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Preface

This book presents the theory of machine learning (ML) algorithms and their applica-
tions to geoscience problems. More than half of the described algorithms fall under the class
of neural network methods. Their description is at a level that can be understood by any-
one with a modest background in linear algebra, calculus and probability. An elementary
working knowledge of MATLAB is assumed and almost every chapter is accompanied by
lab exercises to reinforce the ML principles. If you don’t know MATLAB or Python, many
of the labs use the CoLab, aka Colaboratory, notebook which is an easy-to-use product from
Google that allows for the execution of Keras-based ML computer codes. It also provides
for the free use of a cloud-based GPU processor1 that can be used as soon as you login.
There is no need for the troublesome installation of notebook software.

There are many definitions of machine learning (ML), but one of the best is attributed
to Arthur Samuel2:

Machine learning is the field of study that gives computers the ability to learn without being
explicitly programmed.

This definition doesn’t mean we don’t have to write the programs, it means that the ML
algorithm finds the best model by learning from the data without relying on rules-based
programming. For example, finding the best fit model y = f(x) by a typical least squares
procedure typically assumes a linear mathematical model f(x) that predicts the output y
from the input x. For example, Wx = y, where W is a matrix. A ML algorithm such as a
neural network avoids this assumption by devising the best non-linear model learned from
the data y for the given architecture.

Neural Network Example. How does the neural network learn the model3 f(x) = y
from the data? Learning the model f(x) is accomplished by using a large training set of data
(x(n),y(n)) for n ∈ {1, 2, . . . , N}, and adjusting the parameters of the model until f(x(n))
can accurately predict y(n) for any training pair. Once the model is learned, then it can
accurately predict the output f(xnew) = ynew from a new input xnew. This can be important

1Colab is a hosted Jupyter notebook service that requires no setup to use, while giving free access to
computing resources including GPUs. See https : //colab.research.google.com/notebooks/intro.ipynb

2This quote is often attributed to Arthur Samuel, but it cannot be found in Samuel (1959, 1967). A
similar quote can be found at https://www.techemergence.com/what-is-machine-learning/. See http://
infolab.stanford.edu/pub/voy/museum/samuel.html for a brief bio of this pioneering engineer.

3”Learning the model” is equivalent to computing the parameters of the non-linear function f(x) that
allow for an accurate prediction of f(x) = ytrue for all the training pairs (x,ytrue).
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for many applications, such as predicting the presence of underground contaminants ynew

from processed geoelectrical and/or seismic data xnew, accurately detecting the presence of
breast cancer ynew recorded on a fusion of CAT scan and MRI images xnew, or delineating
the faults in ynew on the right-hand side of Figure 1 from the input seismic section xnew on
the left-hand side.

The mathematical operations of a convolutional neural network model are represented by
the block diagrams in Figure 1, where the input image x of a seismic section is decomposed
into component images contained in the FM1 block (or shallowest layer). Here, a block
represents a set of mathematical operations that produce a stack of 2D images known as
feature maps (FMs). Each of the 32 feature maps in FM1 is computed by convolving a
small filter (3 × 3 filter in this example) with the input image, and then each pixel value
in the FM is thresholded to be between 0 and 1 by a non-linear squashing function4. The
FM1 feature maps are then subsampled by a factor of four (aka known as maxpooling), and
the resulting images are filtered and thresholded by the FM2 3× 3 filters to get the 64 FMs
for block 2. The subsampling acts as a low-pass spatial filter so that only coarser features
of the seismic section are seen in, for example, FM3. In the end, the FMs represent the
decomposition of a complicated object into high-wavenumber images on the left and low-
wavenumber images on the far right. The FMs are weighted, upsampled, summed together
and squashed to make a single decision, i.e. classification, at each pixel associated with the
input image (Long et al., 2015). Does the pixel value represent a fault, then the answer
is yes y = 1 for its class. If not, then the answer is no y = 0 for the output class. The
displayed FMs are upsampled by a deconvnet procedure to transform them to the same size
as the input image.

Neural Networks and Deeper Connections. Neural network models lack a rigorous
theoretical foundation that explains their formidable number of commercial successes. This
has motivated physicists and mathematicians to search for its mathematical and physical
foundations. For example, they have recently discovered that successful CNN modeling
can have many more tunable parameters than training data, i.e. equations of constraint,
without suffering from overfitting. Arora et al. (2018) proves that a large number of FMs
can be redundant and allows for simple compression of the model.

Another insight says that the CNN decomposition is similar to a dictionary-learning
algorithm (Papayan et al., 2016, 2017a, 2017b; Sulam et al., 2018), where the different
FMs can represent the multiscale components of a complicated object, such as its atoms
or molecules. As an example, Figure 2 illustrates how two convolutional FMs, denoted
as elementary ”atoms” in the bottom row, are combined and filtered to create slightly
more complex structures, i.e. molecules, at the second level. These ”molecules” are then
combined by a CNN model to create the global atom representing, in this case, a digit.

However, the basic operations of the neuron, i.e. atom, has much more complexity than
previously thought, where the atom itself is composed of even finer structures. Work by
Beniaguev et al. (2021) suggests that the cortical neuron mathematically performs the

4A squashing function σ(z) squashes a wide range of input values −∞ < z < ∞ to be between a small
range of output values such as 0 ≤ σ(z) ≤ 1. The squashing operation sparsifies essential+extraneous
information into its essential components (Papayan et al., 2016, 2017a, 2017b; Sulam et al., 2018; Chen et
al., 2020b).
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Input                 Conv +             Conv +             Conv +            Conv +           Upsample

Maxpool Maxpool Maxpool Maxpool Softmax

Seismic

Section            FM1               FM2              FM3               FM4              Faults

Convolutional Neural Network

Fine Coarse Hierarchical Decomposition of Input

1

0

Figure 1: Block diagram of the convolutional neural network (CNN) architecture that
decomposes the input picture of a seismic section into fine-scale feature maps (FM1 and
FM2) and coarser-scale feature maps (FM3 and FM4). To provide a more interpretable
image, the FMs are deconvolved for the display of interpretable images (Shi et al., 2018).
The pixels in the far-right image are labeled 0 < y < 1, where y = 1 indicates that the pixel
is a fault and 0 ≤ y ≤ 1 indicate the probability of being a fault. Typically, the shallow
3× 3 filters that compute the 32 FM1 images from the input image detect the sharp edges
in the input, and the filters associated with FM2 to FM3 detect larger scale features such as
the general shape of the fault. These successive decompositions derive the building blocks at
successive levels from specific combinations of building blocks at the previous level (Holland,
1995). Figure partially adapted from Dertat (2017) and Shi et al. (2018).
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Figure 2: Elementary FMs in the bottom row are combined to form the molecules in the
second row, which in turn are used to form the digit 6 in the top row. Figure from Sulam
et al. (2018).

same functions as a deep neural network with 5-8 layers. This depth is associated with the
neuron’s dendritic branches that act as spatial pattern detectors.

Decomposing an input image into a sequence of simpler-to-more complicated parts is
also used to describe the process of adaptive evolution illustrated in Figure 3. John Holland
(1995) describes the fundamental set of procedures for adaptive evolution in nature:
’If model making, broadly interpreted, encompasses most of scientific activity, then the
search for building blocks becomes the technique for advancing that activity. At a funda-
mental level, we have the quarks of Gell-Mann. Quarks can be combined to yield nucleons,
the building blocks at the next level. The process can be iterated, deriving the building blocks
at successive levels from specific combinations of building blocks at the previous level. The
result is the quark/ nucleon/ atom/ molecule/ organelle/cell/ underpins much of physical
science.’.

Artificial Intelligence and CNN. More generally, ML methods belong to the larger class
of artificial intelligence5 algorithms (see Figure 4), but the one that is attracting the most
interest is that of deep learning with CNNs. Convolutional neural networks are now playing
leading roles in the software for self-driving cars, language translation, speech recognition,
computer vision, fusion and diagnosis of medical images, analysis of satellite and aerial

5https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-
deep-learning-ai/
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A face can be described by stringing together the numbers that index its different

component parts.

Building Blocks and Recombination

eyebrow   eye

1            4

lips

1

nose

1

5  2  1  4  2  3  3

Instance 

Position 1    2    3    4  …   
1

2

3

4

5

6

Figure 3: Neural networks is similar to John Holland’s (1995) description of how nature
evolves models: ’...building blocks at successive levels from specific combinations of building
blocks at the previous level.”. The important features of the face are denoted by the feature
rectangles on the left. Figure adapted from Holland (1995).
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Figure 4: Artificial intelligence (AI) and the sub-classes of machine learning and deep
learning, where AI involves a machine doing something that only a human would be able
to do. Source of picture is Nvidia.

images for optimizing agricultural practices, and many other fields. Significantly, it is now
being recognized as an important interpretation tool for analyzing lithology from seismic
and well-log data, detecting faults in large 3D volumes of seismic data, and searching for
patterns in earthquake data.

Organization of the Book. This book is divided into six main sections:

• Mathematical Background and Optimization Theory. Optimization theory and gra-
dient descent methods for ML are reviewed, with an emphasis on the choice of step
length methods. Readers with a familiarity of these algorithms can skip to the next
sections.

• Supervised Learning Algorithms. Introduction to neural networks, fully-connected
neural networks, applications to geoscience problems, and support vector machines.

• Convolutional Neural Networks. Basics of convolution and correlation, CNN, object
identification, semantic segmentation, recurrent neural networks, Transformers and
self-attention.

• Unsupervised Learning Algorithms: Autoencoders, convolutional sparse coding, prin-
cipal component analysis, clustering methods, generative adversarial networks.

• Bayesian Analysis. Sampling, Bayes’ theorem, and Gaussian mixture models.
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• Seismic Inversion and ML. Physics-informed ML inversion, tomographic deconvolu-
tion, neural network LSM, wave equation inversion and neural networks, automatic
differentiation.

Most chapters are accompanied by executable code (MATLAB and/or Keras with CoLab)
that can be implemented by the reader with a modest level of programming knowledge.
The understanding of the algorithms is deepened by parameter tuning and by examining
the details of the code. Most of these codes have been written by my co-authors, without
which this book would not have been written.

Case histories are used to demonstrate the practical use of ML in solving geoscience
problems. These problems include fracture identification in photos, detection of rock cracks
in drone photos, fossil and lithology detection in thin sections, prediction of permeability in
rock samples, geochemical analysis, well-log analysis and identification of salt boundaries in
seismic data, seismic arrival-time picking by a clustering method, least squares migration,
velocity analysis, demultiple, noise reduction in seismic data and migration images, and
some interpretation examples for seismic and radar data. The reader who diligently goes
through the chapters and labs will have a thorough grounding in some of the fundamental
ML methods used in geoscience.

WWW Software Sites for Computational Labs. The computational labs for the book
Machine Learning in Geoscience are located at the following sites:

• Machine Learning in Geoscience Labs: http://csim.kaust.edu.sa/files/ErSE394/LAB1/

• Machine Learning in Geoscience Labs: http://utam.gg.utah.edu/books/ML/index.html

• Machine Learning in Geoscience Labs: http://seg.org/books/Schuster.ML/index.html

• Machine Learning in Geoscience Labs: repository.kaust.edu.sa/bitstream/handle/10754/
674007/GeoscienceMachineLearning.html

• Machine Learning in Geoscience Labs: https://earth.utah.edu/books/Schuster.ML/
index.html

The computational labs for the books Seismic Interferometry and Seismic Inversion are
located at the following sites:

• Seismic Interferometry Labs: http://utam.gg.utah.edu/Inter.LAB1/

• Seismic Inversion Labs: repository.kaust.edu.sa/bitstream/handle/10754/674016/SeismicInversion.html

• Seismic Inversion Labs: https://earth.utah.edu/books/Schuster.SeismicInversion/index.html
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Notation Convention

• R
N denotes the N -dimensional real vector space.

• C
N denotes the N -dimensional complex vector space.

• A column vector will be denoted by bold lower-case letters; e.g., x = [x1, x2, ..., xN ]T

or x = (x1, x2, ..., xN )T represents the N × 1 vector where xi is the i
th element of x.

• A matrix will be denoted by bold upper-case letters; e.g., A ∈ R
M×N represents an

M×N real matrix whose ijth element is denoted by Aij .

• An order-of-magnitude estimate of a variable whose precise value is unknown is an
estimate rounded to the nearest power of ten.

• A scalar will be denoted by lower-case letters.

• Subscripts are usually used to denote the element index of a vector or matrix.

• Superscripts with parentheses are used to denote an iterate of a vector or matrix; e.g.,
x(k) denotes the kth iterate of an iterative scheme.

• x · y = xTy =< x,y >=
∑N

i=1 x
∗
i yi represents a dot product or an inner product

between finite-dimensional vectors x and y.

• MATLAB syntax is sometimes used to represent vectors or matrices, e.g., [a b; c d]
denotes the matrix [

a b
c d

]
.

• ||x||1 denotes the 1-norm of the N × 1 vector x which is equal to

||x||1 =

N∑

i=1

|xi|.

• |x| = ||x||2 denotes the 2-norm or Euclidean length of the N × 1 vector x which is
equal to

||x||2 =

√√√√
N∑

i=1

x2i .
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If the subscript is missing then the 2-norm is indicated, the l2 norm is for a discrete
vector with an infinite number of components (sequences) and L2 for a discrete vector
with a finite number of components.

• The length of a vector x will often be denoted as |x| rather than ||x||2.

• ||x||p denotes the Lp-norm of the N × 1 vector x which is equal to

||x||p =

(
N∑

i=1

xpi

) 1
p

.

• x̂ = x
|x| denotes the unit vector.

• A∗ denotes the complex conjugate of the matrix A.

• AT denotes the transpose of matrix A. We will often insist it also means the transpose
and complex conjugated matrix A.

• A† denotes the conjugated and transposed matrix A.

• ⋆ denotes temporal convolution. For example, assuming f(t) and g(t) are real contin-
uous functions of the scalar variable t and are square integrable then

f(t) ⋆ g(t) =

∫ ∞

−∞
f(t− τ)g(τ)dτ =

∫ ∞

−∞
f(τ)g(t− τ)dτ. (1)

• ⊗ denotes temporal correlation. For example, assuming f(t) and g(t) are real contin-
uous functions of the scalar variable t and are square integrable then

f(t)⊗ g(t) = f(−t) ⋆ g(t) =
∫ ∞

−∞
f(τ)g(t+ τ)dτ. (2)

• F [f(t)] = F (ω) denotes the Fourier transform of f(t) and F−1[F (ω)] is the inverse
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Fourier transform of F (ω). For example,

F (ω) = F [f(t)] =

∫ ∞

−∞
f(t)e−iωtdt,

f(t) = F−1[F (ω)] =
1

2π

∫ ∞

−∞
F (ω)eiωtdω,

dnf(t)

dtn
=

1

2π

∫ ∞

−∞
(iω)nF (ω)eiωtdω,

f(−t) = F−1[F (ω)∗],

F [f(t) ⋆ g(t)] = F (ω)G(ω),

F [f(t)⊗ g(t)] = F [f(−t) ⋆ g(t)] = F (ω)∗G(ω),

f(t) ⋆ g(t) =
1

2π

∫ ∞

−∞
F (ω)G(ω)eiωtdω,

f(t)⊗ g(t) =
1

2π

∫ ∞

−∞
F (ω)∗G(ω)eiωtdω,

f(t)⊗ g(t)|t=0 =

∫ ∞

−∞
f(τ)g(τ)dτ =

1

2π

∫ ∞

−∞
F (ω)∗G(ω)dω,

f(t)⊗ f(t)|t=0 =

∫ ∞

−∞
f(τ)2dτ =

1

2π

∫ ∞

−∞
|F (ω)|2dω. (3)

• The Dirac delta function δ(t) is a generalized function that is zero everywhere on the
real line, except at t = 0. The Dirac delta function has a broadband spectrum with
the constant amplitude 1:

δ(t− t′) = 1

2π

∫ ∞

−∞
eiω(t−t′)dω. (4)

For a smooth function f(τ), the delta function has the sifting property:

f(t) =

∫ ∞

−∞
f(τ)δ(τ − t)dτ. (5)

• The Kronecker delta function δkn = 1 if k = n, otherwise it is equal to zero for all
integer values of k and n. It is equivalent to the indicator function I{k = n}.
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Abbreviations

• ABC - Absorbing boundary condition

• Adagrad - Adaptive gradient

• Adam - Adaptive moment estimation

• ADCIG - Angle-domain common image gather

• AAE - Adversarial autoencoder

• AE - Autoencoder

• aka - Also known as

• ASSD - Average of the sum of squared distances

• BB - Bounding box

• BD - Blind deconvolution

• BI - Bayesian inversion

• BIC - Bayesian information criterion

• CAG - Common angle gather

• CG - Conjugate gradient

• CGAN - Conditional generative adversarial network

• CIG - Common image gather

• CMG - Common midpoint gather

• CNN - Convolutional neural network

• COG - Common offset gather

• CPT - Conditional probability table

• CSG - Common shot gather

• DBSCAN - Density-based spatial clustering
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• DCGAN - Deep convolutional generative adversarial networks

• DM - Diffraction-stack migration

• DNN - Deep neural network

• EM - Expectation-maximization

• FC - Fully connected

• FCL - Fully-connected layer

• FCM - Fuzzy C-means Clustering method

• FCN - Fully-convolutional neural network

• FCNN - Fully-connected neural network

• FD - Finite difference

• FISTA - Fast iterative-soft-threshold-algorithm

• FM - Feature map

• FWI - Full waveform inversion

• GANS - Generative adversarial networks

• GOM - Gulf of Mexico

• GRU - Gated recurrent unit

• ISTA - Iterative-soft-threshold-algorithm

• IWC- -Information weighted clustering

• KM - Kirchhoff migration

• K-NN - K-nearest neighbors

• LAPGAN - Laplacian generative adversarial network

• LReLU - Leaky rectified linear unit

• LR - Logistic regression maps the linear function w · x+ b into the sigmoid function
1

1+e−w·x−b .

• LReLU - Leaky rectified linear unit

• LSM - Least squares migration

• LSRTM - Least squares reverse time migration

• LSTM - Long short-term memory
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• LSI - Linear shift invariant

• LTI - Linear time invariant

• MAP - Maximum a posterior

• MD - Migration deconvolution

• ML - Machine learning

• MLE - Maximum likelihood estimate

• MSE - Mean square error

• MVA - Migration velocity analysis

• NAG - Nesterov accelerated gradient

• NN - Neural network

• NML - Newtonian Machine Learning

• NMO - Normal moveout

• PCA - Principal component analysis

• PDE - Partial differential equation

• PDF - Probability density function

• PIML - Physics-informed Machine Learning

• PSTM - Prestack time migration

• QN - Quasi-Newton

• QP - Quadratic Programming

• RBF - Radial basis function is a real-valued function whose value depends only on
the distance between the input and some fixed point. RBFs are also used as an
exponential kernel in SVMs.

• R-CNN -Region CNN

• ReLU - Rectified linear unit

• RNN - Recurrent neural network

• RPN - Region proposal network

• RTM - Reverse time migration

• s.t. - Such that
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• SD - Steepest descent

• SGD - Stochastic gradient descent

• SMO - Sequential minimal optimization

• SOM - Self-organizing map

• SRGANs = Super-resolution generative adversarial networks

• SPD - Symmetric positive definite

• SSD - Sum of squared distances

• SVM - Support vector machine

• SVR - Support vector regression

• SSP - Surface seismic profile

• TD = Tomographic deconvolution

• QP - Quadratic programming

• VAE - Variational autoencoder

• VRNN - Vanilla recurrent neural network

• VSP - Vertical seismic profile

• ZO - Zero offset

• VC Dimension - ”The Vapnik–Chervonenkis (VC) dimension is a measure of the
capacity (complexity, expressive power, richness, or flexibility) of a space of func-
tions that can be learned by a statistical classification algorithm. It is defined as
the cardinality of the largest set of points that the algorithm can shatter.” (https://
en.wikipedia.org/wiki/Vapnik%E2%80%93Chervonenkis dimension). In other words,
the classifier should be no more wigglier than the data deserve, otherwise the model
will overfit the data. For a discriminative NN, the sample complexity for the NN is
linear in the VC dimension or number of unknowns.

• wrt - With respect to

• WT - Wave equation traveltime tomography

• WTW - Wave equation traveltime and waveform tomography
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Chapter 1

Introduction to Machine Learning
in the Geosciences

The chapter provides a partial overview of machine learning methods and their historical
development.

1.1 Introduction

Machine learning (ML) was defined by the IBM scientist Arthur Samuel in the 1950s:

Machine learning is the field of study that gives computers the ability to learn without being
explicitly programmed.

As an example, many types of ML methods fit a non-linear relationship between input and
output data. This is equivalent to a non-linear regression fitting of data. However, the
input-output relationship is not explicitly programmed as a, for example, a weighted sum
of polynomials with a specified order. Instead, the ML program learns the fitting function
from the data.

There are dozens of ML algorithms today, such as support vector machines, principal
component analysis, recurrent neural networks, clustering, object detection, convolutional
networks and many others (Bishop, 2006). Some researchers use the phrase ”deep learn-
ing”, but this typically refers to convolutional neural networks with more than five layers
(Goodfellow et al., 2016).

Over the last 75 years machine learning has undergone several metamorphisms. From
the 1940s to early 1960s, cybernetics (Wiener, 1948), neural networks, convolutional neural
networks, and deep learning as illustrated in Figure 1.1. Cybernetics was the hot research
topic related to ML (Goodfellow et al., 2016) and is now used in a rather loose way to im-
ply ”control of any system using technology.” (https://en.wikipedia.org/wiki/Cybernetics).
Cybernetics is the scientific study of how humans, animals and machines control and com-
municate with each other. It was formulated around the same time as the fundamental
development of a biological model for theories of learning (McCulloch and Pitts, 1943; Heb-
b, 1949). The neuron-function model of the brain led to the mathematical algorithm known

1
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Figure 1.1: Three historical waves of artificial neural nets research (Goodfellow et al., 2016;
Toosi et al., 2021), where a wave is characterized by periods of growth (sun symbol) and
decline (winter scene). The third wave, ”deep learning”, is schematically described by a
rapid rise whose future development is ahead of us.

as the perceptron introduced by Rosenblatt (1958). It later evolved to the more practical
neural network model where, in its simplest form, the ith input electrochemical signal xi to
a neuron is related to the output y by

y = σ(
∑

i

wixi + b), (1.1)

where wi is the weight to the input xi, b is a bias term and σ(z) = 1/(1 + e−z) is the
sigmoid function shown in Figure 1.2. In the original perceptron, the activation function
was the all-or-nothing1 σ(z) = sign(z) function, but was later replaced by smoother almost-
all-or-nothing functions such as the sigmoid σ(z) = 1/(1 + e−z) where the derivative exists
everywhere.

According to Wikipedia (https://en.wikipedia.org/wiki/Perceptron): ”The perceptron
was intended to be a machine, rather than a program, and while its first implementation was
in software for the IBM 704, it was subsequently implemented in custom-built hardware as
the ”Mark 1 perceptron” shown in Figure 1.3. This machine was designed for image recog-
nition: it had an array of 400 photocells, randomly connected to the ”neurons”. Weights
were encoded in potentiometers, and weight updates during learning were performed by
electric motors. In a 1958 press conference organized by the US Navy, Rosenblatt made
statements about the perceptron that caused a heated controversy among the fledgling AI
community. The New York Times reported the perceptron to be the embryo of an electronic
computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and

1The sign function is also known as the Heavyside function.
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Figure 1.2: Sigmoid function plotted against its argument and its system diagram to the
right. The sigmoid is also known as a squashing function because it squashes its output
σ(z) to be between 0 and 1 for −∞ < z <∞.

be conscious of its existence.”.

From a simple biological point of view the perceptron model suggests that an input
electrical signal x will be transmitted by the neuron through the connecting synapse to the
neighboring neuron if the input voltage exceeds a threshold value. The input values xi are
similar to the electrical impulses that travel through the many synapses that feed into the
neuron.

A system of many perceptrons with sigmoid activation functions came to be known as a
neural network in the 1980s (Figure 1.1), which could be used to perform practical functions
such as classification of images. Instead of one perceptron, the N × 1 input signal x feeds
into M neurons so that equation 1.1 becomes

yi = σ(

N∑

j=1

wijxj + bi), (1.2)

where theM×1 output vector is y, the weights wj → wij become those associated with the
M × N weight matrix W. The activation function σ acts on each element of the matrix-
vector product zi =

∑N
j=1wijxj + bi to return the M × 1 output vector y, which is also

known as the activation vector a if it is a hidden layer and not the last column of nodes. A
single perceptron with multiple inputs is shown on the left side of Figure 1.4. According to
Goodfellow et al. (2016), connectionism is another name similar to that of artificial neural
networks (ANN) used for ML in the 1980s and 1960s. The word connectionist refers to the
speculation in the 1950’s that ”...the images of stimuli may never really be recorded at all,
and that the central nervous system simply acts as an intricate switching network, where
retention takes the form of new connections, or pathways, between centers of activity.”
(Rosenblatt, 1958).
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Figure 1.3: Mark 1 IBM computer for image recognition. Left photo: the camera system
in which an input scene is recorded by a 20 × 20 array of cadmium sulphide photocells to
give an image with 400 pixels. Middle photo: the perceptron consisted of a patch board
which allowed different configurations of input features to be tried. Right photo: racks
of adaptive weights where the weight values were adjusted automatically by the learning
algorithm. Images from Bishop (2006).

Weighting the input values and summing them together to give the input to the non-
linear activation function σ defines the two basic building blocks of a neural network. The
concatenation of each weighted sum followed by the application of the activation function
forms one layer, and a sequence of such layers forms a multilayer neural network. An
example is shown on the right side of Figure 1.4.

Interest in neural networks grew rapidly from the 1980s and peaked around the mid
1990s but started to fall off, partly because its limitations were revealed as being computa-
tionally too expensive to fulfill all of its early promises. It also suffered from the inability
to theoretically predict its ability to perform well, including IBM’s Deep Blue’s success in
beating a chess grandmaster2 in 1997. Around the same time attention was being refocused
to mathematically tractable methods such as Support Vector Machines (Bishop, 2006).

