANSAC is used to estimate moveout curves, we refer the
reader to Zhu et al. (2017). Finally, once the S moveout is estimated
(Figure 3c), we compute the time difference between the unidentified
picks and the fitted S moveout curve. Any unidentified pick between
�Tdom from the S-moveout curve is classified as an S pick, and any

remaining unidentified picks are classified as P (Figure 3d). We also
correct any P picks on S-waves using the same moveout criteria.
For events in which all picks are unidentified (Figure 4a), the

previous strategy cannot be used because fitting the P or S moveout
is not possible. In this situation, we generate a database of the P and
S moveouts, obtained from events in which the P and S picks were
available. We then fit the moveout of the unidentified arrivals and
compare it with the moveouts database (Figure 4b). We do so by
shifting all of the moveouts to a common time and computing the
following coefficients:

Pres ¼
1

Np

XNp

i¼1

kumov − pmovik2; (11)

Sres ¼
1

Ns

XNs

i¼1

kumov − smovik2; (12)

where umov, pmov, and smov are the vectors containing the uniden-
tified, P, and S moveout curves, respectively, and Np and Ns are the
number of P and S moveouts in the database, respectively. The
unidentified moveout of interest umov, and therefore the associated
picks, are classified as P or S depending on whether Pres or Sres is the
smallest value. This approach is useful for identifying the wave type
of single-phase events as illustrated in Figure 4c.

Figure 2. Arrival-time picking using the proposed
workflow. (a) Input 3C waveforms, (b) vertical
component features, (c) fuzzy memberships for
the three components, (d) stacked membership,
and (e) rotated data and arrival picks. The green
line in (d) indicates the threshold β. In (e), the
highlighted blue and red curves show the P and
S intervals, respectively, obtained from the FCM
clustering. In (e) and (f), the blue and red vertical
lines represent the P and S picks, respectively.
(f) AIC values for the rotated data. The time asso-
ciated with the minimum AIC value is the arrival
time of a phase arrival.
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Figure 3. Classification of unidentified picks for events with available P and S picks. (a) Unidentified picks. The P, S, and unidentified picks
are indicated by the blue, red, and green lines, respectively. (b) Picks used for S moveout fitting (the magenta lines). (c) Estimated S moveout
(the dotted red line). Any pick laying on the dark area will be classified as an S pick. (d) Classified picks. The unidentified picks in (c) are now
classified as S picks.

Figure 4. Classification of unidentified picks for
events without P and S picks. (a) Unidentified
picks and (b) moveout comparison. The P, S,
and unidentified moveouts are in blue, red, and
green, respectively. (c) Classified picks. The ini-
tially unidentified picks are classified as S picks.
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RESULTS

To evaluate the performance of the proposed arrival-time picking
workflow, we apply it to synthetic and real microseismic data and
compare the results with the reference picks. For the synthetic data,
we also conduct a hypocenter location analysis.
To compare our workflow with existing methods, we use the

STA/LTA and Chen (2020) algorithms on the synthetic and real
data sets. Given that for a 3C record, our workflow potentially
obtains one P and S pick and the STA/LTA and Chen (2020) meth-
ods obtain three first-arrival picks (one per receiver component),
we consider the picks of the STA/LTA and Chen (2020) methods
with the minimum difference to the reference picks as P picks.

For the synthetic data set, we use theoretical arrival times (com-
puted using ray tracing) as reference picks, whereas for the real
data set, we use manual picks.
To measure the picking accuracy, we compute the residual be-

tween the reference and the automatic picks. We illustrate our re-
sults in scatterplots of the arrival-pick residual against the arrival
S/N. To compute the arrival S/Ns, we define a window of noise from
the start of the record to one dominant period before the first arrival.
Then, we set a window centered on the arrival of interest and com-
pute the ratio between the root-mean-square (rms) amplitude of
each window. In the scatterplots, residuals of the P and S picks
are pictured in blue and red colors, respectively. The residuals of
initially unidentified picks are indicated in green, and the residuals

of picks skipped by our workflow but determined
by the STA/LTA and Chen (2020) methods are
indicated in brown. We also plot black lines at
−10 and 10 ms to highlight relatively accurate
picks. In addition, we show histograms of the re-
siduals and compute their mean μ and standard
deviation σ. We compute μ and σ using residuals
in the −50 to 50 ms interval to decrease the
influence of large picking errors and obtain
meaningful indicators of each algorithm’s per-
formance.