This decline in interest changed in 1998 with the development of the convolutional
neural networks (CNNs) by LeCun et al. (1998), which was pioneered by related work
from Fukusjima (1980) and Wang (1988, 1990). Instead of requiring massive memory and
computations to perform neural network computations, CNN replaced fully connected layers
and fully populated matrices with sparse convolutional matrices. For equation 1.2 this
means that the fully-populated matrix-vector multiplication is replaced by a convolution of
the input vector with a much smaller number of weights. The CNN algorithm allowed for the
development of large neural networks with many deep layers, and gave rise to re-branding
of neural network research as deep learning research (see Figure 1.1).

The level of deep learning research has exploded in a wide variety of fields, and has
become publicly prominent with its success in popular media companies such as Facebook
and Google and its use with self-driving cars. A force multiplier is the development of
inexpensive GPUs that can expedite the convolutional operations.

2https : //en.wikipedia.org/wiki/Deep Blue versus Garry Kasparov
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Figure 1.4: (Left) Single-layer perceptron and (right) a multilayer neural network. Recent
work by Beniaguev et al. (2021) suggests that the new mathematical model for a cortical
neuron performs the same functions as a deep neural network with 5-8 layers.

1.2 Three Classes of Machine Learning

Machine learning methods can be classified into the three classes shown in Figure 1.5:
supervised learning, unsupervised learning, and reinforcement learning. Researchers are
currently exploring their potential applications in three categories of seismic exploration:
reservoir analysis, seismic data processing and seismic interpretation. The supervised ML
method often used today in geosciences as well as in image recognition is that of convolu-
tional neural networks, which is introduced in Chapter 9.

1.2.1 Supervised Learning

Supervised learning is a procedure for finding a model, for example finding the coeffi-
cients of W, that predicts the output y from the input data x. The procedure is denoted as
supervised learning because W is found by using a large training set that consists of many
training pairs (x(n),y(n)) that are much more than the number of unknown weights in W.

One use for supervised learning is for classifying input data into different categories. For
example, the goal in Figure 1.5a is to create a neural network that can distinguish pictures
of dogs from other types of animals. Here, the training pairs consist of dog images and the
label y = 1 for a dog and the label y = 0 for not a dog. The N ×N dog image is flattened
into an N2 × 1 vector x(n), and the training pair (x(n),y(n)) consist of both the input x(n)

and target output y(n) pairs. There are many training pairs. The label vector y in this
case is a scalar where y = 1 for a dog and y = 0 for not a dog.

Many pairs of training data are used to train the neural network so that an overde-
termined system of equations is formed. The coefficients in W are found by an iterative
optimization method (see Chapters 4-6). An accurate estimate of W will allow pictures of
dogs that are outside the training set to be identified by the neural network.

Another example of supervised learning is shown in Figure 1.6 where thin sections
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Figure 1.5: Three classes of machine learning.

of rocks are the input images (Patel and Chaterjee, 2016). The goal is to classify them
according to the type of limestone. Instead of inputting the entire image of a thin section,
they are skeletonized into smaller features, which is shown as a two part operation. Each
colorized thin-section image is reduced to the histogram values of RGB colors. Then the
second-order, third-order and fourth-order statistics of each of the three histograms are
computed by calculating their variance, skewness, and kurtosis values. These are the values
input into the neural network, and there are seven output classes. These classes correspond
to the dominant type of geology in the image as determined by a geologist. A number of
classified thin sections with class labels are used for training. The training estimates the
optimal values of the coefficients in W. A new set of thin sections are then used as input
into the neural network, which then classifies these out-of-the-training set data. The results
are shown in the lower right side of Figure 1.6. Comparison of the predicted classes and
the actual classes shows more than a 90% accuracy in labeling the data.

Weakly Supervised and Semi-supervised Learning

A subset of supervised learning is semi-supervised learning where there are only a few
labeled data but lots of unlabeled data (Patel et al., 2016). In this case it is too expensive
to label more than a few examples of data.

There is also weakly-supervised learning where each image is given a label but the goal
is to find labels at the pixel level. Each image can contain features from each class, but it
is given a label that denotes the dominant feature. For example, small localized images of
seismic sections might be labeled as predominantly salt dome or a turbidite sequence, but
they also contain other geological structures. Labeling each localized image as just one class
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Figure 1.6: Neural network for classifying thin sections (Patel et al., 2016).

is quickly done by an interpreter, but it ignores the detailed geology. Using a collection of
these labeled images, a dictionary can be built up and be used to train a weakly supervised
neural network to label each image pixel as the type of geology belonging to one of the
classes. Thus, detailed geology at the pixel level can be provided by a machine-learning
algorithm. A key goal of representation learning is to disentangle the factors of variation
that contribute to the appearance of an image (Patel et al., 2016).

1.2.2 Unsupervised Learning

Unsupervised learning is when the training data do not specify the target vector y but
recognizes that there are distinct patterns in the input data x. The goal is to separate
distinct patterns from one another. As an example, Figure 1.7a depicts a common shot
gather of seismic data and its b) transform to phase-velocity and frequency space. The
Rayleigh surface waves and P-wave guided waves (GW) are tangled together in the original
data but are well separated in the C − f domain because they each propagate with very
different propagation velocities; here, C is the phase velocity and f denotes frequency.
Other examples include the separation of signal from noise by principle component analysis
(PCA) in Chapter 16, clustering in Chapter 17, and discriminant analysis by a Gaussian
Mixture Model in Chapter 21.

1.2.3 Reinforcement Learning

Reinforcement Learning is used to train a computer to play a game. The training
consists of trial-and-error exercises with the starting conditions of the game, such as the
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Figure 1.7: a). Common shot gather (CSG) of seismic data and b) phase velocity (ω/k)
versus frequency (f = ω/2π) plot of the CSG. Here, the Rayleigh surface waves (SW) and
P-wave guided waves (GW) are now well separated after a temporal Fourier transform and
a Radon transform (Li et al., 2018).

positions of the white and red checker pieces, and the end point is the final desired outcome
of, say, only white pieces remaining on the board. Here, the output is not a labeled class but
it is the reward for winning the game. Rules for the game are learned by training from, e.g.,
chess games played by experts. A well-trained network can play against itself to increase
its abilities (Sutton and Barto, 2018).

Is reinforcement learning (RL) supervised or unsupervised? Reinforcement learning is
a middle ground, where it takes a small set of labeled data to begin the training, and
then uses a much larger set of unlabeled data by learning the best behavior that maxi-
mizes a reward previous to the current state. It repeats this process in the next iteration
to maximize the reward until no further progress can be made relative to the current s-
tate. Reinforcement Learning is also known as approximate dynamic programming, or
neuro-dynamic programming in the fields of operation research and control theory. It
is studied in economics under the topic of game theory (https://en.wikipedia.org/wiki/
Reinforcement learning#Comparison of reinforcement learning algorithms).

A fundamental tool in RL is the Markov decision process with the following definitions
(https://en.wikipedia.org/wiki/Reinforcement learning#Comparison of reinforcement learning algorithms).
illustrated in Figure 1.8.

• A set S of environment and agent states is defined.

• A set A of actions of the agent is defined as

P (s, s′) = Pr(st+1 = s′|st = s, at = a), (1.3)

where Pr(st+1 = s′|st = s, at = a) is the probability of transition from state s to
state s′ after employing the action a. For example, moving the checker piece from one
square to the one on the immediate right.
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• Ra(s, s
′) is the immediate reward after transition from s to s′ with action a.

The goal is for the agent to learn a sequence of actions that maximize the reward function,
where a neural network is often employed to learn the best actions.

Several examples illustrate the key ideas of RL.

• Playing chess. The novice chess player learns from past mistakes that led to being
checkmated, e.g., he/she eventually learns not to sacrifice a bishop for a pawn. The
player predicts a sequence of moves that might maximize the reward of winning the
game, but also anticipates counter-moves by the opponent. In this way the environ-
ment of the chessboard is ”sensed” at any one move, and different paths to winning
are determined by both experience, intuition and logic.

• Running. A newly born puppy stands up on wobbly legs after being born. Trial and
error experiments will soon lead to the ability to get nourishment from the mother
and other food sources. The reward is to grow stronger and more adventurous.

• Phil prepares for his exams by long hours of study. However, poor grades force him to
search for better ways to study. By trial-and-error he finds that working exercises in
the back of each chapter of the course materials allows him to succeed in passing the
course with flying colors. Listening and reading materials are insufficient for a deep
understanding of the subject. Instead, he finds that solving problems allows one to
thoroughly comprehend the topic.

• Geophysical endeavors can also be cast into the framework of a game. For the case of
winning the game of accurately picking traveltimes in seismic data, Ma and Luo (2018)
used a reinforcement learning algorithm to train the RL model. They created shot
gathers in Figure 1.9a and computed energy-ratio values along a windowed section of
the 1st-arrivals in Figure 1.9b; these energy ratios divided the energy along a short
window of states at different transition steps by the energy of the states in the current
and earlier transition steps. The energy ratios plotted over the entire shot gather is
a reward map. The learning agent seeks the first-arrival onsets of the shot gather by
maximizing the expected value of the cumulative discounted reward. After sufficient
training the RL-picked first arrivals are depicted as the jittery red lines in Figure 1.9c-
1.9d.

1.3 Summary

The key idea of machine learning is that it searches for patterns in data and learns from
experience on how to accurately recognize such patterns in new data. A properly trained
ML algorithm can often analyze a large volume of data many orders-of-magnitude faster and
more thoroughly than teams of geoscientists. There are three types of ML methods: super-
vised learning, unsupervised learning and the combination of supervised and unsupervised
methods knows as reinforcement learning. The least expensive type is that of unsupervised
learning, but it is also the least capable because it does not include the experience and
knowledge from labeled training data. For that reason, the supervised methods are often
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Figure 1.8: Reinforcement Learning diagram. The agent takes actions in an en-
vironment, such as the legal moves in a checkers game. These moves are ac-
cepted if they lead to a reward, such as fewer pieces of the opponent com-
pared to your checker pieces. This process is repeated until the reward is maxi-
mized, such as the elimination of your opponent’s pieces. Instead of training pairs
of input-output examples, the RL algorithm learns from the games recorded from
those played by human experts. Figure adapted from https://en.wikipedia.org/wiki/
Reinforcement learning#Comparison of reinforcement learning algorithms.
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preferred so that supervised learning is becoming a major force in expediting the analysis of
geoscience data, including the interpretation of seismic volumes for oil exploration, analysis
of satellite data, earthquake data, geochemical analysis, and potential fields data.

Many of the prominent achievements of deep learning seem magical, but also frustrating
because they often appear to be theoretically impenetrable! Many of the neural-network
based algorithms consist of a hedge podge of sub-architectures which, by trial-and-error,
work better than any other approach in the applications of self-driving cars, language trans-
lation, speech recognition, computer vision, medical imaging and diagnosis, seismic interpre-
tation, petrophysical analysis, etc.. Despite ongoing attempts (Papyan et al., 2017a-2017b;
Sulam et al., 2018; Sharma, 2020; the Institute for Advanced Study at Princeton, https://
www.ias.edu/ideas/arora-machine-learning; Rudolf Peierls Centre for Theoretical Physics,
https://saturdaytheory.physics.ox.ac.uk/events/ai-physics; and many others), deep learn-
ing lacks a fully developed theoretical basis that allows for the general prediction of its
performance as a function of design. But this seems to be a natural evolution of early scien-
tific discoveries: establish an understanding of its principles by trial-and-error, intuition and
examples from nature, then fully develop its theoretical principles. This is not too differ-
ent than the technological developments of farming, mining, electricity and other practical
tools, including full waveform inversion. For now, the geosciences are taking advantage of
the currently developed ML tools and these ”shut-up and compute” efforts will continue to
accelerate for the next decade.
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Chapter 2

Data Prediction by Least Squares
Inversion

The goal of inversion is to find the model w that best predicts the target data t from
input data X. Here, the governing system of equations is represented by a system of
equations Xw = t that are, typically, overdetermined, inconsistent and ill-conditioned. No
exact solution exists so we seek the optimal model w∗ that gives the minimum prediction
error ǫ = 1

2 ||Xw−t||2 under the L2 norm. We show how regularization and preconditioners
can be used to alleviate problems with ill-conditioning, inconsistency and non-linearity. The
inordinate expense of using a direct method for solving a large system of equations forces
us to adopt the iterative solution method known as gradient optimization.

For general geophysical inversion, the elements of the target-data vector t can take on
any real-valued measurements, such as gravity readings, and the non-linear operator X is
characterized by the Newtonian physics of, e.g., a partial differential equation. In contrast,
classification by a neural network restricts the element values of t to be a restricted range
of numbers1 that indicate the class of the input data. For example, the input data might
be photographs of dogs and cats, and the classification problem is to classify the input as
either a cat where t1 = 1 and t2 = 0 or a dog where t1 = 0 and t2 = 1. In this case the
target vector is the 2×1 vector t = (t1, t2)

T . There is typically no governing equation based
on physics, instead the model w is extracted from patterns detected in a large amount of
input samples (X, t).

2.1 Least Squares Inversion

The key ideas underlying least squares inversion will be explained by the simple example
of determining the velocity of a motorcycle (see Figure 2.1a) as it travels down a gravel road
of length 5 km. The procedure is to estimate the slowness w = t/x, i.e. the inverse speed,
of the motorcycle by recording travel time t as a function of travel distance x. The timing
measurements (in units of seconds) are recorded every 1 km on a gravel road next to the
Bonneville Salt Flats (”https : //en.wikipedia.org/wiki/Bonneville Salt F lats”) in Utah

1If the output numbers of a non-linear model can be any real number then this is a non-linear regression
problem.

15
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(see Figure 2.1a) . Five travel times and distances are recorded and stored in the 5 × 1
vectors t and x, respectively. The combined data set (x, t) is known as a sample and
contains errors in the traveltimes. We might also repeat the experiment at different sites
(for example, see Figure 2.1c) to give us a new sample (x′, t′); the ensemble of samples is
known as the training data.

2.1.1 Overdetermined, Inconsistent, and Ill-conditioned Equations

The relationship that links x with t will be hypothesized, for now, to be a linear model
where

xw = t→

X︷ ︸︸ ︷


x11
x21
x31
x41
x51




w︷ ︸︸ ︷(
w1

)
=

t=observed times︷ ︸︸ ︷


t1
t2
t3
t4
t5




→




0
1
2
3
4



(
w
)
=




0
0.102
0.33
0.50
0.80



, (2.1)

where X is the 5 × 1 input matrix of travel distances, w is the 1 × 1 slowness vector, and
t is the 5 × 1 vector of recorded traveltimes. The element value xij is equal to the dis-
tance traveled to the ith recording station with the motorcycle traveling at the jth slowness
value. The distances (units of km) and times (units of hours) associated with the above
equation are plotted in Figure 2.2a where t is assumed to be polluted with measurements
errors, denoted as noise. The goal is to find the best estimate of the slowness w.

Equation 2.1 is an M ×N system of equations where M = 5 is the number of equations
and N = 1 is the number of unknown slowness values. This is an overdetermined system
of equations because M > N . It is also an inconsistent set of equations because there is
no common solution. For example, the solution w = .102 hr/km to the 2nd-row equation
contradicts the solution to the 3rd-row solution w = .33/2 = .165 hr/km.

If there are many solutions that can nearly satisfy the same equations then this is
known as an ill-conditioned system of equations. For example, if the modeling equation is
w1 + 10−3w2 = t, then δt/δw2 = 10−3 → δw2 = 103δt, which says that a small change
in the traveltime δt will lead to a large change in the model w2. As an example, small
traveltime errors in the data will lead to unrealistically large changes in the model. The
term δt/δwi is denoted as a Frećhet derivative that characterizes the sensitivity of the data t
to changes in the ith model parameter. More generally, inverting for the subsurface velocity
model from the traveltimes of specific events picked from seismic data (see Chapter 14 and
Appendix 27) is known as traveltime tomography.

2.1.2 Least Squares Solution

There is no exact solution to equation 2.1 so we need to define a criterion for best
solution. The one we will discuss for now is the least squares solution2 that minimizes the

2The least squares solution is sometimes known as regression because it the least squares solution is the
one that regresses to the average.
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b) Suggestion

c) Great Gravel Road to Great Salt Lake

a) Road next to Bonneville Salt Flats

Figure 2.1: Pictures taken on GTS motorcycle trip in Utah’s West Desert with views of a)
Bonneville Salt Flat region, b) wildlife sign, and c) the Great Salt Lake.
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Figure 2.2: Plots for a) the observed t(x) (blue stars) and b) misfit function ǫ for trial values
of the slowness w. The dashed yellow line in a) represents the predicted times using the
least squares estimate of the velocity and the red star in b) indicates the global minimum
ǫ(w∗) where w∗ = 1/5.5 = 0.182 is the stationary point.
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objective function3 ǫ, the sum of the squared residuals:

ǫ =
1

2

rT︷ ︸︸ ︷
(Xw − t)T

r︷ ︸︸ ︷
(Xw − t),

=
1

2
wTXTXw − tTXw +

1

2
tT t

=
1

2

M∑

i=1

(

r2i︷ ︸︸ ︷
(Xw)i − ti)2, (2.2)

where ǫ is also denoted as a data misfit function. Here, r is the M ×1 residual vector which
is the difference between the predicted times Xw and measured times t. For N = 1, ǫ plots
out as the parabola in Figure 2.2b for the motorcycle data, for N = 2 it describes the error
bowl in Figure 2.3, and for N > 2 it describes an N − 1-dimensional quadric surface.

The vertices of the parabola in Figure 2.2b and the error bowl in Figure 2.3 define the
global minimum w∗ where the gradient ∇ǫ = is zero. This zero-slope condition4 is written
as

∂ǫ

∂wk

∣∣∣∣
w=w∗

= 0, ∀ k, (2.3)

where the kth component of the N × 1 misfit gradient vector is explicitly written as

∇ǫk =
∂ǫ

∂wk
=

M=5∑

i=1

ri
∂ri
∂wk

,

=

5∑

i=1

ri=
∑N

n=1 xinwn−ti︷︸︸︷
ri

∂ri/∂wk=
∑N

n=1 xin∂wn/∂wk=
∑N

n=1 xinδnk=xik︷ ︸︸ ︷
∂(
∑N

n=1 xinwn − ti)
∂wk

,

=

(XT (Xw−t))k︷ ︸︸ ︷
5∑

i=1

xik(
N∑

n=1

xinwn − ti), (2.4)

and the Kronecker delta function is defined to be δik = 1 if i = k, otherwise δik = 0. Notice
that the outermost summation

∑5
i=1 xikri in the last line is over the row index i of the

element xik, so in matrix-vector notation this is equivalent to multiplying the transpose
matrix XT by the residual vector r.

Setting the derivative in equation 2.4 to be zero and rearranging gives the normal equa-

3The machine learning community often denotes ǫ as the loss function, which can take many forms; ǫ is
also known as a data misfit function if there is no regularization.

4Equation 2.3 is considered to be a stationary condition because ǫ does not change much over a small
range of w at the bottom of the, for example, red curve in Figure 2.2.
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2). The gradient

∇ǫ = ( ∂ǫ
∂w1

, ∂ǫ
∂w2

) points along the steepest uphill direction and is perpendicular to the
contour tangent. See exercises 2.5.3-2.5.6.
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tions5

[XTX]w = XT t. (2.5)

The least squares solution to the normal equations is

w = [XTX]−1XT t, (2.6)

which minimizes the sum of the squared residuals. See Box 2.1.2 for the least squares solu-
tion to equation 2.1.

Example 2.1.1. Least Squares Solution

For equation 2.1, there is only one unknown in w = (w) so that the stationary
condition for equation 2.2 is

∂ǫ

∂w
=

5∑

i=1

xi1(xi1w − ti) = 0. (2.7)

Rearranging and solving for w gives

w =

[XTX]−1

︷ ︸︸ ︷
1∑5

i=1 x
2
i1

XT t︷ ︸︸ ︷
5∑

i=1

xi1ti = 0.182. (2.8)

The stationary value w∗ = 0.182 hr/km is at the global minimum indicated by the
red star in Figure 2.2b.

2.1.3 Regularized Least Squares Solution

If there is a timing error δti at each of the ith recording stations so that ti → t0i + δti,
then equation 2.8 becomes

w =

wo︷ ︸︸ ︷∑5
i=1 xi1t

0
i∑5

i=1 x
2
i1

+

δw︷ ︸︸ ︷∑5
i=1 xi1δti∑5
i=1 x

2
i1

, (2.9)

5These are called normal equations because they can be multiplied by wT and rearranged into the form
wTXT (Xw − t) = (Xw,Xw − t) = 0. This says that w∗ gives the predicted traveltime vector Xw∗ that
is perpendicular to the residual vector Xw∗ − t. Here, the parentheses indicate the inner product between
two vectors.
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where wo is the true slowness and δw is the slowness error caused by timing errors. If the
distances xi1 are very small6 then the denominator in 1

∑

x2
i1

can be close to zero and so

amplify timing errors δti > xi1 into a large slowness error |δw| = |
∑5

i=1 xi1δti
∑5

i=1 x
2
i1

| >> 0. To

avoid this near-zero-divide instability we add a positive regularization term η > 0 to the
denominator so that equation 2.8 becomes the regularized solution:

w =

∑5
i=1 xi1ti∑5

i=1 x
2
i1 + η

, (2.10)

where η is typically set to be between 1% and 5% of the largest diagonal value of the matrix
XTX. This regularization parameter η > 0, also known as the damping term, increases
the value of the denominator and thereby prevents an unstable near-zero divide and the
strong amplification of data errors (Menke, 1984). The cost, however, is a loss of accuracy
in the final solution. As discussed in Box 2.1.3, an unstable system of equations can be
characterized by several properties: gentle slopes in the objective function ∂ǫ

∂w ≈ 0 and large
condition numbers associated with XTX. See exercises 2.5.1-2.5.2.

6For example, assume that the five timing stations are spaced at 0.001 km intervals. In this case the
timing errors can be very large compared to xi1 and so generate enormous slowness errors.
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Key Idea 2.1.1. Small Curvatures and Large Condition Numbers of XTX → Un-
stable Solutions

The green curves in Figure 2.4 depict a) stable and b) less-stable misfit functions based on
the magnitude of xi1 in X. The larger value of xi1 = 0.001 in Figure 2.4a leads to the
parabola with steeper sides (green line) compared to the gently dipping one in Figure 2.4b
where xi1 = 0.00011. The flatter green parabola in b) means that there is a wider range of
w values, i.e. a more unstable solution, that can give almost the same misfit error as that at
the global minimum (green star). Equivalently, this means that a small amount of data noise
can lead to a large change in the model. This is an example of an ill-conditioned system of
equations that forms the objective function.

If the curvature ∂2ǫ
∂w2 is close to zero at w∗:

∂2ǫ

∂w2
= lim

δw→0
[
ǫ

∂w

∣∣∣
w=w∗+δw

− ǫ

∂w

∣∣∣
w=w∗

] ≈ 0, (2.11)

then the slope ∂ǫ
∂w hardly changes around the zero-slope point w∗. This means that there

are many solutions that almost minimize the sum of squared residuals For equation 2.7 the
curvature is

∂2ǫ

∂w2
=

5∑

M=1

x2i1, (2.12)

which confirms that ∂2ǫ
∂w2 ≈ 0 when |xi1| ≈ 0 ∀ i.

A general indicator of an unstable system of equations is that the condition number
|λmax/λmin| of the matrix XTX is large, where λmax (λmin) is the maximum (minimum)
eigenvalue of the matrix. Recall that the ith orthogonal eigenvector xi of the symmetric
positive definite matrixa XTX is defined as

XTXxi = λixi, (2.13)

where λi is the eigenvalue for the eigenvector xi. This means that the solution to the N ×N
normal equations 2.5 can be expanded into a sum of N weighted eigenvectors

w =

N∑

i=1

βixi. (2.14)

The unknown coefficients βi can be found by inserting equation 2.14 into the normal equations
XTXw = XT t, taking its dot product with the ith eigenvector xi, and solving for βi to get

βi =
(xi,X

T t)

λi
. (2.15)

This says that if there are small timing errors δt in (xi,X
T (t+ δt)) then they will strongly

amplified if the ith eigenvalue λi is small compared to errors associated with much larger
eigenvalues. Thus, normal equations with condition numbers |λmax|/|λmin| larger than about
104 should be regularized.

aA symmetric positive definite (SPD) matrix is one that is symmetric and all of its eigenvalues
λi i ∈ [1, 2 . . . N ] are larger than 0, and the N orthonormal eigenvectors xi i ∈ [1, 2 . . . N ] span the
space of solutions.
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The damping term η in equation 2.10 was introduced in an ad hoc fashion to mitigate
large errors in w due to an unstable system of equations. A more rigorous derivation is
obtained by defining the objective function to be the weighted sum of data misfit rT r =
(Xw− t)T (Xw− t) (green curves in Figure 2.4 ) and the model penalty wTw (red curves
in Figure 2.4) functions:

ǫ =

data misfit= 1
2

∑

i r
2
i︷ ︸︸ ︷

1

2
(Xw − t)T (Xw − t) +

model penalty= 1
2
η
∑

i w
2
i︷ ︸︸ ︷

1

2
ηwTw ,

=
1

2
wT [XTX+ ηI]w − tTXw +

1

2
tT t, (2.16)

which plots out as the blue curves in Figure 2.4. The derivative of equation 2.16 with
respect to wk yields the kth component of the misfit gradient:

∂ǫ

∂wk
=

1

2

∂
∑

i r
2
i

∂wk
+
η

2

∑

i

∂w2
i

∂wk
,

=

(XT (Xw−t))k︷ ︸︸ ︷∑

i

xikri +

(ηIw)k︷︸︸︷
ηwk , (2.17)

where I is the N × N identity matrix. Setting this gradient component to zero ∀k ∈
[1, 2 . . . N ] and rearranging yields the regularized normal equations

[XTX+ ηI]w = XT t, (2.18)

which is solved by the regularized least squares solution:

w = [XTX+ ηI]−1XT t. (2.19)

As a special case, setting the derivative in equation 2.17 to zero, renaming wk → w and
solving for w gives equation 2.10.

The interpretation of equation 2.16 is that large values of η will favor solutions w that
are near the origin, but at the expense of a larger data misfit function ||r||2. As an example,
the global minimum w∗ (blue star) for the blue curve in Figure 2.4b is closer to the origin
than that in Figure 2.4a because η is 20% for b) and only 10% for a). However, if η is not
too large then the damped solution (blue star) is close enough to the undamped solution
(green star) with an acceptable loss of precision.
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Figure 2.4: Values of the objective functions rT r (green curves), wTw (red curves) and
rT r+ηwTw (blue curves) plotted against trial values of w for the motorcycle equations 2.1.
Here, there is no noise in the data so that (XTw−t)T (XTw−t) = 0 at the global minimum
denoted by the green stars. In contrast, the minimizer w∗ for (Xw− t)T (Xw− t)+ ηwTw
is non-zero and is closer to w = 0 for b) η =20% compared to a) η =10%. Larger values of η
reward solutions with smaller length wTw ≈ 0. In addition, the slope of the green parabola
is gentler for b) smaller values of xi1 = .00011 compared to larger values in a) xi1 = .001 in
a).
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The curvature ∂2ǫ/∂wi∂wj tensor of the misfit function in equation 2.2 is given as

∂2ǫ

∂wi∂wj
= 1/2

∂

∂wi
[
∂wTHw]

∂wj
,

=
∂

∂wi
[Hw]j,

= Hij, (2.20)

Here, H = XTX is the Hessian matrix. Therefore, Hij is the component of the curvature
tensor which determines how quickly the jth component of slope changes along the i direc-
tion. The Hessian matrix is symmetric so that Hij = Hij Large values of |Hii| >> |Hij| > 0
indicate a steeply dipping topographically of the misfit function in the ith direction.

2.1.4 Geometrical Interpretation of Gradient ∇ǫ

The gradient vector ∇ǫ in Figure 2.3 points uphill along the steepest ascent direction.
To show this, define the vector

w = wo +∆w, (2.21)

where ∆w is a specified vector with very small magnitude. Expanding ǫ(w) in a Taylor
series about wo, truncating after the first-order term in ∆w and rearranging gives:

ǫ(w)− ǫ(wo) = ∇ǫ(w)T
∣∣∣
w=wo

∆w, (2.22)

where ∇ǫ = ( ∂ǫ
∂w1

, ∂ǫ
∂w2

. . . ∂ǫ
∂wN

)T and ∆w = (w1, w2 . . . wN )T . If ∆w is pointing to a close
neighboring point on the same contour that passes through wo then ǫ(wo +∆w) = ǫ(wo),
which implies (∇ǫ(wo + ∆w),∆w) = 0. This means that ∇w is perpendicular to the
contour’s tangent vector at wo. Furthermore, if we redefine ∆w to be a unit vector now
pointing uphill and perpendicular to the contour at wo then ǫ(w) − ǫ(wo) = ∇ǫT∆w =
|∇ǫ| > 0. Thus, wo points uphill along the steepest ascent direction.

As illustrated in Figure 2.5, the gradient vector points uphill along the steepest ascent
direction. Therefore, −∇ǫ points downhill along the steepest descent direction as shown in
Figure 2.5. This compares to the regularized gradient in equation 2.17 which points more
towards the origin in Figure 2.5 because it is a weighted sum of the misfit gradient and the
gradient of the penalty function 1/2∇wTw = w. In fact, if η >> 0 then the penalty term
dominates and ∇ǫ points at the origin.

The Gauss-Newton arrow ∆w in Figure 2.5 points toward the global minimum at w∗

with

∆w = [XTX]−1XT∆t, (2.23)

where ∆t = t− t′, ∆w = w∗ −w′ and

Xw′ = t′. (2.24)
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Figure 2.5: Elliptical contours associated with ǫ(w) and the gradient vectors associated
with the Gauss-Newton , Levenberg-Marquardt, and steepest descent directions. Here, the
Levenberg-Marquardt gradient is also known as the regularized gradient (see equation 2.19)
and the red star denotes the smallest value of ǫ(w).
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Equation 2.23 can be proven by recalling that the optimal w∗ for the given traveltimes t
satisfies w∗ = [XTX]−1XT t. The sub-optimal model w′ predicts the traveltimes t′ that
exactly satisfy equation 2.24 but these traveltimes are not the same as the recorded ones t.
Multiplying equation 2.24 by XT and inverting gives

w′ = [XTX]−1XT t′. (2.25)

Subtracting w′ from w∗ = [XTX]−1XT t gives the Gauss-Newton direction ∆w = w∗ −w′

where

∆w = [XTX]−1XT t− [XTX]−1XT t′,

= [XTX]−1XT

∆t︷ ︸︸ ︷
(t− t′) . (2.26)

Substituting ∆w = w∗−w into the above equation and rearranging gives the Gauss-Newton
update formula for non-linear inversion:

w∗ = w′ + [XTX]−1XT∆t. (2.27)

This formula is the starting point for many gradient descent methods that iteratively search
in downhill directions for the global minimum. See section 2.2.

2.1.5 Preconditioning

If the number of unknowns N = 2 so that w = (w1, w2), then the objective function
ǫ = 1/2||Xw − t||2 can be described by the second-order polynomial

ǫ = aw2
1 + bw2

2 + cw1w2 + dw1 + ew2 + f, (2.28)

where (a, b, c, d, e, f) are functions of the input data. As a simple example, set c = d = e =
f = 0 so equation 2.28 can be rewritten as

ǫ =
(
w1 w2

) [ a 0
0 b

](
w1

w2

)
, (2.29)

so that ǫ plots out as the concentric circles in Figure 2.6a for a = b, or as the ellipses in
Figure 2.6b for (a, b) = (1, .01). If a >> b then the ellipse become much taller than it is
wide and leads to unstable solutions as discussed in Box 2.1.3. For example, a small value of
b says that | ∂ǫ∂w2

|, | ∂2ǫ
∂w2

2
| ≈ 0 so that large changes in w2 lead to small changes in ǫ. Another

way of saying this is that small changes in δt and, consequently, ǫ can lead to large changes
in w2. In contrast, the steep dip of the ellipse along the w1 axis says that |∂ǫ/∂w1| >> 0
so that w1 is not affected too much by small timing errors.

The 2× 2 matrix X associated with equation 2.29 is given by

X =

[
a1/2 0

0 b1/2

]
. (2.30)
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Here, X is severely ill-conditioned if |a1/2| >> |b1/2| so that the associated ellipses of ǫ
appear as long-narrow valleys. To transform these narrow valleys into rounder contours a
diagonal preconditioner matrix C

C =

[
a−1/2 0

0 b−1/2

]
. (2.31)

can be multiplied by the original equations to give

CXw = Ct, (2.32)

where [C]ij = 1
[X]ii

δij . In this case, CX = I and has unit-valued eigenvalues λ1 = λ2 = 1

where the condition number |λ2|/|λ1| = 1. Thus, the associated objective function of
1
2 ||C(Xw − t)||2 plots out as round circles.

Normalizing each row of X by CX so it has about the same strength as the other ones
is one type of preconditioning method7 for accelerating convergence of iterative gradient
methods. Preconditioning the data is also used in neural networks (see Chapter 9) where it
is recommended that there should be the same number of data examples for any one type.
Moreover, different types of input data will have different units, so normalizing one type of
data (e.g. with units of km/s) by its variance will insure that the range of values will be
about the same as those from a different type of data (e.g., units of kilograms). A similar
preconditioning is used for illumination compensation of seismic data (Rickett, 2003) where
the weak strength of deep reflections is compensated to balance out the amplitudes of much
stronger early arrivals recorded near the source.

If the system of equations is that for the normal equations then, in general, C is selected
so that

C[XTX]C−1Cw = CXT t, (2.33)

where the eigenvalues of C[XTX]C−1 are more favorable for faster convergence. For ex-
ample, construct C so that the condition number of C[XTX]C−1 is much smaller than
that for [XTX]. The condition number can also be lowered by clustering the eigenvalues of
C[XTX]C−1 (Nocedal and Wright, 1999).

2.1.6 Overfitting Data

Equation 2.1 assumes that the simple one-dimensional model w = (w) can explain the
data. The result is a system of equations that is inconsistent because of, presumably, timing
errors. However, the timing expert might disagree and say the data errors are too small to
account for deviations from the dashed line in Figure 2.2a: we must have used the wrong
physics to explain the data! Instead of the linear model t = x/v, a quadratic model with
polynomial order P = 2 in x might be a better fit where

t = w1x+ w2x
2. (2.34)

7Using a diagonal preconditioner is sometimes known as scaling (Nocedal and Wright, 1999)
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Figure 2.6: Contours of objective function aw2
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2 for a) (a, b) = (1, 1) and b) (a, b) =
(1, 0.1).

In this case, the corresponding system of equations for the motorcycle data becomes

X︷ ︸︸ ︷


x11 x211
x21 x221
x31 x231
x41 x241
x51 x251




w︷ ︸︸ ︷(
w1

w2

)
=

t=observed times︷ ︸︸ ︷


t1
t2
t3
t4
t5




→




0 0
1 12

2 22

3 32

4 42




(
w1

w2

)
=




0
0.102
0.33
0.50
0.80



. (2.35)

The intuitive motivation for this quadratic model is that the motorcycle speed increases
towards the end of the road as it becomes more paved. Thus, the quadratic term w2x

2

dominates when x is large near the end of the road.

As an example, Figure 2.7 depicts the results from fitting the quadratic equation 2.34 to
the motorcycle data. Comparing Figures 2.2 and 2.7, the quadratic model gives the closest
fit to the data in a) and has about 1/7 the misfit error of the linear model. This result
suggests that the misfit error can be further decreased by increasing the order P of the
polynomial model. Unfortunately, increasing P > M will yield an underdetermined system
of equations where there are more unknowns P than the numberM of equations. The least
squares solution will then give a misfit error of nearly zero, but at the cost of overfitting
the data where the complexity of the model exceeds that of the noise-free data. In this case
the higher-order polynomials are being fitted to the rapidly varying noise, not the signal,
in the data. Such a model will not easily be able to predict new data for experiments with
much different noise. Another way of saying this in the machine learning community is that
this overfitted model does not generalize very well.
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Figure 2.7: Same as Figure 2.2 except the quadratic equation t = w1x+w2x
2 is used to fit

(dashed line) the motorcycle data. In this case, w∗ = (0.099, 0.025) = (1/10.1, 1/40.1) and
ǫ is only plotted along the slowness component w1, with w2 = 0.025.
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Instead of a polynomial, one might suggest a high N-dimensional linear model:

ti =
N∑

j=1

xijwj , (2.36)

where w is the N×1 model vector and xij are unphysical weights specified by the mechanic.
If these weights are specified to give rise to an XTX matrix that is invertible then this model
will also overfit the data. For example, the two equations w1 = 1 and w1 = 2 are inconsistent
and generate non-intersecting lines in the coordinate-space (w1, w2). Increasing the number
of unknowns to include w2 so that the model equations are w1 = 1 and w1 + .4w2 = 2
gives a consistent set of equations where the associated lines have a common intersection in
(w1, w2).

There are several choices for increasing the complexity of the model: increase the com-
plexity of the input data by using higher-order polynomials as in equation 2.35, or by
creating a non-linear relationship between the model parameters w and the specified out-
put. A simple example is to specify the model y = σ(wx), where σ(z) = 1/(1 + e−wz) is
the sigmoid function plotted in Figure 4.2. In this case, both the input parameters x and
model parameters have a non-linear relationship with the output y. This is exactly the type
of relationship all neural networks have between the input data x and output data y.

Sanity Test for Overfitting

How can we determine if the complexity parameter P of the proposed model is higher
than that in the noiseless data? The machine learning learning community attempts to
answer this question by randomly dividing the entire training data set into several parts8

(see the horizontal bar at the top of Figure 2.8): training data (60%), validation data (20%)
and test data (20%). The goal is to find the optimal parameter values of wP for different
orders P of polynomials in equation 2.34; for neural networks this might correspond to
different numbers of nodes in the neural network.

1. The optimal models wP are computed from the training data (gold bar) for different
values of P .

2. The validation dataset is a sample of data held back from training your model that
is used to give an estimate of model skill while tuning the model’s hyperparameters
(Brownlee, 2017). The validation data (green bar) are then used to compute the misfit
errors plotted in Figure 2.8. The model that is neither overfitted or underfit ted is
indicated by the black dot for P = 6. For the motorcycle example, the training set
might be obtained by repeating the time trials many times to get a large set of training
data. Higher-order polynomials P > 6 have a larger value of the misfit function and
indicate that these higher-order models were fitted to the noise in the training data;
this resulted in large validation residuals because the noise in the validation data is
quite different. These large residuals could also indicate that the types of training data
were not diverse enough to represent the patterns in the validation data. Sometimes

8See Andrew Ng’s recommendation at https : //www.youtube.com/watch?v = MyBSkmUeIEs
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Figure 2.8: Misfit error ǫ plotted against the order P of the polynomial. The misfit values
ǫ are for the validation (green bar) data using the optimal w parameters obtained from the
training (gold bar) dataset.

there are local minima in the Figure 2.8 curve, and Prechelt and Orr (2012) describe
different criteria for stopping the iterations.

3. Finally, the test data (blue bar in Figure 2.8) is used to provide an unbiased evaluation
of the final model P = 6 selected from Figure 2.8 (Brownlee, 2017). The test data
for the P = 6 model can be evaluated for a misfit error and if it is close to that
for the validation data and model P = 6 then this increases the confidence that this
model generalizes well to other holdout data. The literature often interchanges term
validation dataset with test data, which introduces confusion in the meaning of these
terms (Brownlee, 2017).

If the test dataset has never been used in training, the test dataset is also called a holdout
dataset. A strategy for dividing up the data into different sets is also used for cross-
validation studies9 (Golub and von Matt, 1997) discussed in section 4.1.5.

9See https : //en.wikipedia.org/wiki/T raining test and validation sets for further details.
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2.1.7 Inclusion of Bias Factor

Assume that the timing clock was not properly calibrated before the motorcycle trial
so that the registered starting time consisted of an error of ∆τ = 0.1 hour for the x = 0
position. This time-shift bias will be inherited by the times recorded at the other 4 stations.
Unless this bias is corrected, the estimated velocity errors will be large for the linear model
t = wx.

To account for this timing bias the linear model in equation 2.1 should be changed to

t = w0 + w1x, (2.37)

where w0 is the bias term that can model a line that does not intercept the origin. In this
case the system of equations in equation 2.1 becomes

X︷ ︸︸ ︷


1 x11
1 x21
1 x31
1 x41
1 x51




w︷ ︸︸ ︷(
w0

w1

)
=




t1
t2
t3
t4
t5



, (2.38)

where the least squares solution (w∗
0, w

∗
1) can now be computed to accurately predict the

data.

The importance of accurately estimating the bias term w0 is similar to estimating an
accurate starting model for seismic inversion. That is, cycle-skipping problems can be
mitigated if an accurate low-wavenumber model is used to account for the bulk of an event’s
traveltime. As we will discuss in sections 4.1 and 4.5, neural network models include a bias
term to shift the input to their activation functions in order to best fit the input points.

2.2 Steepest Descent Optimization

Defining w∗ → w(k+1), w′ → w(k), t′ = t(k), and ∆τ (k) = t(k)− t in equation 2.27 gives
the Gauss-Newton iteration formula (Nocedal and Wright, 1999)

w(k+1) = w(k) − [XTX]−1XT∆τ (k), (2.39)

where ∆τ (k) = t(k) − t is the data-residual vector at the kth iteration. For a linear system
of equations with a well-conditioned [XTX], the global minimum should be reached in one
iteration. However, the inverse to [XTX] is too expensive to compute for large data sets
so its inverse is approximated by the diagonal matrix [XTX]−1

ij ≈ 1
[XTX]2ii

δij to give the

preconditioned steepest descent formula:

w
(k+1)
i = w

(k)
i − α

1

[XTX]2ii
(XT∆τ (k))i, (2.40)
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where α is a step length that can be numerically determined, for example, by a numerical
line search (Gill, 1981) that w(k+1) reduces the misfit error as much as possible10. See
section 3.2. Unlike the Gauss-Newton formula for linear systems, equation 2.40 does not
typically give the right answer for one iteration. Therefore this formula is used repeatedly
to give updated solutions until convergence. The sequence of steps is as follows.

1. Specify k = 0 and a starting guessed solution w(0). The starting solution is used to
give the predicted traveltimes Xw(0) = t(0) and the residual ∆τ (0) = t(0) − t.

2. Equation 2.40 is used to estimate w(k+1) after a suitable step length is computed. We
will discuss adaptive step lengths in the next chapter, but for now conveniently set

α = .01 or set it equal to α = α0/

√
(
∑k

κ=1(g
(κ)
i )2 + η), where g

(κ)
i is the magnitude

of the ith component of the misfit gradient at the κth iteration, η > 0 is a small
damping parameter for stability and α0 is the starting step length. This is known
as the Adagrad step length that decreases with iteration number, and where smaller
derivatives lead to larger step sizes. The problem is that this step size becomes too
small for a large number of iterations so progress is stalled. Modifications can be made
such as the Adadelta (Ruder, 2017) which restricts the summation in the denominator
to a small range of previous iterations. See section 3.1.

3. Compute the new predicted traveltime vector Xw(k+1) = t(k+1) and the residual
∆τ (k+1) = t(k+1) − t. If the length ||r(k+1)|| of the residual vector falls below some
specified limit, stop. Otherwise redefine k := k + 1 and repeat steps 2-3 until conver-
gence.

If regularization and preconditioning are used then the preconditioned-regularized steepest
descent formula is (see exercise 2.5.10):

w
(k+1)
i = w

(k)
i − α

1

[XTX]2ii
(XT∆τ (k) + ηw(k))i, (2.41)

where η is the regularization parameter. The next chapter will examine the properties
of the steepest descent method applied to a non-linear system of equations, which is the
optimization technique for the neural network method.

Figure 2.9 presents the results of using both the steepest descent and preconditioned
steepest descent methods in solving an overdetermined system of equations. In this case
the system of equations is given by




4 6
2 5
0 3
1 4



(
w1

w2

)
=




10
7
3
5


 , (2.42)

and it is obvious that the preconditioned steepest descent is more than 5 times faster than
the steepest descent method. A fragment of a MATLAB steepest descent code is below.

10For a linear system of equations, there is an analytic formula for the step length, but it is typically not
used for the non-linear problems addressed by the neural network method.
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a) Steepest Descent
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Figure 2.9: Iterative solutions to equation 2.42 by the a) steepest descent and b) precondi-
tioned steepest descent methods.

Code 2.2.1. MATLAB Steepest Descent

H=X’*X;

for i=1:100

g=X’*(X*w-t); % gradient

alpha=g’*g/(g’*H*g); % step length

w=w-alpha*g; % model update

r=X*w-t; % residual

if r’*r <=.0001;i=100;end

end

whereH = XTX is the Hessian matrix and α = gTg/(gTHg) is the exact step length for
an objective function that is exactly quadratic in the model parameters. This step-length
formula is derived in Appendix 2.6 but is typically not used if the modeling parameters
are not linearly related to the data, which is almost always the case for neural networks
or seismic inversion. In addition, computing the Hessian matrix is often too expensive for
practical neural network problems because the number of parameters is too large.

2.3 Non-Linear Optimization

An example of a linear relation between input data X, output data t and model w is
given in equations 2.37-2.38. In general a linear operator11 denoted by f(w) must satisfy
the superposition f(w1 + w2) = f(w1) + f(w2) and scaling f(αw) = αf(w) properties,
where α is a constant. These two properties are both satisfied for any linear system of
equations, but the superposition property is not satisfied for non-linear equations such as
f(w) = w4

1 − 10w2 + 4x. For this quartic polynomial there can be two minima, where an
iterative gradient method can miss the global minimum and get stuck in the local minimum.

11An operator is a set of rules that are applied to an input to give an output. For example, the rules for
equation 2.37 operator say that the input value of x should be multiplied by w1 and wo is added to the
result to give t.
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To find the optimal w∗ that minimizes f(w) we can use the non-linear steepest descent
formula, which is the same as equation 2.39 except XT and [XTX]−1 will have a super-
script (k). This superscript is needed because X will be a function of the unknown model
parameters in w, which will change after each iteration. Let us now present a few examples
that solve non-linear equations by an iterative steepest descent solution.

2.3.1 MATLAB Examples of Newton’s Method

A Newton method is now used to solve for the points w∗ that minimize 1D and 2D
non-linear functions. The MATLAB codes are provided so the reader can explore finding
optimal points for different non-linear functions.

Example 2.3.1. 1D function

The smooth function f(w) can be expanded about wo in a Taylor series to give

f(w) = f(wo) +
∂f(w)

∂w
|w=wo∆w + 1/2

∂2f(w)

∂w2
|w=wo∆w

2 +O(∆w3),

≈ f(wo) +
∂f(wo)

∂w
+ 1/2

∂2f(wo)

∂w2
, (2.43)

where ∆w is small, ∂f(wo)
∂w := ∂f(w)

∂w |w=wo and ∆w = w − wo.

Taking the derivative of equation 2.43 with respect to w, evaluating this derivative at
the stationary point w where ∂f(w)/∂w = 0 and rearranging gives the finite-difference
approximation of the second derivative12

∂f(wo)

∂w
= −∂

2f(wo)

∂w2
∆w. (2.44)

This equation can be solved for ∆w to give

∆w = w − wo = −∂f(wo)

∂w
/
∂2f(wo)

∂w2
. (2.45)

This is only an approximation, so successive substitution leads to the Newton iteration
formula

w(k+1) = w(k) − α∂f(w
(k))

∂w
/
∂2f(w(k))

∂w2
. (2.46)

In general, the convergence rate of Newton’s method depends on the variable character of

f(x), as determined by the values of the curvature ∂2f(w(k))
∂w2 and slope ∂f(w(k))

∂w terms. In
addition, the speed of convergence can also be determined by how far the starting point is
from the global minimum.

The MATLAB script which implements Newton’s method for the 1D non-quadratic
function f(w) = aw4 + w2 − 2w is given below,

12The second derivative f ′′(w) can be approximated by the difference between two first-order derivatives
f ′′(wo) ≈ [f(wo + dw)′ − f(wo)

′]/dw for small dw.
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Figure 2.10: Plot of a) quartic function and b) residual vs iteration curve. The diamond
(square) represents the starting (ending) model.

Code 2.3.1. MATLAB 1D Newton Method

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 1D Newton method to find zeros of a quartic function

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

a = 7;

subplot(121);w=[-2:.1:2];

plot(w,a*w.^4 + w.^2 - 2*w);

%

w = -1.5;% starting point

f(1) = (a*w.^4 + w.^2 - 2*w); % Quartic Function

ww(1)=w;

for it = 2:10 % Start iterations

f1prime = a*4*w.^3 + 2*w - 2;

f2prime = a*12*w.^2 + 2;

w = w-f1prime/f2prime; % Newton formula

ww(it) = w;

f(it) = (a*w.^4 + w.^2 - 2*w);

residual(it-1) = abs(f(it)-f(it-1));

end

where the values of f(w(k)) are plotted against w(k) in Figure 2.10. Unlike the Hessian
for the quadratic objective function, the second-order derivative, i.e. curvature, of the
quartic function depends on the value of the evaluation point w.

Example 2.3.2. 2D Function

The Rosenbrock function is plotted at the top of Figure 2.11 and the iterates associated
with Newton optimization are shown beneath it. The MATLAB code for finding its min-
imum is described in MATLAB code 2.3.2. Just like the quartic function, the curvature
value of ǫ depends on the location of the evaluation point w = (w1, w2).
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Figure 2.11: (Top) Contours of the Rosenbrock function, where the global minimum at
(w1, w2) = (1, 1) is indicated by the red star. Lower plot depicts Newton iterates converging
to the true minimum within 10 iterations; results computed by the MATLAB code 2.3.2.
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Code 2.3.2. MATLAB Newton Method for Minimizing Rosenbrock Function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Iterative Newton method for finding minimizer of Rosenbrock function

% f=100.*(w2-w1.^2).^2+(1-w1).^2. The minimizer point is (1,1)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

alpha=.5;

for itt=1:2

w1 =.6;

w2 =.4;

w = [w1;w2]; % Define starting point (w1,w2)

%

iter = 10;

ww = zeros(iter,2);

ww(1,1) = w1;

ww(1,2) = w2;

%

for it = 2:iter % Begin non-linear iterations

g=[-400*w1*(w2-w1^2)-2*(1-w1); 200*(w2-w1^2)]; % 2x1 gradient vector

H=[1200*w1^2-400*w2+2 -400*w1; -400*w1 200]; % 2x2 Hessian matrix

if itt==1;H(1,2)=0;H(2,1)=0;end

w = w-inv(H)*g; % Non-linear Newton formula

ww(it,:) = w; % Update iterative solution

w1 = w(1);x1=w1;

w2 = w(2);x2=w2;

end

plotrosen(ww,iter,x1,x2)

end

The plotting function for the Rosenbrock minimization code is below.

Code 2.3.3. MATLAB Plot Subroutine for Minimizing Rosenbrock Function

function plotrosen(ww,iter,x1,x2)

xx=ww;

xmx = 2; % Define plotting parameters

xmin = -1;

ymin0 = 0;

ymx = 2;

x = [xmin:.01:xmx];

y = [ymin0:.01:ymx];

[X,Y] = meshgrid(xmin:.01:xmx,ymin0:.01:ymx );

f = 100.*(Y-X.^2).^2+(1-X).^2; % Rosenbrock Function

imagesc(x,y,f);

hold on;

contour(X,Y,f,80,’w’); % Plot Rosenbrock function ith contours

hold off

hold on;

for i = 1:iter;

plot(xx(i,1),xx(i,2),’w*’);

end

plot(x1,x2,’*r’);

plot(ww(1,1),ww(1,2),’*g’);

hold off;

xlabel(’w_1’);

ylabel(’w_2’);

title(’Newton Optimization of Rosenbrock Function’)



2.4. SUMMARY 41

2.4 Summary

Systems of equations Xw = t can be ill-conditioned, inconsistent, and overdetermined.
In these cases the regularized least squares solution w∗ minimizes a weighted combination
of data misfit ||Xw−t||2 and penalty η||w||2 terms, where η is the regularization parameter.
A bias column vector is often appended to X to account for bulk shifts in the input data t.
The w∗ solves an N ×N regularized normal system of equations in equation 2.18, which is
now a consistent set of equations. The solution avoids unstable models far from the origin,
but at the loss of some precision for noiseless data. Another way to reduce the condition
number is by applying the precondition matrix C to XTX such that C[XTXCT is more
well conditioned. For practical reasons, the scaling preconditioner matrix is used which is
a diagonal matrix with the ith diagonal element equal to the reciprocal of [XTX]ii.

Overfitting can be an issue when the complexity of the hypothetical model becomes
greater than that of the theoretical model. This can lead to the problem of the theoretical
model explaining both the signal and the noise. An ad hoc remedy is to divide the training
data into several data sets, and once the optimal parameters of the model are found on the
training data, determine their effectiveness of the validation data.