Synthetic data

Arrival-time picking

The synthetic data consist of 100 events re-
corded by a vertical downhole array of 20 3C
receivers located in an elastic homogeneous-lay-
ered medium (Figure 5). The events are defined
by randomly distributed double-couple and ten-
sile sources with moment magnitudes ranging
from −3 to 1. A Berlage wavelet (Aldridge,
1990) with a dominant frequency of 30 Hz is
used as the source time function, and the wave
propagation is simulated using the SPECFEM3D
Cartesian package (Komatitsch and Tromp,
1999). We create three synthetic data sets
(Figure 6) by adding white Gaussian noise
(AWGN) with S/Ns of 20, −8, and −13 dB
and filtering the waveforms between 0.1 and
100 Hz with a zero-phase fourth-order Butter-
worth band-pass filter. As reference picks, we
use 2000 P- and 2000 S-arrival times computed
with ray tracing (Figure 6).
On synthetic data set one (AWGN S/N of

20 dB), the μ and σ of the P residuals are rela-
tively low among the methods, especially for
the proposed and STA/LTA pickers. This data
set presents low levels of noise; thus, the three
methods have an acceptable outcome, as illus-
trated in event 33 in Figure 7. Nevertheless, the
proposed workflow exhibits the lowest μ and σ
values (−0.66 and 2.99 ms), indicating less biased
and more reliable picking. Most of the P residuals
range between −10 and 10 ms, with some out-
liers from relatively low S/N arrivals (<20 dB),

Figure 5. Synthetic experiment setup. (a) Source-receiver geometry and (b) medium
model. In (b), the left panel shows the P and S velocity models, and the right panel
shows the density model.

Figure 6. Example of a synthetic event with different noise levels. The illustrated P
and S picks are reference picks computed using ray tracing. (a) Synthetic data set
one (S/N = 20 dB). (b) Synthetic data set two (S/N = −8 dB). (c) Synthetic data set three
(S/N = −13 dB).
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related to barely detectable P-waves. For the proposed workflow,
three P picks were initially labeled as unidentified (Table 1). Their
residuals are close to 0 ms, indicating accurate picking and classi-
fication of unidentified arrivals. In addition, in total 221 P arrivals
were skipped by our method. This tends to occur when the P arrival
is buried by noise, has a poor S/N (receivers 8–11 in Figure 7a), or
was picked on an S-wave and corrected by our moveout criteria. On
the other hand, the STA/LTA and Chen (2020) methods managed to
pick 153 and 42 of these skipped P arrivals, respectively, with re-
siduals between –10 and 10 ms. The number of P arrivals omitted
by our workflow and accurately picked by the STA/LTA and Chen
(2020) methods is related to the number of arrivals from which our
workflow loses information.
Regarding the S residuals on synthetic data set one, most of them

range between −10 and 15 ms. Despite the high S/N of the S-wave
arrivals (>40 dB), the residuals are relatively large, mainly due to
contamination of the S wave with precursory phases, as observed in
the waveforms in Figure 7 (receiver 7). This increases the σ value,
explaining why σ is 2.09 ms larger for S residuals than for P resid-
uals. Moreover, in total, 221 S picks were determined from uniden-
tified picks (Table 1). These picks correspond to the waveforms in
which the P picks were skipped. The associated residuals are in the
same range as the rest of the S picks, suggesting a correct classi-
fication of unidentified arrivals.
The automatic picking results for synthetic data set two (AWGN

S/N of −8 dB) are less favorable than those in data set one. As
observed in event 33 in Figure 8 (receivers 1–14), the noise on
this data set masks P arrivals that were detectable previously
(see Figure 7). In addition, the presence of high-amplitude noise
foregoing the first arrivals increases. The previous noise-related
effects result in an increase of picks on noise preceding the first
arrivals (large positive residuals) and picking of P arrivals on S-
waves (large negative residuals). This is especially true for the
STA/LTA and Chen (2020) methods, as they yield a higher σ

(14.25 and 12.36 ms, respectively) than our workflow (10.49 ms).
The proposed workflow yields better results than the other two
methods because it skips P arrivals completely covered by noise,
as shown in Figure 8a (receivers 1–6). Of the 2000 P arrivals, 1014
were skipped (Table 1). Although this is more than half of the total
P arrivals in the data set, most of them have poor S/N (<5 dB) or
were not recorded. From the skipped P picks, the STA/LTA and
Chen (2020) methods picked 295 and 149 between −10 and
10 ms, respectively.
As observed from Figures 7 and 8, the noise on synthetic data

set two has a small influence on the S arrivals. The S residuals
have a similar distribution as in the less-noisy data set one, and
the increase in the number of large residuals is small. Compared
with the P residuals, the S residuals have a lower σ value, sug-
gesting that picking is more reliable in S-waves than in P-waves.
The number of S picks determined from unidentified picks also
increased considerably as compared to data set one (Table 1). This
is expected, as unidentified picks occur on waveforms where the
P-wave was not detected. A total of 1014 S picks were determined
from unidentified picks, most of which have similar residuals than
the rest of the S picks, implying correct classification of uniden-
tified arrivals.
On synthetic data set three (AWGN S/N of −13 dB), the noise

covers more P arrivals than in data set two and the amplitude of
early noise grows. As a consequence, the number of picks on noise
with an amplitude similar to the arrivals and picking of P arrivals on
S-waves increases (receivers 1–3 in Figure 9b and 9c). The distri-
butions of P residuals are relatively similar compared with data
set two (Figure 10c, 10f, and 10i). The Chen (2020) method has
the lowest μ value, which indicates less biased picking than the
STA/LTA and proposed methods. However, our workflow exhi-
bits the lowest σ suggesting that it is the most reliable among the
three pickers. The number of large P residuals increases on all meth-
ods, especially for low-S/N arrivals (<5 dB; Figure 11c, 11f, and

Figure 7. Event 33 of synthetic data set one (aver-
age P-wave S/N = 14.9 dB and average S-wave
S/N = 43.1 dB). (a) Proposed workflow picks,
(b) STA/LTA picks, and (c) Chen (2020) picks.
The blue and red lines indicate the P and S picks.
The skipped arrivals are indicated by asterisks.

Automatic seismic phase picking V305

D
ow

nl
oa

de
d 

01
/2

1/
23

 to
 1

87
.1

53
.1

40
.1

57
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

20
-0

30
8.

1

https://library.seg.org/action/showImage?doi=10.1190/geo2020-0308.1&iName=master.img-006.jpg&w=311&h=251


11i). For the proposed workflow, some large P residuals occur on
relatively high-S/N arrivals (>7 dB). These residuals are related to
picking on early noise. The proposed workflow determined 16 P
picks from unidentified picks. Some of these reclassified picks have
large residuals; however, this is because the unidentified picks occur
on early noise and not due to incorrect reclassification. In addition,
our workflow skipped 1239 P arrivals (Table 1). As illustrated by
the clusters of brown points in Figure 11f and 11i, most of the

skipped arrivals have a poor S/N (<5 dB) and were not determined
accurately by the STA/LTA and Chen (2020) methods, suggesting
that the skipped P arrivals were buried by noise.
Similar to data set two, S arrivals are less affected by noise than

P arrivals (Figures 8 and 9). The μ and σ values are considerably
lower for S residuals than for P residuals. There is not a high in-
crease of μ and σ compared with previous data sets (Figure 12c). In
addition, the number of large S residuals remains almost the same,

Figure 9. Event 33 of synthetic data set three
(average P-wave S/N = 0.2 dB and average S-
wave S/N = 12.1 dB). (a) Proposed workflow
picks, (b) STA/LTA picks, and (c) Chen (2020)
picks. The symbols are as indicated in Figure 8.

Figure 8. Event 33 of synthetic data set two (aver-
age P-wave S/N = −0.3 dB and average S-wave
S/N = 17.4 dB). (a) Proposed workflow picks,
(b) STA/LTA picks, and (c) Chen (2020) picks.
The blue and red lines indicate the P and S picks,
respectively. The � and < symbols indicate
skipped arrivals and early picks outside the figure
time range, respectively.
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with the exception of an outlier at approximately 140 ms related to
the incorrect detection of P- and S-waves (Figure 13e). As hinted at
by the similar residuals between the 1237 S picks determined from
unidentified arrivals and the remaining S picks (Figure 13c), the
unidentified pick classification was successful.