The penalty function can be the misfit between an a priori model w0 and the estimated
one, in which case it takes the form ||w −w0||2. This is known as a model misfit function.
Other penalty functions can be used such as a smoothness constraint where the penalty
term is the magnitude of the gradient ||∇ǫ|| w/r to the model parameters (see Chapter 14).
The tradeoff between honoring the data misfit and penalty function is determined by the
value of the regularization parameter η. The penalty function can be defined to enforce
certain characteristics of the model, such as the final model should smoothly vary in the
spatial coordinates. In this case the penalty function can be, e.g.,

∑
i(

∂nw
∂xn

i
)2, where n is

the specified order of the spatial derivative (Schuster, 2017).
We learned the meaning of the following terms used in the machine learning (ML)

community.

• Ill-conditioned, inconsistent, and overdetermined system of equations.

• Objective function, misfit function, step length and penalty function. The objective
function is often denoted as the loss function in the ML community. For the batch
gradient descent, gradients of all the training examples can be computed simultane-
ously, and then added together to get the total gradient. This is impractical because
of physical memory limitations and large data sets. Instead, stochastic gradient de-
scent is used with small mini-batches of data. Each mini-batch ranges from 64 to 256
examples.

• Training data, validation data, and testing data. The training data are divided into
several data sets and used to decide which is the best model w and regularization
parameters should be used without overfitting the data. Details for implementing
some anti-overfitting strategies will be described in the cross-validation section 4.1.5
and Chapter 14.

• Normal equations, least squares solution, preconditioning and regularized least squares
solutions. Regularized least squares is sometimes denoted as damped least squares.
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• The bias term is used to account for bulk shifts in the data and is almost always used
for neural network methods.

• Iterative optimization methods: Gauss-Newton method for a linear system of equa-
tions, the steepest descent method, and the regularized and preconditioned steepest
descent method. The regularized and preconditioned gradient descent methods are
the most popular and practical optimization methods.

For most geoscience problems, the number N of unknowns is too large for the compu-
tation of a direct inverse matrix [XTX+ ηI]−1, which will cost O(N3) algebraic operations.
The alternative is an iterative solution method that costs O(KN2), where the number of
iterations is K << N , we hope!

2.5 Exercises

1. Why don’t we allow the regularization parameter η in equations 2.9 or 2.10 to be less
than zero?

2. For noiseless data where δti = 0, derive the formula for the error δw introduced by
the damping parameter η = .01xi1 in equation 2.10. Hint: Recall the approximation

1
x2+η

≈ 1
x2 (1− η

x2 ) for η << x2.

3. Define w = wo + αŝ where α is a scalar and ŝ is a specified unit vector. Show that
∂f(w)
∂α = ŝT∇f(w), which is known as a directional derivative. Explain why ∂f(w)

∂α
gives the slope of f(w) in the direction ŝ.

4. Assume a function f(w) that can be approximated by a first-order Taylor series
expanded about the point wo:

f(w)− f(wo) =
∂f(wo)

∂w1
δw1 +

∂f(wo)

∂w2
δw2,

= δwT∇f(wo), (2.47)

where w = (w1, w2)
T , δwT = (δw1, δw2) and the magnitude |δw| is very small. If wo

is on the contour where f(wo) = cnst and w = wo + δw is on the same contour then
f(w) = f(wo) and δw is parallel to the tangent of the contour at wo. Therefore, the
leftside of the above equation is zero if w and wo are on the same contour. Explain
why this also says that the gradient ∇w = (∂f(w)

∂w1
, ∂f(w)

∂w2
)T is perpendicular to the

tangent of this contour.

5. Prove that ∇f(wo) points toward increasing values of f(w) by defining δw in equa-
tion 2.47 to be pointing uphill where f(w = wo+ δw) > f(wo). Hint: recall that two
vectors point in similar directions if (x,y) = |x||y| cos θ > 0.

6. Prove that ∇f(w) is parallel to the direction of maximum increase in f(w) at w.
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7. Define the second-order Taylor expansion of f(x) about wo as

f(w) = f(wo) +

2∑

i=1

∂f(wo)

∂wj
δwi +

1

2

2∑

j=1

2∑

i=1

∂2f(wo)

∂wi∂wj
δwiδwj , (2.48)

and define ∇f(wo) = (∂f(wo)
∂w1

, ∂f(wo)
∂w2

)T . Show that equation 2.48 can be written as

f(w) = f(wo) + δwT∇f(wo) +
1

2
δwTHδw, (2.49)

where

H = [∇∇T ]f(wo) =




∂2f

∂w2
1

∂2f

∂w1∂w2

∂2f

∂w1∂w2

∂2f

∂w2
2


 . (2.50)

Show that ŝTHŝ gives the curvature of f(w) along the direction specified by ŝ. Hint:
Define w = wo + αŝ so that

d2f

dα2
=

d

dα

df

dα
=

d

dα
[(∇f)T ŝ] = ŝT [∇(∇f)T ]ŝ = ŝT

Hessian︷ ︸︸ ︷
[∇∇T f(w)] ŝ. (2.51)

8. Can there ever be more than one isolated minimum for a quadratic function? Prove
your answer. Can there ever be more than one isolated minimum for a non-quadratic
function?

9. Same question as the previous one except find the maximum and minimum curvatures
of the Rosenbrock function instead of the slope. What is the curvature along the slope
direction?

10. Starting from the regularized objective function, derive equation 2.41.

11. The sign and magnitude of the eigenvalue λi of H determine the shape of f(w)
along the ith coordinate direction. For a 2D geometry this can be shown by setting
w = w∗ + αe1 + βe2, where ei is the ith orthonormal eigenvector of the symmetric
matrix H, w∗ is the point where f(w) is a minimum (i.e., g(w∗) = 0), and α and
β are scalars. Expanding f(w) about the minimum point w∗ so that equation 2.49
becomes

f(w∗ + αe1 + βe2) = f(w∗) + [α2eT1 He1 + β2eT2 He2]/2,

= f(w∗) + [λ1α
2eT1 e1 + λ2β

2eT2 e2]/2,

= f(x∗) + [λ1α
2 + λ2β

2]/2, (2.52)

where the gradient term gT∆w is zero at the minimum point w∗. The eigenvalues
are positive if H is a SPD matrix, so any move along an eigenvector direction from
w∗ will increase the value of the function. Hence, f(w) describes a bowl-like surface
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around the minimum point w∗ (see left column of plots in Figure 2.12). Large positive
eigenvalues suggest that small changes in position lead to large changes in f(w) so
that the bowl has steeply curving sides; conversely, small positive eigenvalues suggest
a bowl with gently curving sides.

If the Hessian is negative definite (i.e., H has only negative eigenvalues) then equa-
tion 2.52 says that any move from w∗ along an eigenvector direction will decrease the
function, i.e., f(w) describes an inverted bowl about the maximal point w∗. Show
that an indefinite Hessian (both positive and negative eigenvalues) has the property
that a move along one eigenvector direction will decrease the function value while a
move along the other eigenvector direction will increase the function value. This latter
surface describes the saddle depicted in 2.12f.

12. Plot the Rosenbrock function with the MATLAB commands:

Code 2.5.1. MATLAB Rosenbrock Function

xl=-1.25;xr=1.05;dx=.05; yl=-.3;yr=1.2;dy=.05; facx=1;facy=1;

[xx,yy]=meshgrid([xl:dx:xr]*facx,[yl:dy:yr]*facy);

%[xx,yy]=meshgrid([-0.05:0.005:0.45],[-0.06:0.005:0.12]);

mis=100*(yy - xx.^2).^2 + (1-xx).^2; contour(xx,yy,mis,252)

Now plot the contours for ∂f/∂w1 and ∂f/∂w2. Is f(w) a quadratic or non-quadratic
function? Are the elements of the Hessian matrix, the components of the gradient, or
the curvature along the w1 direction functions of (w1, w2)? For an objective function
that is strictly quadratic, are the elements of the Hessian and gradient a function of
spatial position? Same question, except the objective function is a cubic polynomial.

13. Assume f(w) = w2
1 + w2

2 − 2w1w2. Plot the contours of f(w). Is f(w) a quadratic
or non-quadratic function? Are the elements of the Hessian matrix, the components
of the gradient, or the curvature along the w1 direction functions of (w1, w2)? For
the above quadratic function, how many minima are there in the objective function?
Identify the local and global minimum points for f(w).

14. Can there ever be more than one isolated minimum for a quadratic function? Prove
your answer. Can there ever be more than one isolated minimum for a non-quadratic
function?

15. Find the slope of the Rosenbrock function f(w) at w = (2, 3) along the line direction
parallel to the vector (1, 1). Find the slope of f(w) at (2, 3) that is parallel to the
vector orthogonal to the vector (1, 1). Show work using the 2× 1 gradient vector.

16. Same question as the previous one except find the maximum and minimum curvatures
of the Rosenbrock function instead of the slope. What is the curvature along the slope
direction? Is the greatest curvature always along the gradient direction?

17. Show that a general quadratic function f(w) = (1/2)wTHw + gTw + c where H is
symmetric, can also be described as f(w) = (1/2)(w − w′)TH(w − w′) + c′ where
Hw′ = −g and c′ = c − (1/2)w′THw′. What is the geometrical meaning of this
transformation?
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Figure 2.12: Plots of functions with different eigenvalues λ1 and λ2 for the 2× 2 Hessian
matrix. Left column of figures are associated λ1, λ2 > 0 while the right column corresponds
to examples where at least one of the eigenvalues is negative.
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18. Design the elements of a 2×2 Hessian matrix so all of the shapes shown in Figure 2.12
are obtained. Use a MATLAB plotting code similar to

[X,Y,Z] = peaks(30);

figure

surfc(X,Y,Z)

19. Starting from an objective function with multiple minima, devise a gradient descen-
t method and multiscale strategy to mitigate getting stuck in a local minima. A
frequency-domain multiscale strategy applies a low-pass filter to the function, iterates
until the residual decrease stalls. This last point defines the starting point for a gra-
dient descent method which uses the function that is filtered by an intermediate-pass
filter. This procedure is repeated for higher-pass versions of f(w) until convergence
to the global minimum.

An example of an objective function with local minima is shown below.

Code 2.5.2. MATLAB 3D Plot of Objective Function

[X Y Z]=peaks(100);

s=sqrt(X.^2+Y.^2);

surfc(cos(2*pi*s*2)+s);

One-dimensional and 2D examples are shown in Figure 2.13 along with the MATLAB
script. To compute the element values of the gradient and Hessian you will have to
use finite-difference approximations.

Code 2.5.3. MATLAB 3D Plot of Figure 2.13.

clear all

x = -1:.05:2;

y = -humps(x);n=length(y);

subplot(121)

plot(x,y)

xlabel(’x’)

ylabel(’humps(x)’)

grid on;subplot(122)

[X Y Z]=peaks(n);

yy=y’*y+10;

yy=real((yy).^(.2));

surfc(X , Y, -yy)

2.6 Appendix: Exact Step Length

The derivation of the step length for the exact line search is now given. The 1D line
search problem is defined as finding the optimal value of the scalar α that minimizes ǫ(w+
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α∆w) for a fixed w and ∆w. Without loss of generality, we can set w = 0 + α∆w and
η = 0 in equation 2.16 to get

ǫ(w + α∆w) =
1

2
α2(w +∆w)T [XTX](w +∆w)− αtTX(w +∆w) +

1

2
tT t,

=
1

2
α2∆wT [XTX]∆w +

1

2
α2wT [XTX]w + α2∆wT [XTX]w

−tTX(w +∆w) +
1

2
tT t. (2.53)

Setting η = 0 in equation 2.16 and subtracting it from equation 2.53 gives

ǫ(w + α∆w)− ǫ(w) =
1

2
α2∆wT [XTX]∆w + α∆wTXT (Xw − t). (2.54)

Differentiating the above equation with respect to α and setting the result equal to zero
yields the stationary condition where ǫ(w + α∆w) achieves a minimum along the steepest
descent direction ∆w:

∂ǫ(w + α∆w)

∂α
= α∆wTH∆w +∆wTg,

= 0, (2.55)

where the N×N Hessian matrix is defined as H = XTX and the gradient is g = XT (Xw−
t). Solving for α gives the exact step length:

α =
−gT∆w

∆wTH∆w
. (2.56)

This step-length calculation is exact if ǫ(w) is a quadratic functional. For the steepest
descent method ∆w = −g so that

α =
gTg

gTHg
. (2.57)

For non-linear problems, such as neural networks or full waveform inversion, this exact line
search formula does not work well because it is suited only for linear problems where the
data and model are linearly related. For non-linear problems a numerical line search method
is used to find α.



Chapter 3

Specialized Gradient Descent
Methods

The previous chapter introduced iterative gradient-descent methods as an affordable means
for estimating the solution to a large system of equations. We now introduce a few more
such methods, such as the conjugate gradient method and some ad hoc methods developed
by the machine learning community. These methods have one thing in common: they use
gradient information from previous iterations (and in some cases a future iteration) to better
estimate the next best move, similar to the skier in Figure 3.1.

3.1 Ad Hoc Gradient Descent Methods

Objective functions are often characterized by contours that are distorted along certain
coordinate directions, such as the ones in Figure 2.9. Ellipses with large aspect ratios are a
symptom of an ill-posed problem, which typically leads to slow convergence by a steepest
descent method. To partly remedy this difficulty, ad hoc variations of steepest descent have
been developed (Ruder, 2017), including the methods of momentum, Adagrad (adaptive
gradient), Adadelta, RMSprop, and Adam (adaptive moment estimation). These methods
are described below.

3.1.1 Momentum Gradient Descent

For ill-conditioned equations, the L2 objective function is characterized by elongated
contours that resemble long narrow valleys, e.g. Figure 2.9. Consequently, the steepest
descent path will oscillate between ascending and descending the steep walls of the valley in
Figure 2.9a. In this case the kth gradient can be decomposed into a sum of two orthogonal

components ∇ǫ(k) = ∇ǫ(k)|| + ∇ǫ(k)⊥ , where ∇ǫ(k)⊥ points up the steep sides of the valley

while ∇ǫ(k)|| is the direction along the long valley floor. Assuming that the steep gradient

components ∇ǫ(k)⊥ ≈ −∇ǫ(k−1)
⊥ of two successive moves have nearly the same magnitude

49
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Figure 3.1: Skiers looking ahead for best track that makes significant downhill progress
without hitting a local maxima. Photo by Courtney McNiff.
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and opposite polarity then

current gradient︷ ︸︸ ︷
∇ǫ(k) +

previous gradient︷ ︸︸ ︷
∇ǫ(k−1) =

✘
✘
✘
✘
✘
✘
✘
✘❳

❳
❳
❳
❳
❳
❳
❳

∇ǫ(k)⊥ +∇ǫ(k−1)
⊥ +∇ǫ(k)|| +∇ǫ(k−1)

|| ,

≈ 2∇ǫ(k)|| . (3.1)

Adding two successive gradients will result in an update direction 2∇ǫ(k)|| that is largely

along the valley floor and avoids the unproductive oscillations ∇ǫ(k)⊥ perpendicular to the
long axis of the valley.

Therefore, the momentum method (Sutton, 1986; Ruder, 2017) computes a new move
(aka update) direction that is parallel to a weighted sum of the current-gradient and previous
momentum-gradient directions:

current moment. grad.︷︸︸︷
v(k) = β

prev. moment. grad.︷ ︸︸ ︷
v(k−1) + α

current grad.︷ ︸︸ ︷
∇ǫ(k) , (3.2)

so that the momentum update formula is

w(k+1) = w(k) − v(k). (3.3)

Here, 0 < β < 1 should be set to be around 0.9 (Ruder, 2017) and α is determined by a trial-
and-error procedure. Empirical tests suggest that the convergence rate of the momentum
method is typically faster than that of steepest descent when the ellipse-like contours have
a large aspect ratio.

The momentum method is now used to find the minimizer to the non-linear Rosenbrock
function ǫ = 100(w2 − w2

1)
2 + (1 − w1)

2. Figure 3.2c plots the results after 10 iterations
of equation 3.3. At the step size of α = 0.0045, the iterated points (white stars) show
little progress in getting to the stationary point (yellow circle) at (1, 1). When the step size
was increased, the updated iterates wandered far from the stationary point at (1, 1). In
comparison, the Newton method achieved convergence within 4 iterations in Figure 3.2d.
This is superior to the divergent results of the preconditioned SD and standard SD methods
plotted in Figure 3.2a- 3.2b. Similar to the momentum method, changing the step sizes for
the SD methods made the results even worse. Instead of a fixed step length, the exact step
length computed by equation 2.57 was also tested for the standard SD. The results (not
shown) showed that the iterative solutions stayed close to the starting point.

Why did the Newton method succeed while the other methods fail? The likely answer
is that the Newton method also computed the curvature information at each iterate, which
allowed it to move to the global minimum within a few iterations. It also was able to adjust
the step size at each iteration. Unlike a quadratic functional, the curvature of a highly
non-linear function changes from one point to the next and so it is important to know this
information at each step to estimate the best step size. The SD and momentum methods did
not have this curvature information and just used a fixed step length that was sub-optimal.

As a remedy to the divergence problem, the step sizes were significantly reduced and the
number of iterations was increased. In addition, the step size was finely tuned by trial and
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Figure 3.2: Plot of ten iterates for minimizing the Rosenbrock function by the a) steepest
descent , b) preconditioned steepest descent, c) momentum and d) Newton methods. Here,
α corresponds to the fixed step size and β is in equation 3.3. Results computed by the
MATLAB code 3.1.1.

error to achieve much better convergence towards the minimum, as shown by the results in
Figure 3.3. The lesson to be learned here is that a static step size can be inefficient and
lead to divergence. Thus fine tuning of the step size should be performed and it should
vary from location to location. A good strategy might be to check if the objective function
has decreased ǫ(w(k)) > ǫ(w(k) + α∆w(k)) after the update w(k) + α∆w(k), and if so keep
iterating with the same step size until epsilon increases. In this case, halve the step length
α := α/2 and check for the validity of ǫ(w(k)) > ǫ(w(k) + 0.5α∆w(k)). If not true, then
halve again until ǫ has decreased. We denote this as backtracking by the bisection method.
A bisection backtracking MATLAB code is described in section 4.3.3.

However, even if both the gradient and the curvature is known at each point the Newton
method has no guarantee of convergence to a global minimum for highly non-linear objective
functions.

The MATLAB codes for the gradient descent methods of Newton, momentum, SD
and preconditioned SD are given in Code 3.1.1. The example they use is for finding the
global minimum of the Rosenbrock objective function, and the associated plotting code is
in Appendix 3.6.
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Figure 3.3: Same as Figure 3.2 except there are 400 iterations and the step sizes for a), b)
and c) have been reduced and finely tuned to achieve much better progress in finding the
minimum at (1, 1).
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Code 3.1.1. MATLAB Gradient Code for Minimizing Rosenbrock Function in Fig-
ure 3.2: SD, Preconditioned SD, momentum and Newton. Plotting subroutine is in
Appendix 3.6

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Iterative gradient methods for finding minimizer of Rosenbrock function

% f=100.*(w2-w1.^2).^2+(1-w1).^2 and Minimizer point=(1,1)

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

nitt=4;iter= 10;g0=0;gg=zeros(2,iter);

www=zeros(iter,2,nitt);

for itt=1:nitt

w1 =.6;

w2 =.4;

w = [w1;w2]; % Initial point (w1,w2)

%

ww = zeros(iter,2);

ww(1,1) = w1;

ww(1,2) = w2;

%

for it = 2:iter % Begin iterations

g=[-400*w1*(w2-w1^2)-2*(1-w1); 200*(w2-w1^2)]; % 2x1 gradient vector

H=[1200*w1^2-400*w2+2 -400*w1; -400*w1 200]; % 2x2 Hessian matrix

if itt==1;alpha=.0045;H=eye(2,2); % Steepest Descent

%alpha=g’*g/(g’*H*g)

g=alpha*g;gg(:,it)=g;end

if itt==2;alpha1=.88;H(1,2)=0; % Precond. Steepest Descent

H(2,1)=0;H=alpha1*H; end;

if itt==3;alpha2=.007;beta=.9; % Momentum

g=alpha2*g-beta*g0;H=eye(2,2);g0=-g;end

w = w-inv(H)*g; % Newton Update

ww(it,:) = w;

w1 = w(1);x1=w1;

w2 = w(2);x2=w2;

end

www(:,:,itt)=ww;

end

subplot(221);ww=www(:,:,1);plotrosen2(ww,iter,x1,x2,1);

text(.9,1.3,[’\alpha = ’,num2str(alpha)],’Color’,’white’,’Fontweight’,’bold’)

subplot(222);ww=www(:,:,2);plotrosen2(ww,iter,x1,x2,2)

text(.9,1.3,[’\alpha = ’,num2str(alpha1)],’Color’,’white’,’Fontweight’,’bold’)

subplot(224);ww=www(:,:,4);plotrosen2(ww,iter,x1,x2,4)

subplot(223);ww=www(:,:,3);plotrosen2(ww,iter,x1,x2,3)

text(.9,1.3,[’\alpha = ’,num2str(alpha2)],’Color’,’white’,’Fontweight’,’bold’)

text(.9,1.6,[’\beta = ’,num2str(beta)],’Color’,’white’,’Fontweight’,’bold’)

Instead of the highly non-linear Rosenbrock function, the gradient methods are used to
iteratively find the minimizer to the quadratic function ǫ = w2

1 + 0.001w2
2 + w1w2. The

corresponding Hessian matrix is

H =




2 1

1 0.002


 , (3.4)

where ǫ = 1
2w

THw = w2
1 + 0.001w2

2 + w1w2 if H is defined as in the above equation.

Figure 3.4 shows that the contours of ǫ describe a saddle-like topography, where the
saddle point is at w = (0, 0). This is not surprising because the eigenvalues of H are
λ1 = −0.41 and λ2 = 2.41 (see Figure 2.12f in exercise 2.5.11). This means that H is
not SPD. Nevertheless, the second-order Newton method finds the stationary point within
one iteration because the functional is a quadratic and the condition for the existence of
a unique solution is that λi 6= 0 ∀ i. In contrast, the first-order gradient descent methods
hopelessly wander around, each assuming that H is diagonally dominant so its inverse can
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Figure 3.4: Same as Figure 3.2 except ǫ = w2
1+0.001w2

2 +w1w2. Here the contours describe
a saddle with a stationary point at w = (0, 0). All the methods fail to get to the stationary
point except the Newton method.

be approximated by a diagonal matrix1 or a scaled identity matrix. This is wishful machine
thinking because neither H or its inverse H−1 are diagonally dominant:

H−1 =



−0.002 1.004

1.004 −2.0080


 . (3.5)

Such wishful thinking mislead the preconditioned SD down the wrong path, as discussed in
exercise 3.5.1.

A friendlier objective function is the SPD quadratic

ǫ = w2
1 + 0.06w2

2 , (3.6)

1A square matrix is diagonally dominant if, for every row of the matrix, the magnitude of the diagonal
entry in a row is larger than or equal to the sum of the magnitudes of all the other entries in that row.
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where the elliptical contours of ǫ in Figure 3.5 surround the minimum at w = (0, 0). Here,

H =




2 0

0 0.12


 , (3.7)

which is diagonally dominant but the aspect ratio of the ellipses is greater than 7 : 1. Here,
H is a scaled diagonal matrix so the preconditioned steepest descent uses the preconditioner
[H−1]ij = δij/Hii, which is also the exact Hessian inverse. Therefore preconditioned steepest
descent (SD) should perform as well as the Newton method.

Four gradient descent methods are now used to find the minimum of ǫ in equation 3.6,
and the results are plotted in Figure 3.5. The preconditoned SD method converged within
one iteration, which is expected because the preconditioned matrix is the same as the exact
inverse H−1. The SD result in Figure 3.5a uses the exact step size α = gTg/gTHg, which
adaptively changed at each step so it converged within about ten iterations. The momentum
results in Figure 3.5c used a fixed step size and needed 10 iterations. Here, the step size of
α = 0.54 was found by a trial-and-error process to converge in just 10 iterations, but fewer
iterations are needed if the value of α is increased. The Adagrad results in Figure 3.5d,
which uses gradient information from the previous iterations, converged within about 4
iterations. The Adagrad method will now be discussed.

3.1.2 Adagrad Gradient Descent

The step sizes for steepest descent and momentum, are monolithic in that they apply the
same multiplicative factor α to all components of the gradient ∇ǫ. In contrast, the adaptive
gradient (Adagrad) method applies a different step size to each component gi = (∇ǫ)i. Each
component of the step size depends on information from the current and past iterates.

The formula for the Adagrad method (Duchi et al., 2011) is

w
(k+1)
i = w

(k)
i −

preconditioner︷ ︸︸ ︷
α√∑k

k′=1(g
(k′)
i )2 + η

g
(k)
i︷ ︸︸ ︷

∂ǫ(k)

∂wi
, (3.8)

where 0 < η < 1 is a small damping factor that is recommended by Ruder (2017) to be
about 10−8. Here we have included the superscript k in ǫ(k) to indicate that it changes from
one iteration to the next.

We denote the term in front of the gradient component g
(k)
i as a preconditioning term

because it roughly resembles that for the diagonal preconditioner in equation 2.41. Precon-
ditioning the gradient by dividing by the cumulative sum of squared gradient components
from previous iterations can alleviate ill-conditioning problems when the ellipses of ǫ are

severely distorted. For example, assume g
(k)
|| is the component of the gradient along the

gently dipping valley floor, where the floor is almost flat so ||g(k)
|| || ≈ 0. In that case, the

magnitudes of g
(k)
|| for current and past iterations k, k − 1, k − 2... are small, so dividing

g
(k)
|| by the square root term in equation 3.8 boosts the step size component along the valley
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Figure 3.5: Same as Figure 3.4 except ǫ = w2
1 +0.06w2

2 and the Adagrad result is plotted in
d) instead of the Newton result. The Newton result (not shown) is the same as that in b)
because the actual inverse H−1 is the same as the preconditioned inverse H−1 = δij/Hii in
this example. Here the eigenvalues of H are λ1 = 0.12 and λ2 = 2.0 so H is a SPD Hessian.
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floor. In contrast, the step size for the component of the gradient g
(k)
⊥ pointing up the steep

walls will be reduced because that component has a large magnitude so its squared recip-
rocal in the summation of equation 3.8 will be small. Perfect, Adagrad encourages moves
along the valley floor towards the minimum and discourages them from climbing the walls.

As a test, the Adagrad method is used to find the minimizer of ǫ = w2
1 + 0.06w2

2 .
The results are plotted in Figure 3.5d where no more than 4 iterations are needed for
convergence. The results are not shown for minimizing the Rosenbrock function or the
saddle-point functional because, similar to the 1st-order gradient methods momentum, SD
and preconditioned SD, Adagrad did not perform well for those examples.

According to empirical tests (Ruder, 2017), the main benefit of Adagrad is that it
eliminates the need to manually tune the step size as a function of iteration number. The α
value can be set to 0.01 and the iterations can automatically proceed2. However, with a large
number of iterations the summation in the denominator gets too large so that convergence
becomes stalled. To overcome this problem, the gradient method of Adadelta is developed.

3.1.3 Adadelta Gradient Descent

To prevent the denominator in equation 3.8 from getting too big when k is large, we
restrict the summation in the square root to a small number of terms:

Ẽ((g
(k)
i )2) = γ

k−1∑

k′=k−κ

(g
(k′)
i )2 + (1− γ)(g(k)i )2, (3.9)

and add (1 − γ)(g(k)i )2 where γ = 0.9 and g
(k)
i = 0 for k ≤ 0. Here, κ is the restricted

number of terms in the running average so that the non-decaying version of equation 3.8 is

w
(k+1)
i = w

(k)
i −

α√
Ẽ((g

(k)
i )2) + η

∂ǫ(k)

∂wi
. (3.10)

The above formula is identical to the RMSprop formula developed by Hinton (Goodfellow
and Hinton, 2016), who suggests γ = 0.9 and α = 0.001.

However, the term on the far right-side of equation 3.10 is unitless because the gradient
∂e(k)

∂wi
is divided by a squared gradient-like term in the square root. The ad hoc remedy

is to replace α with the damped square root of the running average Ẽ((∆w
(k−1)
i )2) (see

equation 3.9) to give the Adadelta update formula:

w
(k+1)
i = w

(k)
i −

√
Ẽ((∆w

(k−1)
i )2) + η

√
Ẽ((g

(k)
i )2) + η

∂ǫ(k)

∂wi
. (3.11)

Multiplying the numerator by a term with units of ∆w
(k)
i = w

(k)
i − w(k−1)

i now gives an
update with the correct units. However, it can be argued that the step size α carries the

2If the Hessian is not diagonally dominant, then the Hessian inverse can no longer be accurately approx-
imated by 1

Hii
. Hence, the step size should be adjusted at such iterations.
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Figure 3.6: Results for finding the minimizer of ǫ = w2
1 + 0.06w2

2 by the a) Adadelta
(equation 3.10) and b) Adam methods. Here the number of terms in the summation of
equation 3.9 is 4.

correct units because the SD method implicitly assumes H ≈ αI.
Ruder (2017) claims that there is no need to set a value to α here, it adapts the step size

to the topographic changes in the objective function. An example of the Adadelta method
using equation 3.10 is shown in Figure 3.6a. Similar to the steepest descent results in
Figure 3.5a, it oscillates back and forth across the steep sides of the valley until it converges
to the minimum point.

3.1.4 Nesterov Accelerated Gradient (NAG)

Replacing the current gradient ∇ǫ(w(k)) in equation 3.2 with the peek-ahead gradient
at w(k) − β∆w(k−1) gives the Nesterov accelerated gradient (NAG):

v(k) = βv(k−1) + α

peek−ahead gradient︷ ︸︸ ︷
∇ǫ(w(k) − βv(k−1)) (3.12)

w(k+1) = w(k) − v(k). (3.13)

Peeking ahead to the approximate gradient at the next iteration provides a more accurate
estimate of the slopes between w(k−1) andw(k+1). This can provide more productive update
directions and avoid local maxima like the rock walls in Figure 3.1. NAG is reported by
Bengio et al. (2013) to give faster convergence for recurrent neural networks (see Chapter 12)
compared to the momentum method.
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3.1.5 Adam Gradient Descent

Similar to Adadelta and Adagrad, Kingma and Ba (2014) developed the adaptive mo-
ment estimation (Adam) method that applies a different step size to each model component
wi. These step sizes adapt to the changing topography of the objective function. Similar
to momentum, Adam defines a weighted average of current and past gradients, denoted as
the first moment:

mi
(k) = β1mi

(k−1) + (1− β1)gi(k), (3.14)

and the average of the second moments

σi
2(k) = β2σi

2(k−1) + (1− β2)(gi(k))2, (3.15)

of the gradients. Unlike momentum’s simple averaging of the current gradient and previous
update directions, equation 3.14 is an explicit cumulative weighted sum of all the previous
gradients. This is known as exponential averaging (aka a running average) where gradients
at the early iterations are downweighted, or decayed (exercises 3.6- 3.7), compared to the
ones computed at later iterations (Kingma and Ba, 2014).

This decay strategy makes sense because the local geometry of the objective function
is most accurately sensed at the points for the last few iterations of the gradient, not the
ones far from the current point. The averaging of these gradients over the many previous
iterations provides stabilization of the new gradient because the last iterate is noisy due to
stochastic approximation (of the mini-batch of data), better generalization performance is
often achieved by averaging (Kingman and Ma, 2014).

The initial values of mi
(k) and σi

2(k) are set to zero for k = 0 so it biases these terms to
zero (see exercises 3.5.6- 3.5.7). This bias can be counteracted by defining the scaled first
and second moments (Bushaev, 2018):

m̂
(k)
i =

mi
(k)

1− βk1
,

σ̂
2(k)
i =

σi
2(k)

1− βk2
, (3.16)

so the Adam update formula is

w
(k+1)
i = w

(k)
i −

α√
σ̂
2(k)
i + η

m̂
(k)
i , (3.17)

where the values of β1 = .9, β2 = 0.99 and η = 10−8. If L2 regularization is used then the
above formula becomes (Bushaev, 2018)

w
(k+1)
i = w

(k)
i −

α√
σ̂
2(k)
i + η

m̂
(k)
i − αλw

(k)
i , (3.18)

Empirical results show it works well compared to other adaptive learning methods since
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Adam can be viewed as the combination of RMSprop and SGD with momentum. Despite
some problems, Bushaev (2018) claims that Adam is one of the best optimization algorithms
for deep learning and its popularity is growing very fast.

An example of the Adam method using equation 3.17 is shown in Figure 3.6b. The ten
iterations trace a white curve that is a much smoother track than that for the Adadelta
method. The MATLAB code 3.1.2 for computing the results in Figure 3.6 is below, with
the plotting subroutine plotDelta in Appendix 3.7.

Code 3.1.2. MATLAB Code for Minimizing ǫ = w2
1+0.06w2

2 in Figure 3.6: Adadelta
and Adam Methods. Plotting subroutine plotDelta is in Appendix 3.7

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Iterative Adadelta and Adam methods for finding minimizer of w_1^2 + 0.06w_2^2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

nitt=2;iter= 10;g0=0;gg=zeros(2,iter);

www=zeros(iter,2,nitt);

for itt=1:nitt

w1 =1;w2 =-5;w0=[w1 w2];

w = [w1;w2]; % Define starting point (w1,w2)

%

ww = zeros(iter,2);

ww(1,1) = w1;

ww(1,2) = w2;

a1=1;a2=.06;

gsum2x=0;gsum2y=0;wp=w;

%

mx=0;my=0;sx=0;sy=0;gh=zeros(2,iter);kno=4;

for it = 2:iter

% Begin non-linear iterations

g=[2*a1*w1; 2*a2*w2]; % 2x1 gradient vector

H=2*[a1 0; 0 a2]; % 2x2 Hessian matrix

if itt==1;

[g,alphaAdm,beta1Adm,beta2Adm,H,mx,my,sx,sy]=...

Adam(g,H,mx,my,sx,sy,it-1) % Adam

end

if itt==2;[g,H,alAdel,gam,lam,gh]=Adelta(g,H,it,gh,kno);

end; % Adelta

w = w-inv(H)*g; % Non-linear Newton formula

ww(it,:) = w; wp=w; % Update iterative solution

w1 = w(1);x1=w1;

w2 = w(2);x2=w2;

end

www(:,:,itt)=ww;

end

xmax=3.2;xmin=-3.2;ymax=1;ymin=-5.4;

ww=www(:,:,1);

subplot(122);io=1;plotDelta...

(ww,iter,x1,x2,io,a1,a2,w0,xmax,ymax,xmin,ymin);

text(-3,-3,[’\alpha = ’,num2str(alphaAdm)],’Color’,’white’,’Fontweight’,’bold’)

text(-3,-2,[’\beta_1 = ’,num2str(beta1Adm)],’Color’,’white’,’Fontweight’,’bold’)

text(-3,-1,[’\beta_2 = ’,num2str(beta2Adm)],’Color’,’white’,’Fontweight’,’bold’)

ww=www(:,:,2);

subplot(121);io=2;plotDelta...

(ww,iter,x1,x2,io,a1,a2,w0,xmax,ymax,xmin,ymin)

text(-3,-3,[’\alpha = ’,num2str(alAdel)],’Color’,’white’,’Fontweight’,’bold’)

text(-3,-2,[’\gamma = ’,num2str(gam)],’Color’,’white’,’Fontweight’,’bold’)

text(-3,-1,[’\eta = ’,num2str(lam)],’Color’,’white’,’Fontweight’,’bold’)

print -depsc ch.RegressADelta.eps
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Code 3.1.3. MATLAB Adam Gradient Descent Subroutine in Code 3.1.2

function [g,alpha,beta1,beta2,H,mx,my,sx,sy]=Adam(g,H,mx,my,sx,sy,it)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Adam Gradient Computation

% m^(k)=beta1*m^(k-1)+(1-beta1)*g^(k)

% s^(k)=beta2*s^(k-1)+(1-beta2)*g^(k)^2;

% mh^(k)=m^(k)/(1-beta_1^k)

% sh^(k)=s^(k)/(1-beta_2^k)

% w^(k+1)=w^(k+1) - alpha/sqrt(sh^(k)+lam) *mh^(k)

%

% (g,H) - in/output- gradient and Hessian input/output

% mh - in/output- 1st moment gradient

% sh - in/output- 2nd moment gradient

% it - input - iteration #

% lam,alpha - input - damping term, step size

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

alpha=.6;beta1=.9;beta2=.99;

gx=g(1);gy=g(2);lam=10^-8;

mx=beta1*mx+(1-beta1)*gx;

my=beta1*my+(1-beta1)*gy;

sx=beta2*sx+(1-beta2)*gx^2;

sy=beta2*sy+(1-beta2)*gy^2;

mxh=mx/(1-beta1^it );

myh=my/(1-beta1^it );

sxh=sx/(1-beta2^it );

syh=sy/(1-beta2^it );

H=eye(2,2);

g(1)=alpha*mxh/(sqrt(sxh)+lam);

g(2)=alpha*myh/(sqrt(syh)+lam);

and the MATLAB code for Adadelta is below.

Code 3.1.4. MATLAB Adadelta Gradient Descent Subroutine in Code 3.1.2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Adadelta Gradient Descent Code

% E=gam/kno sum_{k=it-kno}^{it-1} (g^(k))^2+(1-gam)(g^(it))^2

% Preconditioner: P=alpha./sqrt(E+lam);

% Preconditioned gradient: g=P.*g

%

% (g,H) - in/output- gradient and Hessian input/output

% gh - in/output- iteration history of input gradient

% gh initial predefined as gh=zeros(2,nit)

% it - input - iteration #

% kno - input - # terms in above summation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

alpha=.97;lam=10^-8;gam=.09;

g2=0*g;

gh(:,it)=g;

kstart=it-kno;if kstart<1;kstart=1;end

icnt=0;

if it>1;

for k=kstart:it-1

g2=g2+gh(:,k).^2;

icnt=icnt+1;

end

end

E=gam*g2 +(1-gam)*g.^2;

P=alpha./sqrt(E+lam);

H=eye(2,2);

g=P.*g;
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3.1.6 AdaMax Gradient Descent

The AdaMax gradient descent method replaces the first moment averaging of gradients
in equation 3.14 with

u
(k)
i = β∞2 m

(k−1)
i + (1− β∞2 )|g(k)i |∞,

= max(β2m
(k−1)
i , |g(k)i |), (3.19)

where the ∞ superscript indicates the L∞ norm (Garcia, 2018). The L∞ formula3 above
ignores a smaller component of the gradient in favor of a larger value, and the exponential
averaging4 provides some stability in the presence of noise. The AdaMax update formula is

w
(k+1)
i = w

(k)
i −

α√
u
(k)
i + η

m̂
(k)
i , (3.20)

where useful default values of the hyperparameters (Ruder, 2017) are α = 0.02, η = 0.002,
β1 = 0.9 and β2 = 0.99.

The Adamax Keras code is below.

Code 3.1.5. Keras AdaMax Gradient Descent Subroutine (k-
eras.io/api/optimizers/adamax/)

tf.keras.optimizers.Adamax(

learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, name="Adamax", **kwargs)

m = 0 # Initialize initial 1st moment vector

v = 0 # Initialize the exponentially weighted infinity norm

t = 0 # Initialize timestep

t += 1

m = beta1 * m + (1 - beta) * g

v = max(beta2 * v, abs(g))

current_lr = learning_rate / (1 - beta1 ** t)

w = w - current_lr * m / (v + epsilon)

3.1.7 Hybrid Step-length Strategy

Keskar and Socher (2017) report that Adam outperforms SGD in both training and gen-
eralization metrics in the initial portion of the training, but then the performance stagnates.
Their recommendation is that a method such as Adam is used for the initial iterations, then
switch to SGD when its convergence rate stalls. Here, the adaptive Adam method applies
a non-uniform step length to each parameter while the SGD method applies the same step
length to all the parameters. This hybrid strategy arises from the observation of Wilson et
al. (2017) that non-uniform scaling of step lengths inhibits generalization.

3According to Ruder (2017), the L∞ norm can sometimes provide more stable behavior with inverse
problems.

4Exponential averaging in equation 3.19 adds the weighted gradient g(k) to the sum of the previous
weighted gradients. These weights become smaller with the earlier iterations. See exercises 3.6- 3.7.
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3.2 Numerical Line Search

The local quadratic assumption breaks down when the misfit functional is highly non-
linear so that the exact line search can be inaccurate. An alternative is the numerical
line search method which estimates the step size by evaluating the objective function at
several points along a downhill direction. For example, a quadratic line search begins by
defining the search direction ∆w, computing several reasonable values of the step size, e.g.,
α1 = 0.5 and α2 = 1, and the functional values ǫ(w + α1∆w) and ǫ(w+ α2∆w) are tested
to determine if they are less than ǫ(w), and if ǫ(w + α1∆w) ≤ ǫ(w + α2∆w). Then, the
following quadratic formula is used to determine the interpolated value of the functional:

ǫ(w + α∆w) =
(α− α1)(α − α2)

α1α2
ǫ(w) +

α(α − α2)

α1(α1 − α2)
ǫ(w + α1∆w)

+
α(α− α1)

α2(α2 − α1)
ǫ(w + α2∆w) 0 ≤ α ≤ α2. (3.21)

The above function represents a quadratic polynomial in α that gives ǫ(w), ǫ(w+α1∆w),
and ǫ(w+α2∆w) for α = 0, α1, α2, respectively. The scalar value of α that minimizes the
above formula is found by differentiating ǫ(α) with respect to α, setting the result to zero,
and solving for α.

The above interpolation formula requires three functional evaluations of ǫ(w), so an
alternative is to use the values of ǫ(w), ǫ(w+α1∆w), and the existing directional derivative
of ǫ(w)′ at x to get the quadratic interpolation formula:

ǫ(w + α∆w) =
α2

α2
1

[ǫ(w + α1∆w)− α1ǫ(w)′ − ǫ(w)] + αǫ(w)′ + ǫ(w), (3.22)

where ǫ(w)′ = dǫ(w+α∆w)
dα |α=0 represents the derivative of ǫ(w) along the search direction.

Note, ǫ(w+ α∆w) evaluated at α = 0 gives the value of ǫ(w), and dǫ(w+ α∆w)/dα gives
the value ǫ(w)′ at α = 0, and ǫ(w + α∆w)|α=α1 yields ǫ(w + α1∆w). A backtracking
bisection code is in section 4.3.3.

3.3 Conjugate Gradient

Assume an N × N symmetric real matrix H where the eigenvalues are positive (sym-
metric positive definite, aka SPD) such that

Hw = b, (3.23)

where b is aspecified N × 1 vector. The goal is to find the solution w by an iterative
gradient-descent method that is much faster than the steepest descent algorithm. In this
case the objective function is

ǫ =
1

2
wTHw −wTb, (3.24)
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where the gradient g(1) at w(1) is

∇ǫ(w)
∣∣∣
w=w(1)

=

g(1)

︷ ︸︸ ︷
Hw(1) − b, (3.25)

and the starting point is w(0) in Figure 3.7.

By definition, the gradient at the optimal point w∗ satisfies

∇ǫ(w)
∣∣∣
w=w∗

= Hw∗ − b = 0 → Hw∗ = b. (3.26)

Figure 3.7 illustrates that the update direction ∆w(0) = w(1)−w(0) is perpendicular to the
gradient g(1) at w(1) , i.e.,

(∆w(0),

g(1)

︷ ︸︸ ︷
Hw(1) − b) = 0. (3.27)

Plugging b = Hw∗ from equation 3.26 into equation 3.27 gives

(∆w(0),H

∆w∗

︷ ︸︸ ︷
{w∗ −w(1)}) = 0. (3.28)

This equation says that, for the 2×2 matrix H, the optimal update direction ∆w(1) → ∆w∗

from w(1) is conjugate5 to the previous move direction ∆w(0). Unlike the steepest descent
method, which will waste many iterations oscillating back and forth between the opposite
sides of the steep-valley walls, the conjugate gradient (CG) iterations will converge in only
two iterations for the 2× 2 system of equations in equation 3.23.

Since w∗ is in the plane spanned by ∆w(0) and g(1) = ∂ǫ(w(1))
∂w , that is

∆w∗ = −g(1) + β∆w(0), (3.29)

then plugging equation 3.29 into equation 3.28 and rearranging gives the value for β

β =
−(∆w(0),Hg(1))

(∆w(0),H∆w(0))
. (3.30)

More generally, if the system of equations is governed by an N × N SPD matrix H, then
the successive updates ∆w(k) can be made conjugate to the previous update ∆w(k−1) using
the update constraint on β:

β =
(∆w(k−1),Hg(k))

(∆w(k−1),Hw(k−1))
. (3.31)

In this case the CG algorithm is guaranteed to converge in at most N iterations (Nocedal
and Wright, 1999). In practice, far fewer iterations are typically needed to get a useful

5Two vectors x and y are defined to be conjugate to one another if (x,Hy) = 0.
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result with CG as long as the matrix H is SPD.

w(0)

w(1)

w(1)-w(0)= w(0)

w*

w*

g(1)

w1

w2

w(0),g(1)) = 0

Figure 3.7: Iterative solutions w(k) showing that ∆w(0) ⊥ g(1) and that ∆w(0) is conju-
gate to ∆w∗ because ∆w(0) ⊥ g(1) → (∆w(0),Hw(1) − b) = (∆w(0),H(w(1) − w∗)) =
(∆w(0),H∆w∗) = 0.

The CG workflow is summarized by the following equations.

1. Define the initial guess model to be w(0) and define the initial descent vector as
∆w(0) = −g(0). Set k = 0.

2. The formula for the updated solution w(k) is

w(k+1) = w(k) + α∆w(k), (3.32)

where α is given by equation 2.57. If the mapping between the input and output is
non-linear, such as in neural networks, then the non-linear CG method uses a line-
search method to find α, such as the one described in section 3.2.

3. The gradient at w(k+1) is computed by

g(k+1) = ∇ǫ(w(k+1)), (3.33)

so that ∆w(k+1) is found by

∆w(k+1) = −g(k+1) + β∆w(k). (3.34)

Here, β is given in equation 3.31, but it can be replaced by the equivalent Polack-
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Ribere formula (Nocedal and Wright, 1999)

β =
(g(k+1) − g(k),g(k+1))

(g(k),g(k))
. (3.35)

This formulation resets the new update direction ∆w(k) to be the steepest descent
direction if progress stalls so that the descent directions are the same. This is necessary
in non-linear CG because the conjugacy among the previous updates is lost when the
objective function is highly non-linear.

4. Set k := k + 1 and repeat steps 2-4 until convergence.

3.3.1 MATLAB Conjugate Gradient Code

The MATLAB code for solving a square SPD system of equations by a CG method is
given below.

Code 3.3.1. MATLAB Code for Conjugate Gradient for a Square System of Equa-
tions

%

% CG Iterations to solve SPD eqn Lx=t

% where gradient gk = L*xk-t;

% and iterate soln xk1 = xk + alpha*dk1

%

clear all;

L = [400 1; 1 4]; % Simple 2x2

t = [5 2]’; % problem

[m,n] = size(L);

nit = 3;

%

xk = zeros(n,1); % Starting point at origin

gk = (L*xk-t);dk=-gk;

%

for q = 1:nit;

alpha = -dk’*gk/(dk’*L*dk);

xk1 = xk + alpha*dk; % Compute new iterate

gk1 = gk+alpha*L*dk; % Find new gradient

beta = gk1’*gk1/(gk’*gk); % Fletcher-Reeves

beta = gk1’*(gk1-gk)/(gk’*gk); % Polak-Ribiere

dk1 = -gk1+beta*dk; % Find new conj. direction

dk = dk1; % Refresh iterates

gk = gk1;

xk = xk1

end

%

If the system of equations is overdetermined then the problem is to find x that satisfies
the normal equations LTLx = LT t. Similar to the steepest descent solution of an overde-
termined system of equations, the solution x is found that minimizes the misfit function
given by the sum of the squared residuals:

f(x) =
1

2
(Lx− t)T (Lx− t) =

1

2
xTLTLx− tTLx+

1

2
tT t. (3.36)
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Here f(x) is a quadratic functional in x, and the right hand side of equation 3.36 can be
viewed as the first three terms of a Taylor series in x expanded about the origin. The
gradient is given by

∇f(x) = LT (Lx− t), (3.37)

and the solution can be found by iteratively minimizing along mutually conjugate directions.

The matrix product in the gradient should be computed by first calculating the residual
r (i.e., r = Lx − t), and then multiplying it by LT . This minimizes the computational
expense by only carrying out matrix-vector multiplication (rather than the matrix-matrix
LTLmultiplication), and also minimizes round-off error. Scales (1987) applied the CG solver
to some traveltime tomography problems and reports that the linear CG solver performs at
least as well as a SIRT (simultaneous iterative reconstruction tomography) method.

Below is a conjugate gradient MATLAB code for solving an overdetermined system of
linear equations. There is no need to show the results for finding the solution to the SPD
quadratic ǫw2

1 + 0.06w2
2 problem, it will converge to the minimum within two iterations

no matter where the starting point is. The first move will be along the steepest descent
direction, and then the next one will be to the point that minimizes ǫ. This is because CG
optimization is guaranteed to find the stationary N×1 point x∗ within N iterations for any
quadratic objective function as long as the N × N Hessian is SPD (Nocedal and Wright,
1999).
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Code 3.3.2. MATLAB Conjugate Gradient Code for an Overdetermined System of
Equations

%

% CG Iterations to solve overdetermined eqns Lx=b

% where gradient gk = L’*(L*xk-b);

% and iterate soln xk1 = xk + alpha*dk1

%

clear all;

L = [400 1; 1 4; 0 1]; % Simple 3x2

b = [5 2 .5]’; % problem

[m,n] = size(L);

nit = 3;

%

xk = zeros(n,1); % Starting point at origin

gk = L’*(L*xk-b);dk=-gk;

%

for q = 1:nit;

res = L*dk;

res1 = L’*res;

alpha = -dk’*gk/(res’*res);

xk1 = xk + alpha*dk; % Compute new iterate

gk1 = gk+alpha*res1; % Find new gradient

beta = gk1’*gk1/(gk’*gk); % Fletcher-Reeves

beta = gk1’*(gk1-gk)/(gk’*gk); % Polak-Ribiere

dk1 = -gk1+beta*dk; % Find new conj. direction

dk = dk1; % Refresh iterates

gk = gk1;

xk = xk1

end

If the N ×N matrix L is characterized by eigenvalues λi, then LTL has the eigenvalues
λ2i . This means that the condition number for LTL will be squared compared to that for L,
which can result in slower convergence; hence the need for preconditioning. An alternative is
the iterative LSQR method which is a more reliable algorithm when the system of equations
is ill-conditioned (Paige and Saunders, 1982).

For a quadratic functional, the CG direction should always be reset to the gradient
direction at or before the N th iteration, where N is the dimension of the vector w. For
a non-linear functional, the CG direction should be reset to the steepest descent direction
every few iterations because the search directions quickly lose mutual conjugacy.

Preconditioning can also be introduced with the CG method to take advantage of in-
formation from past updates to assign separate weighting to each component of the new
update direction. Gradient information from many previous moves can be used to sequen-
tially update the preconditioner to be a more accurate approximation to the Hessian inverse.
This type of algorithm defines the quasi-Newton (QN) method (Nocedal and Wright, 1999).
Since these methods attempt to approximate the second-order derivatives in the Hessian,
then they are called second-order gradient descent methods compared to the first-order ones
such as SD. The QN method uses update and gradient information from a limited number
of previous moves to expedite convergence. The penalty of QN is that it is more computa-
tionally expensive than first-order methods, typically O(m) times more expensive where m
is the number of iterative histories it must store. In the case of the sampled QN methods
(Berahas et al., 2019), m is the number of function evaluations sampled around each up-
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dated solution. Surprisingly, the numerical tests (Berahas et al., 2019) for a neural network
and the MNIST data set showed that the first-order gradient method Adam significantly
outperformed the tested QN methods in quickly achieving convergence.

3.4 Summary

Nine gradient descent methods are described and tested: SD, preconditioned SD, New-
ton, momentum, Adadelta, Adagrad, Adam, and CG. The tests are for finding the mini-
mizers for a non-linear functional, a quadratic functional which violated the SPD condition,
and a SPD quadratic functional where the aspect ratio of the ellipses was greater than 7 : 1.
The Newton method revealed the best performance because it sensed both the local gradient
and curvature of the functional at any point, and therefore is able to achieve convergence
for all three examples. However, the high computational cost of the Newton method6 often
prevents it from being used for realistic ML problems. The next best methods (SD, Adam,
Adagrad and Adadelta) are those that weight each unknown wi with a separate weighting
scheme, which we called a preconditioner. Preconditioning acts as an approximation to the
Hessian inverse, and tends to transform the ellipses of ǫ into more rounded contours and
therefore speed up the convergence rate.