Hypocenter location

To determine if our workflow results are useful for accurate event
location, we locate the 100 events of the synthetic data using the
true velocity model and the picks’ and events’ back azimuths esti-
mated by our workflow. Then, we compute the location error using
the true hypocenters as a reference. For each event in the following
analysis, we define the location rms error as the rms of residuals on

the north, east, and depth coordinates. We also define the arrival-
picking rms error as the rms of the P- and S-pick residuals. In
addition, we compute the difference between the true event back
azimuth and the back azimuth estimated by our workflow on each
3C record. We define the back-azimuth rms error as the rms of the
back-azimuth residuals.
In Figure 14, the dots show the location errors on the north, east,

and depth coordinates of the located hypocenters. We can observe
that, on the three data sets, the largest location uncertainty occurs on
the north coordinate (the transverse direction), followed by the
depth and by the east coordinate (the radial direction). For synthetic
data set one, most of the events (84) have a location rms error of less
than 30 m, a low value considering the array geometry. On data set
two, five single-phase (S-wave) events were not located. A total of

Figure 10. Histograms of P-pick residuals obtained by the proposed workflow and the STA/LTA and Chen (2020) methods on the synthetic
data sets. The black line indicates the residuals’ probability distribution in the −50 to 50 ms interval. The mean and standard deviation values
are indicated by μ and σ, respectively.
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Figure 11. P-pick residuals obtained by the proposed workflow and the STA/LTA and Chen (2020) methods on the synthetic data sets. The
residuals of the P picks initially labeled as unidentified are in green, and the residuals of picks skipped by the proposed workflow are in brown.

Table 1. Number of picked, initially unidentified, and skipped arrivals by the proposed workflow on the synthetic data sets.

P arrivals S arrivals

Data set Picked Initially unidentified Skipped Picked Initially unidentified or P Skipped

1 1779 3 221 1997 221 3

2 986 3 1014 1997 1014 3

3 761 16 1239 1982 1237 18
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52 events have a location rms error of less than 45 m, which is a
realistic value considering the level of noise on this data set. The
location errors increase on data set three. The location rms error is
less than 58 m for 50 of the 95 located events.
Figure 15 shows scatterplots of the location rms error against

arrival-picking and back-azimuth rms error. The dots’ color indi-
cates the number of receivers used during the event localization
(receivers with available P and S picks). As expected, the location

rms error is positively correlated with arrival-picking and back-azi-
muth rms error in all data sets. That is, the location is poor for events
with inaccurate arrival picks and estimated back azimuths. In addi-
tion, we can observe that the location rms error tends to be lower for
events in which more than 10 receivers were used. Nonetheless, this
is not general because some events with low arrival-picking and
back-azimuth rms errors were located relatively accurately using
fewer than five receivers.

Figure 12. Histograms of the S-pick residuals obtained by the proposed workflow on synthetic data sets (a) one, (b) two, and (c) three. The
symbols are as indicated in Figure 10.

Figure 13. (a–c) The S-pick residuals obtained by the proposed workflow on the synthetic data sets. The residuals of S picks initially labeled as
unidentified are shown in green. (d) Inaccurate S pick due to precursory phase contamination. (e) Incorrect P and S picking. The P interval is
erroneously set as noise with high rectilinearity, resulting in an incorrect determination of the S-wave. (d and e) The blue and red colors indicate
P- and S-waves, respectively. The reference picks are indicated by the dashed lines, and the automatic picks are indicated by the continuous
lines. The highlighted curves indicate the windows where picking was conducted using the AIC picker.
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Real data

The real microseismic data set was acquired during a hydraulic
fracturing operation by an array of 20 3C receivers placed in a ver-
tical monitoring well. The recorded waveforms were sampled at a
0.5 ms interval. Using time-frequency analysis, we estimate that the
dominant frequency of the arrivals is 100 Hz. To denoise the data,
we filter the waveforms using a zero-phase fourth-order Butter-
worth band-pass filter. Due to receiver limitations, we set the lower
cutoff frequency to 10 Hz. We set upper cutoff frequencies between
200 and 300 Hz. For this study, we use only a data set containing 40
previously detected events. To compare the automatic picks, we
carry out manual picking on waveforms in which the P and S arriv-
als were recorded. Of the potential 800 P arrivals and 800 S arrivals,

we retrieve 694 P and 714 S picks (106 P and 86 S missing refer-
ence picks).
Figures 16, 17, and 18 show examples of arrival picking from all

three methods on real waveform data with different S/N. In Fig-
ures 16 and 17, all three methods yield relatively precise arrival
picking results. As in the synthetic data, the arrival-picking omis-
sion on waveforms with P arrivals buried in noise (receivers 16 and
19 in Figure 18a) reduces the number of incorrect picks by our
workflow. Figure 19 shows the P residuals’ distribution, which sug-
gests that most of the residuals are in the range of –10 to 10 ms. The
erroneous STA/LTA picks on presignal noise (Figure 18b, receivers
2–4) result in the largest μ and σ values of the P residuals’ distri-
bution among all methods. In this data set, 95 P arrivals were
skipped by our method (Table 2), from which 61 correspond to