The preconditioned gradient descent methods tended to have faster convergence rates
than the methods that applied the same step size to the gradient vector. Only the New-
ton method showed acceptable results for the Rosenbrock function and the quadratic that
violated the SPD condition.

Similar to momentum, Adagrad, Adadelta, and Adam, the CG algorithm uses gradient
information from a previous iterate to expedite convergence. However, it is unique in
that it uses the previous gradient g(k) and update vectors ∆w(k) to enforce conjugacy
(∆w(k),H∆w(k+1) = 0 between the next update ∆w(k+1) and the previous update ∆w(k)

vectors.

To summarize, all of the above gradient descent methods aim to achieve a single goal:
get to the global minimum in a computationally efficient manner. Theoretically, the second-
order methods should be the most effective gradient descent methods, but limited empir-
ical results suggest that Adam can sometimes be the most effective gradient optimization
method. This is consistent with Bushaev’s (2018) claims that Adam is one of the best op-
timization algorithms for deep learning and its popularity is growing very fast. Contrarily,
Adam can sometimes be less effective at generalization so the cure, in some cases, is to use
Adam for early iterations and then use SGD with a uniform step length to finish up the
iterations (Keskar and Socher, 2017).

As a reminder, none of the gradient methods guarantee convergence to the global minima
for highly non-linear problems. Efficiently avoiding local minima is still a major challenge
in ML and optimization theory.

6For an N×N Hessian H, the computational cost for a direct inverse H−1 is O(N3) algebraic operations,
which is prohibitive for typical ML problems with more than 106 unknowns.
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3.5 Exercises

1. The preconditioned SD assumes a diagonally dominant Hessian H in order to accu-
rately approximate its inverse with the preconditioner [H]−1

ij ≈ δij/Hii. Explain why
the preconditioned SD did so poorly in preferring to move downward at each iteration
in Figure 3.4. Hint:

∆w1 = −{H−1g}1 = −H−1
11 g1 −H−1

12 g2.

∆w2 = −{H−1g}2 = −H−1
21 g1 −H−1

22 g2. (3.38)

Now look at values of the components H−1
11 , H−1

12 , H−1
12 and H−1

11 in equation 3.4 and
interpret which way they are encouraging the update to go for ∆w1. Compare this to
the direction of the preconditioned SD update

(∆w1,∆w2) = −(g1/H11, g2/H22). (3.39)

That is, pick an iterate point on the saddle-like curve, estimate the gradient values
for g = (g1, g2), and plug these values into equations 3.38-3.39.

2. Becker and LecCun (1988) proposed a diagonal approximation to the Hessian. This
diagonal approximation can be computed with one additional forward and back-
propagation through the model, effectively doubling the computation over standard
gradient descent . Once the diagonal of the Hessian is computed, diag(H), the update
rule becomes:

∆wi =
1

|Hii|+ η
. (3.40)

For a rectangular system of equations Lw = d, we know that the least squares so-
lution is w = [LTL]−1LTd. In this case the diagonal approximation to the inverse
is {[LTL]−1}ij ≈ δij/[L

TL]ii. This means that the ith diagonal component [LTL]ii is
computed by taking the dot product of the ith row vector of H with itself. In this
case show that this dot product is always greater than zero so the absolute value in
the above equation is unnecessary for this example. If L is the modeling operator and
LT is the back-propagation operator, show how these two operations can be efficiently
used to get [LTL]ii. Hint: Applying H to the N × 1 unit vector (1, 0, 0, ..., 0) returns
the first column vector of H.

3. Test the sensitivity of convergence to the step size for the momentum, preconditioned
SD and steepest descent methods applied to the Rosenbrock function. Use several
different starting points. Plot the number of iterations for convergence versus step
size.

4. Same as previous exercise except use a bisection backtracking algorithm to determine
the step size.

5. Find the eigenvalues of H for the Rosenbrock function at different points w. Hint:
MATLAB eig(H) returns the eigenvalues of a square matrix. Can one say that the
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Hessian matrices associated with the Rosenbrock function at different points are SPD
everywhere? Explain.

6. Show by successive substitution (see Bushaev (2018)) that

m
(k)
i = β2m

(k−1)
i + (1− β2)(g(k)i )2,

= (1− β2)
k∑

k′=1

βk−k′

2 (g
(k′)
i )2. (3.41)

Does this exponential moving average downweight or upweight gradients computed at
the early iterations if β2 = .9? Explain why this is useful for finding the stationary
point for non-linear objective functions.

7. Consider that the kth minibatch of data is noisy and can be considered as the kth

sample in an ensemble of random minibatches. The random character of the noisy
data is inherited by the gradient g(k) at the kth iteration. Therefore, theM ×1 vector
g(k) is a multidimensional random vector, whose average value can be approximated
as

ḡ = E[g(k)] ≈ 1

K

K∑

k=1

g(k), (3.42)

where the summation is over K samples from the ensemble. Show that

E[m
(k)
i ] = E

[
(1− β2)

k∑

k′=1

βk−k′

2 (g
(k′)
i )2

]
,

= E[(g
(k)
i )2](1 − β2)

k∑

k′=1

βk−k′

2 + η,

= E[(g
(k)
i )2](1 − βk2 ), (3.43)

where m
(k)
i is defined in equation 3.41. Hint: Recall the geometric series 1/(1− x) =

1 + x− x2 + ... for 0 < x < 1. Explain why the average E[m
(k)
i ] is biased to zero for

a large number of iterations and β2 = 0.99.

8. Use the CG code 3.3.1 to iteratively find the minimum for ǫ = w2
1 +ωw

2
2 and compare

the results to those computed by Adam for different values of ω ∈ {.06, .006, .0006, .00006}.
What is the condition number λmax/λmin of H in each case? How much does the con-
vergence rate of Adam depend on the values of the hyperparameters (α, β1, β2)?

9. Compare the performances of the Adam and AdaMax methods for finding the sta-
tionary points of the Rosenbrock function for different starting points.

10. Derive the Polack-Ribiere formula in equation 3.35.
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3.6 Appendix: Plotting Subroutine for Rosenbrock Minimiz-
er Code 3.1.1

The plotting function for the Rosenbrock minimization code 3.1.1 is below.

Code 3.6.1. MATLAB Plot Subroutine for Code 3.1.1

function plotrosen1(ww,iter,x1,x2,io)

mxx=max(ww(:,1),1);mnx=min(ww(:,1),1);mxy=max(ww(:,2),1);mny=min(ww(:,2),1);

dxx=mxx-mnx; dyy=mxy-mny;

xx=ww;xmx = mxx+dxx/2;xmin = mnx-dxx/2;ymin0 = mny-dyy/2;ymx = 2*mxy+dyy/2;

x = [xmin:.01:xmx];y = [ymin0:.01:ymx];[X,Y] = meshgrid(xmin:.01:xmx,ymin0:.01:ymx );

f = 100.*(Y-X.^2).^2+(1-X).^2; % Rosenbrock Function

imagesc(x,y,f);

hold on;

[C,h]=contourf(X,Y,f,10,’w’); % Plot Rosenbrock function ith contours

if io==4;v=[41 124 208]; clabel(C,h,v,’color’,’white’,’Fontweight’,’bold’);

end

hold off

hold on;

for i = 1:iter;

plot(xx(i,1),xx(i,2),’w*’);

end

plot(xx(iter,1),xx(iter,2),’*r’);

plot(ww(1,1),ww(1,2),’*g’);

plot(1,1,’oy’)

hold off;

xlabel(’X’,’FontSize’,9);

ylabel(’Y’,’FontSize’,9);

if io==2;

title([’b) Precond. Steepest Descent Iterates’],...

’Fontsize’,9);end

if io==4;

title([’d) Newton Iterates’],...

’Fontsize’,9);end

if io==3;

title([’c) Momentum Iterates’],...

’Fontsize’,9);end

if io==1;

title([’a) Steepest Descent Iterates’],...

’Fontsize’,9);

text(.42,1.0,’* = Initial guess’,’Fontsize’,8,’color’,’green’,’Fontweight’,’bold’);

text(.42,1.25,’* = Iterates 2-9’,’Fontsize’,8,’color’,’white’,’Fontweight’,’bold’);

text(.42,1.5,’* = Final 10^{th} Iterate’,’Fontsize’,8,’color’,’red’,’Fontweight’,’bold’);

text(.42,1.75,’O = True minima’,’Fontsize’,8,’color’,’yellow’,’Fontweight’,’bold’);

;end

3.7 Appendix: Plotting Subroutine for Adadelta and Adam
Minimizer Code 3.1.2

The MATLAB plotting function plotDelta for the quadratic minimization code 3.1.2 is
below.
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Code 3.7.1. MATLAB Plot Subroutine for Code 3.1.2

function plotDelta(ww,iter,x1,x2,io,a1,a2,w0,...

xmax,ymax,xmin,ymin)

xx=ww;

x = [xmin:.01:xmax];

y = [ymin:.01:ymax];

[X,Y] = meshgrid(xmin:.01:xmax,ymin:.01:ymax );

f = a1*X.^2+a2*Y.^2; % quadratic Function

imagesc(x,y,f);

hold on;

[C,h]=contourf(X,Y,f,10,’w’); % Plot quadratic function ith contours

if io==3;v=[1 2.3 -.1];

% clabel(C,h,’color’,’white’,’Fontweight’,’bold’);

end

hold off

hold on;

%for i = 1:iter;

plot(xx(1:iter,1),xx(1:iter,2),’w--*’);

%end

plot(xx(iter,1),xx(iter,2),’*r’);

plot(ww(1,1),ww(1,2),’*k’);

plot(0,0,’oy’)

hold off;

xlabel(’w_1’,’FontSize’,9);

ylabel(’w_2’,’FontSize’,9);

if io==1;

title([’b) Adam Iterates’],...

’Fontsize’,9);

;end

if io==2;

title([’a) Adadelta Iterates’],...

’Fontsize’,9);

end

end
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Chapter 4

Introduction to Neural Networks

Chapter 2 showed how to compute the optimal coefficients of the model matrix W that
minimized the sum of squared errors between the predicted data Wx and observed data
t. Here, the coefficients of the vector t ∈ ℜ can be any value on the real line. These
optimal coefficients are known as the least squares solution to the regression problem. In
contrast, the classification problem seeks the model that classifies the input data x into a
few categories. In this case the element values of t are restricted to a small set of numbers,
one for each category. For the example of the binary color classification of motorcycles, the
1× 1 target vector t = t is a scalar label where t = 1 indicates the class of red motorcycles
and t = 0 indicates the class for non-red motorcycles. Unlike the regression problem, the
binary labels are restricted to just two numbers, 1 and 0.

As an example of comparing linear regression with non-linear classification, Figure 4.1a
plots the linear relationship (black line fitted to the blue points) between the undergraduate
majors of students and their GPA values y obtained in a rigorous geoscience masters pro-
gram. The GPA inferred from the best-fit linear model y = mx+ b predicts that a physics
major, with the test point denoted by the star, will likely achieve a high GPA in graduate
school1.

In contrast, Figure 4.1b plots the training data (x(k), y(k)) k ∈ {1, 2, . . . K} for binary
classification of a student’s happiness index in graduate school as a function of their under-
graduate education. Here, the index y = 1 (red points) denotes a happy experience, while
y = 0 (blue points) denotes an unhappy experience. These binary labels are ”best” fitted
by the S-shaped sigmoid function

y = g(mx+ b) =
1

1 + e−(mx+b)
, (4.1)

that predicts the happiness of a test student (star) with a background in physics. The
sigmoid function is plotted in Figure 4.2a and resembles that of a smoothed Heavyside
function, which ”squashes” output values to be nearly zero with an input below a specified
threshold, otherwise it outputs a value close to unity. This type of squashing function is

1From now on, we replace the target variable t with the variable y.
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ideally suited to the binary classification problem and represents the simplest form of a
single-node neural network. The sigmoid function in equation 4.1 is also known as the
logistic sigmoid function (Bishop, 2006), which is often used for non-linear classification of
categorical data. This chapter now presents the theory and practice of solving classification
and regression problems by a neural network using non-linear activation functions such as
the sigmoid function.
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Figure 4.1: a) Examples of a line y = mx+ b best fitted to (x, y) data and b) best fit of a
sigmoid to categorical data (x, y). Here, the GPA values in a) are 0 ≤ y ≤ 4.0 while in b)
the categorical target data are restricted to the binary labels of happy y = 1 or not happy
y = 0.

4.1 Introduction

The problem of finding the optimal model parameters w and b that best explain the data
y(k) in Figure 4.1b is a simple neural network problem. Let’s solve this non-linear fitting
problem (see Exercise 4.7.1) by an iterative steepest descent method. First, we define the
best solution as m and b that minimize, e.g., the sum of squared errors:

ǫ =
1

2

K∑

k=1

(

ypred︷ ︸︸ ︷
g(mx(k) + b) −

yobs︷︸︸︷
y(k) )2, (4.2)

where the summation in k is over the indices associated with the training pairs (x(k), y(k))
and ypred. = g(mx(k) + b) is the predicted class.

In general, the input x in equation 4.2 can be a long vector x that represents a flattened
2D or 3D image and the neural network can be a concatenation of matrix-vector products



4.1. INTRODUCTION 79

1

0.6

0.2

0

10 0 10

z
10 0 10

z

g(
z)

dg
(z

)/
dz

0.25

0.15

0.05

0

b)  dg(z)/dz = g(z)(1-g(z)) vs za)      g(z) = 1/(1+e-z) vs z 

Figure 4.2: a) Sigmoid function σ(z) = g(z = wx + b) = 1
1+e−(wx+b) and b) its derivative

for b = 0 and w = 1. The dashed curve in a) is the function 1 − g(z), which is the mirror
image of g(z) about z = 0. Here, w plays the role of the slope m in Figure 4.1.

and non-linear operators such as the sigmoid function. As an example, if the input x is an
(M + 1) × 1 vector and there is a single node (see Figure 4.3a) then the predicted output
ypred. in equation 4.2 is replaced by

ypred. = g(

z︷︸︸︷
wTx) =

1

1 + e−wTx
, (4.3)

where w = (w0, w1, w2, . . . , wM ), x = (1, x1, x2, . . . , xM ), the bias term b is w0 and

∂g(wTx)

∂wi
= g(wTx)(1 − g(wTx))xi for i ∈ {0, 1, 2, . . . ,M + 1}. (4.4)

Here, the role of the bias term w0 = b is to laterally shift the S-like curve to best fit the input
points. We will often designate the sigmoid function in the above equations as σ(z) = g(z).

More generally almost any bumpy curve f(x) with continuous derivatives can be repre-
sented by a weighted sum of sigmoids:

f(x) =

I∑

i=1

Wiσ(wix+ bi), (4.5)

which is illustrated for I = 3 in Figure 4.4a. Here, the green, blue and red sigmoids in
Figure 4.4b are added together to get the bumpy curve in Figure 4.4a. The bi terms shift
the sigmoids along the x-axis, the weights Wi determine their strengths and polarities,
and the larger values of wi sharpen the smooth jumps in the sigmoids. The values of
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(bi, wi,Wi) are found that best fit the categorical data points denoted by brown asterisks in
Figure 4.4a. This combination of parameters describes a two-layer network with three nodes
in the hidden layer and one node in the last layer. The input layer is one node, sigmoid
activation functions are used in the hidden layer, and the last layer is a linear layer. The
next two sections present the biological inspiration and generalization of a neural network.
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S

a) One-Layer Neural Network            b) Two-Layer Neural Network

Layer 0                                     Layer 1 Layer 0                                     Layer 1          Layer 2

a=g(wTx)
a=g(wTx)

v

a = g(v g(wTx))~

Figure 4.3: Diagrams of a) single-layer and b) two-layer neural networks, each with a
single node per layer; the node for the bias terms are silent here. In a), the summa-
tion and S-like symbols in the nodes denote the matrix-vector multiplication wTx =
(w0, w1, w2, w3, w4)

T (1, x1, x2, x3, x4) and the sigmoid thresholding operation 1
1+exp(−wTx)

,

respectively.

4.1.1 Biological Inspiration of a Neural Network

The mathematical model of the biological neuron was first described by McCulloch and
Pitts (1943) as a weighted sum of input signals2 inserted into a neuron. After summation of
these signals, the neuron applies a suitable threshold function to give the final output signal
at the axon in Figure 4.5. The thresholding function can be mathematically described by
an S-shaped sigmoid function, but other threshold functions can be used as well.

There are three components to the overly simplified neuron model in Figure 4.5.

• Dendrites. Many different dendrite ”wires” feed into a neuron, and the weight of
an input signal is increased by increasing the ratio of synaptic neurotransmitters to

2These signal represent excitation or inhibitory electrochemical signals at neural dendrites (https://
en.wikipedia.org/ wiki/ Artificial neuron).



4.1. INTRODUCTION 81

-20 -10 0 10
x

0

0.5

1

1.5

2

P
re

di
ct

ed
 C

la
ss

: f
(x

)

a) 2-layer Neural Network [1 3 1]
f(x)=g(x)1+g(x)2+g(x)3

-20 -10 0 10
x

-1.5

-1

-0.5

0

0.5

1

g(
x)

b) g(x)=W/(1+exp(-w*x+b)) vs x

g(x)
1
= (-1x-10)

g(x)
2
= (-3x-17)

g(x)
3
=-1.5 (-8x+12)

g(x)
1
= (-1x-10)

g(x)
2
= (-3x-17)

g(x)
3
=-1.5 (-8x+12)

g(x)
1
= (-1x-10)

g(x)
2
= (-3x-17)

g(x)
3
=-1.5 (-8x+12)

Figure 4.4: Plots of training pairs a) (x(i), y(i)) and the best fit f(x) = g(x)1+g(x)2+g(x)3
and b) the individual sigmoids g(x)1, g(x)1 and g(x)3. The curve g(x)1 + g(x)2 can only
monotonically increase, but the addition of the term g(x)3 with W3 = −1.5 in equation 4.5
allows it to decrease because W3 < 0. This represents a two-layer neural network [1 3 1]
with one node in the input layer, three nodes in the hidden layer, and one node in the
output layer.
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Neuron

Dendrites

Soma

Axon

Axon

terminal

Figure 4.5: Diagram of a neuron with its axon, soma and dendrites. Credit to David Baillot/
UC San Diego and https : //medicalxpress.com/news/2018 − 07 − neuron − axons −
spindly− theyre− optimizing.html. Recent work by Beniaguev et al. (2021) suggests that
the dendritic branches of the cortical neuron can act as spatial pattern detectors. Thus, a
single neuron can be simulated by a 5-layer deep neural network.
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signal chemicals. The weight can be decreased by transmitting signal inhibitors (i.e.
oppositely charged ions) along the dendrite.

• Soma. The soma in the neuron sums the weighted input signals from the connected
dendrites. The positive and negative ions are mixed together in the solution inside
the cell’s body, which represents the matrix-vector operation in equation 4.8.

• Axon. The axon receives the weighted sum of signals from the soma, and once it
exceeds a threshold potential, the axon will pass an ”all-in” sign down its length. This
signal is then passed as new input into neighboring neurons.

The above components served as a simple model of the biological neuron, but its practical
use in computational science had to wait until the advent of practical computers in the
1950s. In the late 1950s, Rosenblatt (1958) presented a computational demonstration of
McCulloch and Pitt’s (1943) neuron model. Rosenblatt denoted it as the perceptron whose
use ”. . . is designed to illustrate some of the fundamental properties of intelligent systems
in general. . . The analogy between the perceptron and biological systems should be readily
apparent to the reader.”. The multilayer perceptron model is largely represented by the
architecture shown in Figure 4.6, also known as a multilayer neural network (https://
en.wikipedia.org/ wiki/ Perceptron) when used for more general tasks.

The one-layer perceptron in Figure 4.3a can be an accurate linear classifier if the input
data are linearly separable. Here, linearly separable points x(k) means that the points la-

beled as y = 0 can be separated by a hyperplane (denoted as a line if x(k) = (x
(k)
1 , x

(k)
2 )) from

those points labeled as y = 1. However, a one-layer perceptron will not be able to accurately
label a training set if the points are not linearly separable (https:// en.wikipedia.org/ wiki/
Perceptron). In this case, a multilayer neural network with two or more layers and a suffi-
cient number of nodes/layer3 is used to find the high-dimensional manifold that accurately
separates the two classes of points. See sections 4.1.3-4.1.4.

4.1.2 General Neural Network

A neural network (NN) is a non-linear mathematical model

f(x(k),W) ≈ y(k), (4.6)

that maps the kth input data x(k) to its expected (or true) output y(k), where W represent
the model parameters to be determined. A simple example is the classification problem in
Figure 4.1b where

W = (b, m); x = (1, x), (4.7)

and y = (y). Here, a 1 is incorporated into the vector x so that the 1 × 2 matrix WT →
wT = (b m) is multiplied by the 2 × 1 vector x = (1, x) to get wTx = wx + b so that the
predicted class label is σ(wTx).

3The dimension M of the output of the first layer is equal to the number M of nodes in that layer. For
an output with a higher dimension manifold then the number of nodes in the first layer must exceed the
dimension of the input vector x for a single-layer NN.
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In general, the mathematical operations of f(x(k),W) are a recursive sequence of matrix-
vector multiplications and non-linear thresholding operations applied to the input data x(k)

to predict y. The input-output combination (x(k),y(k)) is known as a training pair and a
large training set of pairs is used to train the network for the model parameters W. Once
properly trained, the neural network (NN) can be used to accurately predict f(x(k),W) ≈ y
from a never-before-seen input x. This prediction operation from x is known as inference4.

If the matrix (or matrices) W is (are) densely populated, then the NN is known as a
fully-connected neural network (FCNN). On the other hand, if the matrix-vector operation
W represents a sparsely populated convolution matrix5 then this known as a convolutional
neural network (CNN). This chapter and Chapters 5-6 exclusively discuss FCNNs, and
Chapters 9-12 present the theory and practice of CNNs.

The architecture of a three-layer6 neural network is illustrated in Figure 4.6. Each node
represents two operations: matrix-vector multiplication

z
[n]
i =

J∑

j=1

w
[n]
ij a

[n−1]
j ,weighted sum of inputs a

[n−1]
j at ith node of nth layer (4.8)

and the operation of a non-linear squashing function

a
[n]
i = g(z

[n]
i ) activation function at ith node of nth layer. (4.9)

Here, the superscript denoting the example index is kept silent. The upper limit J in

the summation is the number of nodes in the (n − 1)th layer and a
[n]
i is the ith activation

component of the activation vector a[n] in the nth layer. The bias term is contained within
the matrix associated with wij and the vector x is adjusted to incorporate this bias as
demonstrated in equation 4.7. Each vertical column of nodes in which computations are
performed is known as a layer, and the ones between the first and last columns of nodes
are known as hidden layers. The input column of nodes is technically not a layer because
its elements are specified, not computed, so it will be denoted as the zeroth-layer with the
input a(0) = x.

The neural network solution can now be succinctly defined as finding the model weights

w
[n]
ij that minimize the, for example, L2 objective function:

ǫ = 1/2
∑

i

∑

k

(

predicted︷ ︸︸ ︷
g(z

[N ](k)
i )−

true︷︸︸︷
y
(k)
i )2 + λ regularization term, (4.10)

4Bishop (2006) defines the inference stage as learning the model from training data. However, inference
is often defined as making a prediction from the trained model (https://www.intel.com/content/www/us/
en/artificial-intelligence/posts/deep-learning-training-and-inference.html). We will use this later definition
of inference.

5For a spatial convolution of two 1D signals, each row of the periodic convolution matrix is a shifted copy
of the previous row. In other words, each row represents a convolution filter that is spatially invariant.

6There does not seem to be uniform agreement on how to count the number of layers, some authors, e.g.
Duda et al. (2000), count the input nodes, aka units or neurons, as a layer and so refer to Figure 4.6 as a
four-layer network. Our counting notation will be consistent with Bishop (2006) and not count the input
layer.



4.1. INTRODUCTION 85

a
[0]

z
2

[1]

z
3

[1]

z
4

[1]
a

4

[1]

a
3

[1]

a
2

[1]

a
1

[3]
z

1

[3]

z
1

[1]
a

1

[1]

1
a

[0]

w
[1]

10

w
[1]

11

1
y

2
y[1]

w 14

a[2] a[3]a[0] a[1]

a
0

[1]

[2]
w

Layer 3    

w34

Layer 2     Layer 1     

input                    hidden                     output

[1]

3

4

2

a
[0]

a
[0]

a
2

[3]
z

2

[3]

a
1

[2]
z

1

[2]

a
2

[2]
z2

[2]

z
3

[2]
a

3

[2]

w
[2]

34

=10
a

[0]

a
0

[2]
w

[1]

40

w
[1]

44

w
[1]

42

w
[1]

41

w
[2]

10

layer                    layers                        layer

bias nodes

Layer 0     

14

31

[2] 11

[2]
w

w

Figure 4.6: Notation for a three-layer, i.e. N = 3, neural network with four input nodes
at the input layer. The activation output from the ith node in the nth layer is denoted as

a
[n]
i = g(z

[n]
i ), where z

[n]
i =

∑
j w

[n]
ij a

[n−1]
j ; note, the superscript [n − 1] for the activation

component is one less integer than the superscript [n] for the weight w
[n]
ij . The input data

x are represented by the activation vector a[0] for the 0th layer and the predicted data are
denoted by the 2 × 1 activation vector y = a[3] at the last layer. The layers between the
first (zeroth layer) and last columns (third layer) of nodes are denoted as hidden layers.

The bias vector for the 1st layer is (w
[1]
10 , w

[1]
20 , w

[1]
30 , w

[1]
40 ).
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where λ > 0 is the regularization parameter and the summation in k is over the indices of
the training pairs. The summation in i is over the number of nodes in the output layer and,

for the kth input example, a
[N ](k)
i = g(z

[N ](k)
i ) is the predicted output at the ith node of the

N th layer, also referred to as the output layer. Here, the superscript (k) in z[N ](k) denotes
the data sample index, but it will often be made silent to avoid notation clutter.

The pseudo-code for the L2 iterative solution by steepest descent without regularization
is given in Box 4.1.1.

Code 4.1.1. MATLAB Pseudo-code for Minimizing Equation 4.10 by Steepest De-
scent

Uniform distribution of random starting weights: w
[n]
ij ∀ i, j, n,

Starting residual (r
(k)
i ) = g[N ](z

[N ](k)
i )− y(k)i ∀ i, k,

Starting objective function ǫ & step length α

for it = 1 : niter Loop over iterations

for n = 1 : N Loop over layers

for i = 1 : I Loop over weight index i

for j = 1 : J Loop over weight index j

w
[n]
ij := w

[n]
ij − α ∂ǫ

∂w
[n]
ij

,

end

end

end

Update r(k), α and ǫ

end (4.11)

where := indicates that the variable w
[n]
ij on the left is reset to the value given on the

righthand side. Here, the objective ǫ is an implicit function of the iteration index it because
its residual is updated at each iteration, and α is the step length at iteration it. Chapter 6
derives recursive formulas for the efficient computation of the gradient in the Box 4.1.1
pseudo-code. In practice, the data are typically too large so the data are subdivided into
mini-batches, and the gradient and model update for a mini-batch are computed in one

iteration. Then the updated model parameters w
[n]
ij are used as the starting model for

the next mini-batch. This procedure is known as stochastic gradient descent (SGD). See
section 8.

4.1.3 Geometrical Interpretation of a Neural Network

The residual a
[N ]
i − yi in equation 4.10 says that the true component yi in the last

layer is predicted by the ith component of the activation function a
[N ]
i = σ(z

[N ]
i ), where

g(z) = σ(z) is taken to be a sigmoid function with the scalar input z; as promised, the
example superscript (k) superscript is made silent. According to equation 4.8, the input
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Figure 4.7: Two-layer network with a 2× 1 input vector x and 4 nodes in the hidden layer.
In this example the activation functions are sigmoids and the bias nodes are ignored. The
hard-threshold symbol is the Heavyside ideogram within the lower-right circle.

z
[N ]
i into this activation function is the weighted sum of the activation components a

[N−1]
j

from the N − 1 layer, as illustrated in Figure 4.7 for N = 2 in the two-layer example. If

a
[N−1]
j → aj is a sigmoid function then the linear algebra interpretation of equation 4.7 is

that the vector z =
∑4

j=1wjaj is a weighted sum of J = 4 sigmoids, which act as basis
functions in the estimation of the output vector (Duda et al., 2000). The geometrical
orientation of each plotted sigmoid function in Figures 4.7-4.8 depends on the learned

weights w
[2]
ij → wj in their arguments.

Each of the sigmoid functions in Figure 4.7 plot with a different orientation as described
by either σ(x1), σ(−x1), σ(x2), or σ(−x2). Weighting the outputs of the sigmoids and
summing them up gives the z =

∑4
i=1wiai plot in the top middle, and applying the soft-

threshold operation σ(z) gives the graph of the output prediction ypred. = σ(z(x1, x2)) at
the top right. In this classification example, the output should ideally be either y = 1 or
y = 0, so a threshold is set along the red curve, which is the decision boundary where
σ(z) = 0.5. The projection of the decision boundary onto the x1−x2 plane is plotted in the
lower right plot of Figure 4.7. Here, the hard-threshold function is defined as H(σ(z)) = 1
if σ(z) > 0.5, otherwise H(σ(z)) = 0. Any input sample in the yellow area is predicted to
be class type 1, otherwise it is 0.

The shape of the red decision boundary can be even more complex by including more
nodes in the hidden layer and/or more layers, where the sigmoid plots of many different
orientations can be used to form decision boundaries of almost arbitrary shape. See Exer-
cise 4.7.5.

If the output layer has more than two nodes then there will be many classes and many
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different decision boundaries, one for each class. More generally, section 4.2 presents differ-
ent types of activation functions that can serve as basis functions to reconstruct the output.
For example, Sitzmann et al. (2019) use sine activation functions

σ(zi) = sin(
∑

j

wijxj + bi), (4.12)

for interpolation of input data by a neural network where, in this case, xj represent the
components of the coordinates at each point of the image. Interpolating data by a NN is
a regression problem where training is performed on sparsely sampled data and the output
is finely sampled data, as illustrated in Figure 14.20. For inpainting, the input data can
be missing or be damaged as in Figure 14.2, and the output is the full data set (Pathak et
al., 2016). For sine activation functions, the weights wij can be interpreted as components
of wavenumber vectors and the bias term bi is the component of a phase-shift vector. A
benefit of this representation compared to non-smooth activation functions (see section 4.2)
is that the sine basis functions are differentiable everywhere so that, once the NN is trained,
all spatial derivatives of the data can be computed analytically. Derivatives exist for the
sigmoid function, but according to the results in Sitzmann et al. (2019), their derivatives
are often not well behaved and also fail to represent fine details. The sine functions provide
better resolved features compared to many other types of activation functions.

4.1.4 Generality of a Neural Network

Is there a generalization of neural networks that can represent any continuous mapping
from x to f(x) in equation 4.6? The answer is yes as Kolomogorov proved (Duda et al.,
2000). Specifically, Kolomogorov proved that any continuous function f(x) can be related
to the input ψij(xi) by

f(x) =

2n+1∑

j=1

σ̃
( d∑

i=1

ψij(xi)
)
, (4.13)

where d is the dimension of the input vector x, n ≥ 2 for the dimension of the hypercube
In (I = [0, 1]) and ψ and σ̃ are properly chosen functions. This formula resembles that of
a neural network for two or more layers if σ̃ is replaced by a sigmoid activation function.

Unfortunately, σ̃ and ψ in the above equation are complicated functions that do not
resemble the smooth activation function of a sigmoid. However, Duda et al. (2000) present
intuitive arguments that suggest that the sum of 4 or more sigmoids in Figure 4.7 can
reconstruct a wide variety of decision curves for a 2-layer NN. In fact, changing the coef-
ficients wi in the first layer gives rise to island-like decision curves of almost any shape,
even the Gaussian output shown in Figure 4.9 which is computed by the MATLAB code
in Exercise 4.7.5. This implies that a NN with two or more layers with a sufficient number
of nodes per layer is able to reconstruct many different continuous mappings f(x,W) = y
between the input x and target y. In practice, we typically need many nodes per layer and
more than two layers to get useful results from real-data examples.
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Figure 4.8: Six different sigmoids, each oriented along a different azimuthal direction in
the x1 − x2 plane. The weights of the NN are the numbers multiplying x1 and x2 in the
argument of the sigmoid.
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Figure 4.9: Gaussian curve constructed from the 2-layer NN in Figure 4.7.
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4.1.5 Neural Network Workflow

The workflow for computing the coefficients W of the neural network model is illustrated
in Figure 4.10 and described in Appendix 4.9. If the target vectors y are class labels for
the input data x, then the main steps for the workflow of a supervised neural network are
the following. The labeled data are divided into two parts: 80% for training and 20% for
validation and testing.

1. Training. Use the training data to estimate the optimal values of the network’s
coefficients in W so the loss function is minimized. How many training examples are
needed? The more the better as long as the variety of training examples represent
any examples in the unseen and unlabeled data for supervised classification. Ng and
Jordan (2011) cite a rule-of-thumb that the number of training examples should be at
least the same number of unknown parameters in the NN model. A gradient descent
method is the optimization algorithm.

2. Validation and Testing. The accuracy of the trained NN is refined by applying it
to labeled validation data and tuning the hyperparameters. If acceptable accuracy is
achieved then apply the NN to a remaining batch of unused labeled data for testing
its accuracy.

3. Inference. Predict the output for completely new data which are unlabeled.

4.1.6 Recursive Feed-forward Formula

The input vector x = a[0] in Figure 4.6 is inserted on the left, and the forward modeling
operations are represented by the recursive feed-forward operations

ypred. = g(W[N ]a[N−1]), (4.14)

= g(W[N ]g(W[N−1]a[N−2])),

...
...

= g(W[N ]g(W[N−1] . . . g(W[1]a[0]) . . . )), (4.15)

where, for convenience, we assume the same type of activation functions g(·) for each layer
and the bias terms are incorporated into the W[n] matrices. In the case where the activation
functions g(·) are different at each layer then a layer superscript can be appended to the
notation g(·) → g(·)[n]. The activation function acts on each element of a J × 1 vector
z[n] = W[n]a[n−1] to return the vector a[n] = g(W[n]a[n−1]).

The feed-forward operations in equation 4.15 can be computed in an efficient manner,
as will be shown in Chapter 6 for a multi-layer multi-node NN. It starts by computing
g(W[1]a[0]) in the first layer, then reuses this result for the input to the calculations of the
second layer. This procedure is repeated until the last layer is reached to efficiently compute
the predicted output ypred..
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Figure 4.10: Workflow for supervised learning of a neural network for classification of the
input data x(k). The training data consist of the labeled training pairs (x(k), y(k)).



4.1. INTRODUCTION 93

4.1.7 Recursive Back-propagation Formula

For a long chain of single-node layers where W[n] → w[n], each with the unknown weight
w[n] for n = {1, 2, . . . , N}, equations 4.14-4.15 become

ypred. = g(

z[N]

︷ ︸︸ ︷
w[N ]a[N−1]),

= g(w[N ] g(

z[N−1]

︷ ︸︸ ︷
w[N−1]g(w[N−2]a[N−3]) )) ,

= g(w[N ]g(w[N−1](g(w[N−2](. . . w[2]g(

z[1]︷ ︸︸ ︷
w[1]a[0] ) . . .))))), (4.16)

where we have used the recursive definitions

z[n] := w[n]a[n−1] = w[n]g(z[n−1]); (4.17)

g[n] := g(z[n]) = g(w[n]a[n−1]); (4.18)

and will use the identities

∂g(z[n])

∂z[n]
= (1− g[n])g[n]; (4.19)

∂g(z[n])

∂w[n]
=

∂g(z[n])

∂z[n]
∂z[n]

∂w[n]
,

= (1− g[n])g[n]g[n−1]. (4.20)

Here, the input data are defined as x = a[0] = g[0] at layer 0 and we assume g(z) is the

sigmoid so that ∂g(z[n])

∂z[n] = (1− g[n])g[n].

For a chain of single-nodes, the gradient components of the composite function ǫ =
1
2(y

pred. − y)2 are given by

∂ǫ

∂w[n]
=

g(z[N])−y︷ ︸︸ ︷
∂ǫ

∂ypred.

F rechet derivative︷ ︸︸ ︷
∂ypred.

∂w[n]
n ∈ {1, 2, . . . N}, (4.21)

where the Fréchet derivative characterizes the sensitivity of the predicted output ypred. to
the change in the model parameter w[n]. The chain rule7 can be applied to the derivatives

7If f(t) = f(h(t)) is a composite function, then the chain rule says that ∂f
∂t

= ∂f
∂h

∂h
∂t

.
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of equation 4.16 w/r to the layer weights w[N ] and w[N−1] to get the Fréchet derivative

∂ypred.

∂w[N ]
=

n=N in eqn. 4.19︷ ︸︸ ︷
∂g(z[N ])

∂z[N ]

g[N−1]

︷ ︸︸ ︷
∂z[N ]

∂w[N ]
,

= (1− g[N ])g[N ] g[N−1]. (4.22)

∂ypred.

∂w[N−1]
=

n=N in eqn. 4.19︷ ︸︸ ︷
∂g(w[N ]g[N−1])

∂w[N ]g[N−1]

w[N]

︷ ︸︸ ︷
∂w[N ]g[N−1]

∂g(z[N−1])

n=N−1 in eqn. 4.19︷ ︸︸ ︷
∂g(z[N−1])

∂w[N−1]g[N−2]

g[N−2]

︷ ︸︸ ︷
∂w[N−1]g[N−2]

∂w[N−1]
,

= (1− g[N ])g[N ] w[N ] (1− g[N−1])g[N−1] g[N−2]. (4.23)

We can see the development of a pattern so that the Fréchet derivative for the N − 2 layer
is

∂ypred.

∂w[N−2]
= (1− g[N ])g[N ]w[N ] · (1− g[N−1])g[N−1]w[N−1] · (1− g[N−2])g[N−2]g[N−3]. (4.24)

An inductive argument shows that the derivative w/r to the weight at the N − k layer is

∂ypred.

∂w[N−k]
= (1− g[N ])g[N ]w[N ] (1− g[N−1])g[N−1]w[N−1] . . .

(1− g[N−k+1])g[N−k+1]w[N−k+1] (1− g[N−k])g[N−k]g[N−k−1]. (4.25)

Therefore, the Fréchet derivatives ∂ypred.

∂w[n] for n ∈ {N,N − 1, N − 2, . . . 1} can be re-

cursively computed by first computing ∂ypred.

∂w[N] with equation 4.22 for the N th layer, re-

trieving w[N ] from memory, and storing the value of (1 − g[N ])g[N ]w[N ]. Then reuse it for

the computation of ∂ypred.

∂w[N−1] in equation 4.23, retrieving w[N−1] from memory, and storing

(1 − g[N−1])g[N−1]w[N−1]. This procedure can be recursively repeated until ∂ypred.

∂w[1] is com-

puted with equation 4.25 for k = N − 1 and g[0] = x. If each layer has more than one node,
then the scalar multiplications are replaced by the matrix-vector multiplications described
in Chapter 6.

In summary, recursive back-propagation starts at the output layer to compute the
Fréchet derivative w/r w[N ], and then progressively computes the Fréchet derivatives at
shallower layers until the input layer is reached. This is opposite to the feed-forward opera-
tions, where we start at the input layer and progressively compute z[n] at deeper layers until
we reach the deepest layer where n = N . The computational cost of computing the Fréchet
derivatives is O(NM) multiplications, where we assume O(M) operations at each link of
the chain. If recursion is not used then the computational count is O(N2M) operations to
compute all the Fréchet derivatives.

The recursion formulas that progressively update the weights from the output data layer
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to the shallowest input layer are similar to those for an iteration of least squares migration
(LSM). For LSM (Schuster, 2017), the seismic data residual ∆d is back-propagated from
the recording layer at the surface to deeper layers. This back-propagation operator is
represented by the matrix LT , and the reflectivity weights updated at each interface are
denoted by m = LT∆d. The operator LT is also known as the migration operator, which
is the adjoint of the forward modeling operator L.

4.2 Activation Functions

The sigmoid function in Figure 4.11a was one of the earliest activation functions used
for neural networks. It is also used to describe a NN in terms of probability theory as
discussed in Box 4.2.1.
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Key Idea 4.2.1. Key Idea Box: Sigmoid Function and Probability Theory

The sigmoid function g(z) has the two main properties of a binary probability mass distri-
bution: 0 ≤ g(z) ≤ 1 and it sums to 1 for the two outcomes y = 0 and y = 1 (see Exer-
cises 4.7.10-4.7.11). For example, define p as the probability that, given the input predictor
variable x, it predicts the binary response variable of y = 1, referred to as true. Similarly
the false response of y = 0 has probability 1− p. The log-odds of this outcome is defined as

odds = ln [
p

1− p ], (4.26)

which is the logarithm of the ratio of the true and false probabilities. For example, assume
that an unfair flipped coin is highly likely to land on a head. Therefore, p = 0.9 and the
denominator is 1 − p = 1− 0.9 = 0.1 so that the odds p/(1− p) of a head are 10 times that
of a tail.

Setting odds = wTx says that the outcome probability of the experiment is a function of the
weighted input vector x. For example, wTx might contain information on how asymmetrical
the coin might be that would affect the outcome of a coin flip. This function can be derived
by setting odd = wTx and exponentiating equation 4.26 to give

p

1− p = ew
Tx, (4.27)

which can be solved for p to give

p =
ew

Tx

ewTx + 1
=

1

1 + e−wTx
. (4.28)

This is the same formula as the sigmoid function in equation 4.3. Therefore the sigmoid
function can now be interpreted as the probability of the predictor variable x being true for
the target variable y = 1. If x is a random variable then the conditional probability of it
having the response y = 1 is

p(y = 1|x,w) =
1

1 + e−wTx
, (4.29)

where w is the model parameter vector. If the target variable is y = 0 then

p(y = 0|x,w) = 1− p(y = 1|x,w),

= 1− 1

1 + e−wTx
=

1

1 + e+wTx
. (4.30)

However, the concatenated sequence of back-propagated sigmoid functions dg(z)/dz
tended to produce outputs that peaked around z = 0 and vanished for |z| > 0 with deep
(14 or more layers) neural networks (DNN). Consequently, updating the weights deep into
the network was minimal and so prevented convergence to useful solutions (Bengio et al.,
1994). This motivated the creation of more effective activation functions, especially the
rectified linear unit ReLU(z) (Maas et al., 2013; Goodfellow et al., 2016; Brownlee, 2019):

ReLU(z) = max(0, z) =

[
0 if z < 0
z if z ≥ 0.

]
, (4.31)
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Figure 4.11: Activation functions (blue curves) and their derivatives (orange curves). The
derivative of the ReLU function (orange line) in c) is a constant for z > 0, and zero
otherwise. In comparison, the leaky ReLU in d) can output non-zero values for negative
input values, and thereby avoids the dying ReLU problem (Doshi, 2019) and keeps some
neurons activated.

plotted as the blue solid curve in Figure 4.11c. The derivative of the ReLU (orange curve

in Figure 4.11c) is ∂ReLU(z)
∂z = 0 for z < 0 and ∂ReLU(z)

∂z = 1 if z > 0, so the gradient is a
constant for z > 0. This can significantly remedy the vanishing gradient problem with deep
sigmoid-based networks and lead to substantially faster convergence (Zeiler et al., 2013). A
mathematical rationale for networks with ReLU activation functions is that they promote
solutions with sparse models under the L1 norm (see Chapter 24).

Unfortunately, neural networks with ReLU can also lead to the exploding gradient prob-
lem in, for example, recurrent neural networks in Chapter 12. The ad hoc partial remedy
is to simply clip the gradient if it exceeds a specified threshold (Goodfellow et al., 2016).

Other activation functions and their derivatives are plotted in Figure 4.11. For example,
the leaky ReLU (LReLU) in Figure 4.11d is an improved version of the ReLU function that
is defined as

LReLU(z) = max(αz, z) =

[
αz if z < 0
z if z ≥ 0.

]
, (4.32)

where 0 < α ≤ 1. The leaky ReLU provides a small non-zero gradient for negative values
of z, which can activate most of the neurons for learning even if z has negative polarity. In
contrast, the standard ReLU has a zero gradient for z < 0 so some neurons are unnecessarily
deactivated. However, the leaky ReLU in some cases does not perform significantly better
than ReLU (Maas et al., 2013).

A close cousin to leaky ReLU is the softplus activation function in Figure 4.11f (Nwankpa
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et al., 2018)

g(z) = ln(1 + ez), (4.33)

whose derivative dg(z)/dz) is the sigmoid function. The merit of this function is that its
derivative is continuous, but it still can lead to the exploding gradient problem because its
output becomes large if the input is large. The multivariate version of softplus is

g(z1, z2, . . . , zN ) = ln(1 + ez1 + ez2 , . . . ezN ), (4.34)

where its derivative becomes the softmax function in equation 4.55.

The hyperbolic tangent or tanh function Figure 4.11b (Nwankpa et al., 2018)

g(z) =
ez − e−z

ez + e−z
, (4.35)

is similar in shape to the sigmoid function, except it is perfectly anti-symmetrical such
that g(z) = −g(−z). Some prefer it over the sigmoid because it sometimes gives better
convergence (Karlick et al., 2011) for natural language processing (Dauphin et al., 2017)
and speech recognition (Maas et al., 2013), and the gradients are not restricted to move
in only one direction. However, it still suffers from the vanishing gradient problem of the
sigmoid function for deep networks (Nwanka et al., 2018).

A smoothed version of the sigmoid function is the Swish function in Figure 4.11e dis-
covered by Google researchers (Ramachandran et al., 2017):

g(z) =
z

1− e−z
, (4.36)

which is as computationally efficient as ReLU and shows better performance than ReLU
on deeper models (https : //medium.com/@neuralnets/swish − activation − function−
by− google− 53e1ea86f820). Note, its derivative exists everywhere, even at z = 0. Google
reports that its experiments ”train deeper Swish networks than ReLU networks when using
BatchNorm (Ioffe and Szegedy, 2015) despite having gradient squishing property. Up to 40
iterations with the input as the MNIST data set, both Swish and ReLU networks were both
comparable in convergence rate. However, Swish outperforms ReLU by a large margin in the
range between 40 and 50 layers when optimization becomes difficult. In very deep networks,
Swish achieves higher test accuracy than ReLU.”.

4.3 Examples of Neural Networks

We will now present several examples of neural network architectures for solving simple
classification problems. The equations for the objective functions and gradients of single
and double hidden layer NNs will now be defined.
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4.3.1 Single-Layer Neural Network

The solution to the fitting problem illustrated in Figure 4.1b finds the optimal 2 × 1
model vector w = (w0, w1) = (b, w) that minimizes a specified objective function ǫ. For
a single-node NN, this problem can be generalized to a M × 1 input vector x so that w
is also the same dimension M × 1 and incorporates the bias term b. In this case, N = 1,

g(z
[N ](k)
i )→ g(wTx(k)) and y

(k)
i → y(k) so the L2 misfit function in equation 4.10 becomes

ǫ =
1

2

K∑

k=1

(g(wTx(k))− y(k))2; (4.37)

and

∂g(wTx(k))

∂wi
=
∂g(wTx(k))

∂wTx(k)

∂wTx(k)

∂wi
= (1− g(wTx(k)))g(wTx(k))x

(k)
i , (4.38)

where the last equation follows from equation 4.20 for ∂z[n]

∂wi
|n=1 =

∂wTx(k)

∂wi
= x

(k)
i . Therefore,

the steepest descent formula for the single-node network is

w
(l+1)
i = w

(l)
i − α

K∑

k=1

(g(wTx(k))− y(k))

eq. 4.38︷ ︸︸ ︷
∂g(wTx(k))

∂wi

= w
(l)
i − α

K∑

k=1

∂r(k)

∂wi︷ ︸︸ ︷
g(wTx(k))(1− g(wTx(k)))x

(k)
i

r(k)=kth residual︷ ︸︸ ︷
(g(wTx(k))− y(k)), (4.39)

where w in the arguments of g is the weight vector w(l) computed at the lth iteration. As a
test case, Example 4.3.1 uses equation 4.39 to solve the binary classification problem with
a 1-layer neural network.

A regularization term λ(w1, w2, . . .)T (w1, w2, . . .) might be added to the objective
function in order to reshape an undesirable objective function with a long valley in Fig-
ure 2.6b into the desirably round one in Figure 2.6a. Here, the components (w1, w2, . . .)
control the shape of the contours, so regularization adjusts their values accordingly. In con-
trast, the bias component w0 should not be included in regularization because it only shifts
the contours associated with the objective function (see Exercises 4.7.7 and 4.7.14).
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Example 4.3.1. Binary Classification with a 1-Layer Neural Network

A MATLAB code is used to compute the 1-layer NN solution to the following binary
classification problem. There are 100 training pairs of labeled data (x, y) where
x = (1, x1, x2, x3, x4, x5) is a 6× 1 vector with xi ∈ {0, 1} for i = {1, 2, 3, 4, 5}.
The first term of x is x0 = 1 because it accounts for the bias term b, where w =
(b, w1, w2, w3, w4, w5) for the single-node NN model in Figure 4.3a. The target
output is the binary classification value of y = 1 if xi = 0 for i = {1, 2, 3, 4, 5},
otherwise y = 0. An example of 100 5× 1 data vectors (x1, x2, x3, x4, x5) is displayed
in Figure 4.12.

One hundred training examples are used to train the network to give the results
shown in Figure 4.13. The predicted values ypred. = g(wTx) in Figure 4.13b are
never equal to 1 for the first 400 iterations. One might consider this to be a failure,
except with many more iterations the solution converges to the correct predictions.
However, the correct classifications can be determined by noticing that any ypred.

above the threshold value of 0.34 might be considered as the class denoted as y = 1.
With this threshold constraint there is an almost perfect accuracy in the predicted
class shown in Figure 4.13c. Here, the actual class is a red star and the predicted class
(after the threshold constraint) is a green star. If the class predictions are correct
then the red stars should be completely hidden by green stars, which is hardly the
case.

Why is it possible that a 1-layer NN can correctly classify the input data? Assume
that the input data are 3 × 1 vectors (x1, x2, x3) where xi = {0, 1}. In this case,
the vertices at the purple and red dots in Figure 4.14 represent all 8 possible 3 × 1
input vectors. The y = 1 point w = (0, 0, 0) is at the origin, and it can clearly be
separated from the other vertices by the slanted red triangle. Thus, these points
are linearly separable and they can be separated by a single-node network with a
sigmoid activation. See Exercise 4.7.4 for the extension of this argument to 5 × 1
input vectors.

4.3.2 Two-layer Neural Network

In general, the one-node neural network cannot emulate complex relationships between
the input data vectors and the target vectors (Bishop, 2006). However, multinode and
multilayer neural networks have been found to be universal approximators (Hornik et al.,
1989; Hornik, 1991; Ripley, 1996).

The unknown model parameters for the two-layer network in Figure 4.3 are w and v in
the first and second layers, respectively. The Fréchet derivatives for the two-layer network
were derived in equations 4.22-4.24, where the input data is the scalar x so there is only one
model parameter w in the first layer. In contrast, the Figure 4.3 model assumes that the
input is the 4×1 vector x = (x1, x2, x3, x4) and sow = (w1, w2, w3, w4). Using equation 4.17
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Figure 4.12: Images of 100 5 × 1 data vectors (x1, x2, x3, x4, x5) where gray denotes the
number 0 and white denotes the number 1. Each data vector is labeled as y = 1 if
(x1, x2, x3, x4, x5) = (0, 0, 0, 0, 0), otherwise it is labeled y = 0.
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Figure 4.13: a) RMS error versus iteration number, b) predicted (green) versus actual
(red) classes after 400 iterations, and c) predicted binary classes after a hard threshold of
0.29. The numbers in [5 1] indicate the number of nodes/layer, and the NN architecture is
characterized by a sigmoid activation function and a L2 misfit function.
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Figure 4.14: Each vertex represents one of the eight possible examples with the 3×1 vector
x = (x1, x2, x3), where xi ∈ {0, 1}. The red plane represents one of the decision planes
that separates (0, 0, 0) at the red point from the other vertices.

and N = 2 we get

w[2] = v; z[2] = vg(wTx);
∂z[2]

∂w[2]
→ ∂vg(wTx)

∂v
= g(wTx). (4.40)

In this case the gradient for the model parameter v can be obtained from equations 4.16-4.21
to get

∂ǫ

∂v
=

K∑

k=1

r(k)

∂r(k)

∂v︷ ︸︸ ︷
g(θ(k))(1− g(θ(k)))g(z(k)); (4.41)

(4.42)

where θ(k) = g(wTx(k))v and r(k) = g(θ(k) − y(k)). (4.43)

Similarly, the components ∂ǫ/∂wi i ∈ {1, 2, 3, 4} in the first layer can be obtained from
equation 4.23 to give

∂ǫ

∂wi
=

K∑

k=1

r(k)g(θ(k))(1− g(θ(k)))g(z(k))(1− g(z(k)))vx(k)i . (4.44)

Equations 4.41-4.44 are now used to solve the binary classification problem posed in Exam-
ple 4.3.1. The details for these computations are described in Example 4.3.2.
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Figure 4.15: Same as Figure 4.13, except we now use the neural network with the [5 1 1]
architecture characterized by the two single-node layers in Figure 4.3b. The MATLAB code
in /LAB1/Chapter.Book.FCN/Chapter.Gradient.Neural/lab.html is used to compute these
results.