Figure 14. Hypocenter location errors on the north, east, and depth coordinates. Each dot represents the hypocenter localization error of one
event.
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missing reference picks. Of the remaining 34 arrivals, the STA/LTA
and Chen (2020) methods picked 10 and 22 with a residual between
−10 and 10 ms, and the rest correspond to outliers (Figure 20). In
addition, a total of five P picks were correctly determined from
unidentified picks.

Compared with P residuals, S residuals have a slightly higher μ
and σ (Figure 21). A great part of the residuals occurs between
−10 and 10 ms, indicating relatively accurate picking as shown
in Figures 16a, 17a, and 18a. In addition, high- (>30 dB) and
low- (<20 dB) S/N outliers are present. The high-S/N outliers in

Figure 15. Hypocenter location rms error (a–c) against the arrival-picking rms error and (d–f) against the back-azimuth rms error.

Figure 16. Event 8 of the real data set (average
P-wave S/N = 40.8 dB and average S-wave
S/N = 41 dB). (a) Proposed workflow picks,
(b) STA/LTA picks, and (c) Chen (2020) picks.
The symbols are as indicated in Figure 8.
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Figure 22 are related to complex waveforms where high-amplitude
phases exist after the S-wave, resulting in P picking on the S-wave
and S picking on a late phase (Figure 22b). Regarding the classi-
fication of unidentified arrivals, a total of 85 S picks were obtained
from unidentified picks, all with residuals similar to the rest of the S
picks. This indicates a successful classification of the unidentified
arrivals.

DISCUSSION

Overall, the proposed workflow obtains lower mean and standard
deviation values of P residuals than the STA/LTA and Chen (2020)
methods on the synthetic and real data sets. This suggests that the
P-arrival picking carried out by our workflow is less biased and
more stable than that of the other two methods. The main observed

Figure 18. Event 28 of the real data set (average
P-wave S/N = 13.8 dB and average S-wave
S/N = 19 dB). (a) Proposed workflow picks,
(b) STA/LTA picks, and (c) Chen (2020) picks.
The symbols are as indicated in Figure 8.

Figure 17. Event 13 of the real data set (average
P-wave S/N = 23.2 dB and average S-wave
S/N = 30.2 dB). (a) Proposed workflow picks,
(b) STA/LTA picks, and (c) Chen (2020) picks.
The symbols are as indicated in Figure 8.
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problems of the STA/LTA and Chen (2020) methods are picking on
presignal noise and P picking on S-waves. High-amplitude noise
tends to generate high STA/LTA values, and depending on the used
trace features, this also occurs for FCM. This results in picks on
presignal noise because these methods set the arrival time on the
earliest jump of STA/LTA and membership values. On the other
hand, in cases in which P-waves are masked by noise, the earliest
increase in STA/LTA and membership values is usually related to
S-waves, resulting in P picks on S-waves. Because our workflow
selects P arrivals based on the rectilinearity of waveforms contained

in signal intervals determined from FCM membership values, high-
amplitude noise is avoided most of the time. In addition, the capac-
ity of our workflow to detect waveforms containing one “uniden-
tified” arrival and to classify it as a P or S aids in the picking
omission of not-recorded phases and allows picking and phase iden-
tification on single-phase events.
Based on the mean and standard deviation values of S residuals

on synthetic data set one and the real data set, P picking is slightly
more accurate and reliable than S picking. The S residuals present
slightly higher mean and standard deviation values than those of

Table 2. Number of picked, initially unidentified, and skipped arrivals by the proposed workflow on the real data set.

P arrivals S arrivals

Picked Initially unidentified Skipped Picked Initially unidentified or P Skipped

720 5 95 780 85 15

Figure 19. Histograms of the P-pick residuals obtained by (a) the proposed workflow, (b) the STA/LTA method, and (c) the Chen (2020)
method on the real data set. The symbols are as indicated in Figure 10.

Figure 20. P-pick residuals obtained by (a) the proposed workflow, (b) the STA/LTA method, and (c) the Chen (2020) method on the real data
set. The color code is as indicated in Figure 11.
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P residuals on these two data sets. However, when the noise level
increases and buries P-waves, S picking by our workflow is more
robust. As illustrated in Figures 7–9, S-waves are less affected by
noise increments, facilitating arrival picking.
The proposed workflow is not exempt from drawbacks. Because

the first arrival is set as the earliest signal interval with high recti-
linearity, noise with high rectilinearity values may be set as the first
arrival. We also need to consider that the rectilinearity estimation of
P-waves can be affected by noise. Another factor that decreases the
workflow performance is the waveform complexity. Contamination
of S-waves by preceding phases can reduce picking accuracy, and
the presence of phases other than direct P- and S-waves may result
in incorrect arrival windowing. In addition, on all data sets, our
workflow skipped weak P arrivals that were picked by the STA/
LTA and Chen (2020) methods with acceptable precision. The pre-
vious occurred especially on the synthetic data, where most of these
weak arrivals were recorded only on one component. Because we
average the three components’membership values to determine sig-
nal intervals, low-S/N arrivals recorded on one component may be

missed by our workflow. Despite the STA/LTA and Chen (2020)
methods picking these arrivals with decent accuracy, it is important
to remember that these two methods obtain three picks per 3C rec-
ord, and here we only consider the pick with minimum residual. In
practice, one pick per receiver must be determined, which may re-
duce the picking accuracy of these methods when low-S/N arrivals
are recorded only in one component.
Despite the previous drawbacks, the picking conducted by our

workflow is accurate enough to obtain acceptable hypocenter loca-
tions. For events with high-S/N waveforms (>20 dB) such as those
in synthetic data set one, the arrival picks yielded by our method
result in relatively accurate locations for 84 of 100 events (location
rms error <30 m). As the noise level increases, the computed arrival
times and event back azimuths are less accurate, increasing the hy-
pocenter location error. In synthetic data set two, 52 events were
located with an rms error of less than 45 m, and in data set three,
the location rms error of 50 events was below 58 m. These are
acceptable values considering the low S/N of the waveforms on
these data sets (−5 to 15 dB for data set two and −5 to 10 dB

for data set three).
Regarding the speed and computational costs

of the presented workflow, we ran the algorithm
onMATLAB using a single core of the Intel Core
i7-9750H CPU processor at 2.6 GHz clock
speed. For one 3C record of 0.8 s duration at
0.5 ms sampling rate, the algorithm picks the
P and S arrivals in approximately 0.1 s. For
existing large data sets, the proposed algorithm
could be further parallelized to analyze each
3C trace independently, for speed up.

CONCLUSION

We present a new AIC assisted FCM cluster-
ing-based autopicking workflow for efficient
identification and picking of P- and S-wave
arrival times. The workflow is capable of skip-
ping picking of phases (direct P- and S-waves)
not recorded on the waveforms, reducing the
number of inaccurate picks. Our workflow also

allows picking and phase identification of single-phase events by
estimating and comparing the P and S moveouts of analyzed events.
This workflow is fully automatic, meaning that almost all of the
parameters (e.g., the window duration for trace feature computation
and the time difference threshold to classify unidentified picks
based on arrival moveouts) are associated with a user-specified es-
timate of the signal’s dominant period. The computational costs of
this workflow are very low compared with supervised machine-
learning approaches.
As with other arrival-time pickers, this workflow has limitations.

First, this workflow only works on previously detected events be-
cause the main workflow component involves an FCM clustering to
partition signals from noise. For noise-only traces, FCM generates
two clusters containing noise with different behavior, making signal
detection erratic. Second, the workflow accuracy may decrease in
the presence of phases different than the direct P- and S-waves.
Third, high-rectilinearity noise may result in incorrect identification
of P-waves. Fourth, our workflow may omit picking on arrivals with
a minuscule amplitude recorded only on one component. By ana-
lyzing the hypocenter locations with different noise levels, we

Figure 21. Histograms of S-pick residuals obtained by the pro-
posed workflow on the real data set. The symbols are as indicated
in Figure 10.

Figure 22. (a) S-pick residuals obtained by the proposed workflow on the real data set.
(b) Incorrect picking on the complex waveform. The colors are as indicated in Figure 13.
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determine that the picking accuracy is compromised for waveforms
with S/Ns <20 dB. Despite these drawbacks, tests on synthetic and
real data show that our method is more robust than existing meth-
ods. Furthermore, there is room to improve the proposed workflow
by using more sophisticated trace features or different picking meth-
ods on the detected P and S intervals.
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