Example 4.3.2. Binary Classification with a 2-Layer Neural Network

The two-layer network in Figure 4.3b is used to solve the binary classification problem
posed in Example 4.3.1. Figure 4.15 shows the results which reveal a greater density
of green circles below the class value of 0.2 (which approximates y = 0) than seen in
the single-layer results in Figure 4.13. However, the convergence rate of the single-
node NN is somewhat faster than that of the two-node network. This is consistent
with our empirical tests where an increase in the number of nodes often requires more
iterations for convergence.

4.3.3 Neural Network MATLAB Code

The results in Figures 4.13 and 4.15 are computed by the pseudo-code in Code 4.3.1.
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Code 4.3.1. MATLAB Pseudo-code for a Neural Network

MATLAB Pseudo-code for Neural Network

% x(N,M) - input- M input feature vectors with size Nx1

% t(1,M) - input- M input target vectors with size 1x1

% t= 1 or 0

%layer_size- input- # of layers

%obj_option- input- 1=l2 & 2=x-entropy

%act_option- input- 1=sigmoid & 2=ReLU

% lambda - reg. param

% ww - input- random starting Nx1 weight vector for each node

M=100; % # of equations constraint

N=5; % # of unknowns (w1, w2, w3, w4, w5) for 1st node !modified by Zongcai

x=zeros(N,M);t=zeros(1,M);

layer_size=[N,1,1];

obj=2;act=2;

[x,t,alpha,lim,ww,layer_size,obj,act]=Datain1(M,N,x,t,obj,act,layer_size); % Create training data

nit=400;res=zeros(nit,1);

layer_num=numel(layer_size); %layer number include the input and output

%%

%x(:,1:50)=zeros(5,50);t(1:50)=0;

thresh=.34;

%%

ww_old=ww;

for k=1:nit % Looping over iterations

alpha=1; % step size (orig, case: 1)

[grad,res(k)]=gradientnn(M,x,t,ww_old,layer_size,obj,act);

for ilayer=1:layer_num-1

ww{ilayer}=ww_old{ilayer}-alpha*grad{ilayer};

end

%

[~,res1]=gradientnn(M,x,t,ww,layer_size,obj,act);

%-----------------------------------------------------------------------

% Bisection line search for step length

while (res1>res(k)) && (alpha>lim)

alpha=alpha*0.5; % halve value of current step length

for ilayer=1:layer_num-1

ww{ilayer}=ww_old{ilayer}-alpha*grad{ilayer}; % updated gradient with 1/2 step length

end

[~,res1]=gradientnn(M,x,t,ww,layer_size,obj,act);

end

ww_old = ww; %%% update successful

%-----------------------------------------------------------------------

end

Display1(M,res,nit,ww,layer_size,x,t,obj,act,thresh)

print -depsc Fig2.balanced.TwoNode.Xentropy.ReLu.eps

Bisection Line Search. The bisection line-search method (see code between the dashed
lines in Code 4.3.1) compares the value of the objective function ǫ(w(k+1)) at w(k+1) =
w(k) − α∇ǫ(w(k)) to ǫ(w(k)) at the k(th) iterate. If ǫ(w(k+1)) is larger than ǫ(w(k)) then
it halves the value of α and compares again until ǫ(w(k+1)) at the new iterate is less than
that at the previous iterate. Our empirical tests suggest that a quick-and-dirty bisection
line search leads to much faster convergence compared to a fixed-step length.

4.3.4 NN with a Cross-Entropy Objective Function

Instead of the least squares objective function, the neural network community often uses
the cross-entropy objective function for solving the binary classification problem. Empir-
ical evidence suggests it has better convergence properties compared to the least squares
approach. In fact, it can be shown that minimizing the binary cross-entropy for the logistic
regression is a convex problem (Loiseau, 2020). This means that the objective function has
just one minimum, which is the global one. See Exercise 4.7.24.

The starting point for the cross-entropy method (https:// rdipietro.github.io/ friendly-
intro-to-cross-entropy-loss/ ) is relate the sigmoid function to the binary probability distri-
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bution (see Box 4.2.1). Here, the sigmoid function 0 ≤ g(z) ≤ 1 is the likelihood function
for the binary random variable y:

p(y|x,w) = (

probability y=1︷ ︸︸ ︷
g(wTx) )y(

probability y=0︷ ︸︸ ︷
1− g(wTx) )1−y, (4.45)

which says that, given w and the random variable x, the probability for the binary random
variable y = 1 is g(wTx), and for y = 0 it is 1 − g(wTx). Finding the optimal w that
maximizes p(y|x,w) is known as the maximum likelihood solution (Bishop, 2006).

Maximizing equation 4.45 is equivalent to finding w that minimizes the cross-entropy
objective function:

ǫ = −y ln g(wTx)− (1− y) ln(1− g(wTx)), (4.46)

which is derived by taking the natural logarithm of equation 4.45 and multiplying the result
by −1. Since the logarithm is a monotonic function of its argument then the optimal w→
w∗ that maximizes the likelihood function in equation 4.45 also minimizes ǫ in equation 4.46.

If we have K training pairs of independent random variables (x(k), y(k)) then the likeli-
hood ofK training pairs predicting the labels (y(1), y(2), . . . , y(K)) is the product ΠK

k=1p(y
(k)|x(k),w)

of the individual likelihood functions. Taking the negative logarithm of this product and
dividing by K gives a weighted summation of cross-entropy error functions:

ǫ = − 1

K

K∑

k=1

[y(k) ln g(wTx(k)) + (1− y(k)) ln(1− g(wTx(k)) )], (4.47)

where p(y(k)|x(k),w)→ g(wTx(k)).

What is advantage of the cross-entropy objective function compared to the L2 misfit
function? The short answer is that empirical tests often show that a NN with cross-entropy
objective functions often has faster convergence for solutions of classification problems. A
plausibility argument that is consistent with these empirical results is shown in Figure 4.16
by plotting the cross-entropy and L2 objective functions for a) one data point with y = 1
and b) two data points with y = 1 and y = 0. Here, the blue cross-entropy curves rise
much more steeply8 than those for the L2 objective function, so the gradients of the cross-
entropy functions are larger. Therefore, the iterative solutions to the cross entropy objective
function can be expected to have faster convergence than those for the L2 objective function
in this example.

The gradient for the cross entropy function is similar to that in equations 4.39 for the

8The steeper rise in ln σ(z) is expected because 0 ≤ σ(z) ≤ 1 so that − ln σ(z) inflates a small range
of numbers between σ(z) = 10−22 ≈ 0 and σ(z) = 1 to be between 50 and 0. In comparison, squaring
0 ≤ σ(z) ≤ 1 keeps the same range between 0 and 1.
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Figure 4.16: Objective functions plotted for L2 misfit function cross-entropy functions for
a) one data point with the target value y = 1 and b) two data points with y = 1 and y = 0.
The slope for the cross-entropy function is much steeper than the maximum slope in a).

least squares objective function, except

∂ǫ

∂wi
= − 1

K

K∑

k=1

(
y(k)

g(wTx(k))
− 1− y(k)

1− g(wTx(k))
)

∂g(wT
x)

∂wi
= ∂g(wT

x)

∂wT x

∂wT
x

∂wi︷ ︸︸ ︷
g(wTx(k))(1− g(wTx(k)))x

(k)
i ,

=
1

K

K∑

k=1

(

pred.︷ ︸︸ ︷
g(wTx(k))−

true︷︸︸︷
y(k) )x

(k)
i . (4.48)

Here, the cross entropy gradient does not have the multiplicative factor g(z(k))(1 − g(z(k))
seen in the L2 gradient of equation 4.39 (see Exercise 4.7.9). This means that g(z(k))(1 −
g(z(k)) < 1 so the cross-entropy gradient is larger and therefore is characterized by steeper
objective functions in Figure 4.16 and a faster learning rate.

If the NN has many layers such that N >> 1 then the composite gradient of ǫ for many
layers will tend to zero because it is the concatenation O(N) layer gradients, where each one
of them can be near zero. This leads to the vanishing gradient problem where convergence
stalls (Bengio et al., 1994). This problem can be partly remedied by using other types of
activation functions (see section 4.2) and will be addressed in Chapter 9.
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Figure 4.17: Same as Figure 4.15 except the cross-entropy objective function is used.

Example 4.3.3. Binary Classification with Sigmoid and Cross-Entropy Objective
Function

The binary classification problem posed in Example 4.3.1 will now be solved using
a cross-entropy objective function with a two-layer network. Results are shown in
Figure 4.17 and reveal much faster convergence and a more accurate prediction of
the classes than demonstrated by the two-layer NN results in Figure 4.15 with an L2

objective function. This is consistent with the plausibility argument that the cross-
entropy objective function has a steeper slope (see Figure 4.16) so it is characterized
by faster convergence than the L2 objective function.
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Figure 4.18: Same as Figure 4.17 except the cross-entropy objective function and ReLU
activation function in the middle layer are used.

Example 4.3.4. Binary Classification with ReLU and Cross-Entropy Objective
Function

A cross-entropy objective function and a ReLU activation function (in the middle
layer) with a two-layer network is used to solve the binary classification problem
posed in Example 4.3.1. The last layer in our new network still uses a sigmoid acti-
vation function because the output there needs to be between 0 and 1. Here, we use
a steepest descent method with a bisection line-search procedure as outlined between
the dashed lines in Code 4.3.1. The results are shown in Figure 4.18 and reveal the
fastest convergence and the most accurate predictions compared to the results in
Figures 4.15 and 4.17. In this case, the ReLU significantly enhanced the convergence
rate compared to the exclusive use of the sigmoid function.

To test the speedup sensitivity of ReLU w/r to the number of nodes
and layers, the binary classification problem is solved by a NN with the
[5 5 5 2 1] architecture. We now use a conjugate gradient method
with a more sophisticated polynomial line-search method (see Chapter 3 and
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/ submission-
s/56645/versions/3/previews/fmincg.m/index.html) coupled to a Polack-Ribiere for-
mula. The results are shown in Figures 4.19 and 4.20. Here, the ReLU activation
functions always provided the results with the fastest convergence rate. This conclu-
sion is consistent with the results (not shown) when the [561] architecture is used to
solve the same problem.
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Figure 4.19: Binary classification results in c) using the [5 5 5 2 1] and L2 objective function
is used with the (top row) sigmoid and (bottom row) ReLU activation functions. Here a
conjugate gradient code with a Polack-Ribiere step length is used to compute the iterative
solutions.
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Figure 4.20: Same as Figure 4.19 except a cross-entropy objective function is used instead
of the L2 objective function.
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4.4 Types of Classification

There are at least three types of classification problems: 1). binary classification where
the number of class types is C = 2, 2). multiclass where C > 2 and only one of the output
components of the C × 1 vector y is assigned yi = 1, while the rest are assigned to be 0,
and 3). multilabel classification where C > 2 but each input can be assigned more than
one class type. In this case, many components of y can be assigned the value yi = 1, while
the rest are zero.

4.4.1 Multilabel Classification

The multilabel classification scheme can assign more than one label to an input image
(Bishop, 2006). If there are C > 2 different classes of input objects, then we can use a
network with C output nodes in the form of the C × 1 target vector y. Each output node
in y has a separate and independent binary class label yc ∈ {0, 1} for c = {1, 2, . . . , C}. For
example, assume that the label y1 = 1 in the first output node says that the input image
has eyes, otherwise y1 = 0 says it has no eyes. If the second output node is labeled y2 = 1,
then the input image has a tongue; if not, then y2 = 0. Therefore, the input image of a
human will have a target vector y = (y1, y2, y3, . . . , yC) with y1 = y2 = 1.

Since the class types (y1, y2, . . . , yC), are independent of one another then the condi-
tional probability p(y1, y2, . . . , yC |x,w) is a concatenation of the conditional probabilities
p(yc|x,w) in equation 4.29 for each output node:

p(y1, y2, . . . , yC |x,w) = ΠC
c=1p(yc|x,w). (4.49)

If there are K independent training pairs then the conditional probability for predicting all

of the labels y(k) = (y
(k)
1 , y

(k)
2 , . . . , y

(k)
C ) is a concatenation of the conditional probabilities

in equation 4.49:

p(y(1),y(2), . . . ,y(K)|x(1),x(2), . . . ,x(K),w) = ΠK
k=1Π

C
c=1p(y

(k)
c |x(k),w). (4.50)

Substituting the expression for the binary conditional probability function in equation 4.45
into equation 4.50 and taking its negative logarithm gives the cross-entropy objective func-
tion for a multilabel classifier:

ǫ = − 1

K

C∑

c=1

K∑

k=1

[y(k)c ln gc(w
Tx(k)) + (1− y(k)c ) ln(1− gc(wTx(k)) )], (4.51)

where gc is the sigmoid function. Here, the multiplicative weight of 1/K is used to normalize
the objective function so it provides an average value.

4.4.2 Multiclass Classification

The standard multiclass, aka multinomial, classification is for C > 2 where the input
image belongs to only one class, and no other. That is, the C × 1 target vector y only
has one element labeled as 1 and all the other elements are labeled as 0. This is known as
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a 1− of − C coding multinomial scheme (Bishop, 2006), sometimes denoted as multiclass
classification.

For example, assume the output class for node 1 is for the input image being a cat, node
2 is for dogs, and node 3 is for an animal being neither a dog or cat. Clearly any input
image of a single animal can only be labeled as 1 for just one of the three output nodes. We
cannot assign an independent binary conditional probability to each output node because,
for example, the probability output of a sigmoid at nodes 1 and 2 might both take on the
value 1. This would violate the only one-class requirement of a multiclass classification.
The discrete probabilities must be coupled to one another so only one wins at the end with
the highest probability, and they all sum to 1.

To fix this problem we need to generalize the sigmoid function so that it can serve as
the conditional probability for more than two classes C > 2 of outputs. The hint as to how
to do this is to multiply the top and bottom of equation 4.29 by ew

T
1 x to get

p1 =
ew

T
1 x

ew
T
1 x + ew

T
2 x
, (4.52)

where w2 = −w + w1 and p1 is the discrete probability function of x being classified as
y1 = 1 at output node #1 for a given w1 and w2.

Equation 4.52 might represent the output of a two-node network because there are two
model vectors w1 and w2 at the last layer. In the context of the NN in Figure 4.6, the first
row of the corresponding NN matrix W at the output layer would be w1, and the second
row would be w2. This suggests that the probability p2 of the target value is y2 = 1 at the
second output node is

p2 =
ew2

Tx

ew
T
1 x + ew2

Tx
. (4.53)

We can combine these two probability functions to get the joint conditional probability
function

p(y1, y2|x,w1,w2) = py11 p
y2
2 , (4.54)

where the only possible values for y = (y1, y2) are either (1, 0) or (0, 1).

If the input image to the last layer of the NN is denoted as the M × 1 vector z, and
there are C output nodes where only one of the nodes is classed as yc = 1, and the others
have class type 0, then the probability of the cth node taking the class yc = 1 is the softmax
function:

pc = p(yc|x,w1,w2) =
eac

∑C
c′=1 e

ac′
, (4.55)

where ac = wT
c z denotes the cth output component of the matrix-vector multiplication at

the last layer of the NN. Here, W is the C ×M matrix of the last layer with the cth row
denoted by wc. Clearly,

∑C
c=1 pc = 1 and 0 ≤ pc ≤ 1, which satisfy the conditions for the

softmax function being a discrete conditional probability function.

More generally, the joint conditional probability function p(y1, y2, . . . yC |x,W) for C
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output nodes (or classes) is obtained in a way similar to that in equation 4.55, i.e. take the
products of pykc

p(

y︷ ︸︸ ︷
y1, y2, . . . yC |x,W) = ΠC

c=1p
yc
c . (4.56)

Here, the term raised to the 1− y power in equation 4.45 is not needed because this is no
longer the expression of a binary classification at a single node. In the binary classifiers with
a one-node output discussed in section 4.3, the joint conditional probability was assessed
at the same output node so it was the product of the two possible predicted probabilities
py(1 − p)1−y at this one node. In contrast, the burden for multiclassification with C = 2
is spread between two nodes, with node #1 indicating one class y1 = 1 and node #2
indicating the other class y2 = 1. Thus the joint conditional probability function is py11 p

y2
2

in equation 4.54, which can be shown to reduce to the same equation for a single-node
binary classifier.

If there are K independent training pairs then the conditional probability for predicting

all of the labels y(k) = (y
(k)
1 , y

(k)
2 , . . . , y

(k)
C ) is a concatenation of the conditional probabilities

in equation 4.56. Similar to that in equation 4.50, the cross-entropy loss function for the
multinomial classifier is obtained by taking the negative logarithm of the concatenation of
conditional probabilities in equation 4.56 to get

ǫ = −
C∑

c=1

K∑

k=1

y(k)c ln p(y(k)
c |x(k),W), (4.57)

where we have included the index k associated with the training pair (z(k),y(k)) and taken

the product of the joint probabilities p(y
(k)
c |x(k),W) of each training pair because they are

independent of one another.

As an example, consider the case of one training example K = 1 and three classes C = 3
so that equation 4.57 becomes

ǫ = −y1 ln p((1, 0, 0)|x,W) − y2 ln p((0, 1, 0)|x,W) − y3 ln p((0, 0, 1)|x,W), (4.58)

where the superscript notation (k) is silent. If the actual target vector y = (y1, y2, y3) =
(0, 0, 1) then equation 4.58 becomes

ǫ = − ln p((0, 0, 1)|x,W) = − ln
{

p3︷ ︸︸ ︷
ew

T
3 x

ew
T
1 x + ew

T
2 x + ew

T
3 x

}
. (4.59)

However, the element values in the model matrix W might be a poor choice so the soft-max
term p3 gives a small probability value near zero, e.g. p3 = e−4 = 0.01 so ǫ = − ln e−4 = 4.
This is a relatively large number and an unacceptably large objective function. A better
choice would be to choose a W that gives a probability close to 1, e.g. p3 = e−.001 = 0.99 so
that ǫ = − ln e−.001 = .001, which is almost at the minimum of the cross-entropy objective
function.

In summary, we have different loss functions for different types of classification problems.
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1. Binary: If the output is labeled as just one of two classes, then there is only a single
output node. The binary cross-entropy loss function in equation 4.51 is used with
C = 1.

2. Multilabel. If the class labels are independent of one another, then equation 4.51 is
used for the multilabel loss function.

3. Multiclass. If the labeling is 1− of − C coding, i.e. there is only one element in the
unit vector y with the value 1, then equation 4.57 is used for the cross-entropy loss
function.

4. Alternative. An alternative to a binary classification scheme, with just one output
node and the loss function in equation 4.51 with C = 1, is to use two output nodes
and use the softmax output activation function in equation 4.55 at each node. In this
case, equation 4.57 is used as the loss function.

Example 4.4.1. Multiclass Classification with a Neural Network

We will now employ a NN for multiclass classification of the input data used in Ex-
ample 4.3.4.1. Instead of classifying the output to be binary y = (y1) for y1 ∈ {0, 1},
a multiclass NN will label the input as one of the, e.g., 6 different classes of the input
vector x = (x1, x2, x3, x4, x5), where the multiclass target vector is the unit vector
y = (y0, y1, y2, y3, y4, y5) where yi ∈ {0, 1}. Here, yi = 1 indicates that there are i
1’s in the input vector (x1, x2, x3, x4, x5). For example, if y0 = 1 this indicates that
there are no 1’s in the input vector x. Similarly, if y1 = 1 then this indicates that
there is only a single 1 in x. If y2 = 1 then this indicates that there are two 1’s in
x, and so on. Figure 4.21a-4.21b depict an example of 100 input vectors and their
classes, respectively.

We will use a NN architecture that consists of two layers, a hidden layer with one
node and the output layer has 6 nodes. This architecture is denoted as [5 1 6] be-
cause the input layer consists of 5 nodes. The last layer in our multiclass network
uses the softmax activation function to compute the 6× 1 output vector ypred.. The
output node with the highest value of the softmax function is used to classify the
corresponding input x.

The classification results for a NN designed with the L2-objective and sigmoid-
activation functions are shown in Figures 4.22-4.23. Accurate classifications are
achieved within a reasonable number of iterations. However, the fastest convergence
rates are those that used the ReLU activation function in the NN.

4.5 Best Practices

Practical tips for successfully executing neural networks, both fully connected and con-
volutional, include the following.
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Figure 4.21: Distributions of a) input vectors (x1, x2, x3, x4, x5) and b) their class y =
(y0, y1, y2, y3, y4, y5) vectors.

1. Data Scaling. Demean the N×1 input data x and scale by the standard deviation so
the variance of x is 1. Scaling can also be used to scale input values so that 0 ≤ xi ≤ 1.
For example, the amplitudes in a seismic trace can be normalized to be between −1/2
and +1/2, and then 1/2 is added so that the input amplitudes are between 0 and 1.
Alternatively, the tanh function can be used as the thresholding function in the NN.

2. Weight Initialization. The NN weights W(0) at the first iteration can be initial-
ized by a random number generator to be between -1 and 1. There is no rigorous
advice here, but an early attempt known as Xavier initialization (Glorot and Bengio,
2010) suggested that ”Weights are set at random values sampled uniformly from a
range proportional to the size of the number of nodes in the previous layer (specifically
±1/√n where n is the number of nodes in the prior layer)”. However, He et al. (2015)
suggested this was not appropriate for NNs with ReLU, so they proposed the He ini-
tialization: He initialization: specify the weights as ±

√
2/n where n is the number of

nodes in the prior layer known as the fan-in. In practice, both Gaussian and uniform
versions of the scheme can be used. (Brownlee, 2019). See Exercise 4.7.23.

3. Bias Initialization. The initial bias terms can be set to a small number such as
0.1 for ReLU (Brownlee, 2019). This makes it very likely that the rectified linear
units will be initially active for most inputs in the training set and allow for effective
updating of the model parameters (Goodfellow et al., 2016).

4. Activation Functions. Use ReLUs or some version of them for the activation units
in the hidden layers. Empirical evidence suggests that NNs with ReLU or Swish
activation functions have faster convergence than those using sigmoid-like activation
functions. To quote Goodfellow et al. (2016): ” In modern neural networks, the
default recommendation is to use the rectified linear unit or ReLU.”. However, the
recurrent neural networks (RNNs) still use the tanh or sigmoid activation functions.
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Figure 4.22: Plots of a) L2 objective function versus iteration number, b) actual class labels
of 100 data vectors (x1, x2, x3, x4, x5) and c) y = (y1, y2, y3, y4, y5, y6) class-label predictions
computed by the NN with the node/layer structure denoted by [5 1 6]. Here, the input layer
is counted as a layer. The second row d)-f) of images is the same as the first row except a
ReLU activation function is used instead of a sigmoid in the hidden layer.
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Figure 4.23: Same as Figure 4.22 except the L2 objective function is replaced by the cross-
entropy objective function.
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5. Convolutional Neural Networks. If the NN is deep with more than five layers,
then convolutional NNs (CNNs) is often preferred compared to the fully-connected
NN (FCNN). See Chapter 9.

6. Unknown Label. For multilabel classification, always include an ”unknown” label
as an output node that represents the class not recognizable. This mitigates the
problem of misidentification of a, for example, strange-looking dog being mislabeled
as a cat. If a strange-looking dog picture, not seen in the training data, is in the
out-of-training data then the FCNN will likely choose it as ”unknown” if it has the
option of an unknown label. See Singer (2019).

7. Regularization. To avoid overfitting , regularization is introduced into the solution.
It typically steers the solution to be less complex than the solution for the overfitting
case, and can be implemented in many ways. Examples include incorporating an
explicit penalty term in the objective function (see equation 4.10), reducing the size
of the weights in each layer by such a penalty term, early stopping of the iterations
so the objective function does not go below a threshold value, reducing the size of the
network by dropping out units in each layer (see Chapters 9 and 14), or adding noise
to the input (see Chapter 14). See Exercises 4.7.7-4.7.8 and Exercise 4.7.14.

8. Mini-batch Processing. It is often too computationally demanding to compute the
composite gradient if the entire batch of data cannot be fitted into the computer’s
physical memory. Instead, the data are divided into B non-overlapping mini-batches
(Duchi et al., 2011; Kingma and Ba, 2014; Ruder, 2017), and the solution is sequen-
tially updated for sequential moves along the gradients ∇ǫ{ib} for ib ∈ {1, 2, . . . , B},
where the ibth objective function is ǫ{ib}. This procedure is known as stochastic gradi-
ent descent9 (SGD), where the batch size should easily fit within the physical memory.
Its pseudo-code is presented in Box 4.5.1, where ǫ{ib} is the objective function for the
ibth mini-batch. Figure 4.24 illustrates the updates (4 black arrows at the peak) for
the mini-batch consisting of 4 examples. Here, the gradient is computed at the peak
for four examples, and summed to give the long black arrow. This is repeated for the
next four examples at the end point of the long black arrow.

9The term stochastic gradient descent is sometimes restricted to gradient algorithms where the mini-
batch consists of just one training pair; if the input is more than one training pair then it is referred to as
mini-batch SGD. We will ignore these distinctions and refer to SGD as the iterative code in Box 4.5.1 for
any size mini-batch as long as it is less than the size of the original training data.
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Code 4.5.1. Pseudo-code for Mini-batch Stochastic Gradient Descent

for it = 1 : nit Loop over epochs

for ib = 1 : B Loop over B mini− batches
w{ib+1} = w{ib } − α∇ǫ{ib }

end

w{1} = w{B+1 } Reshuffle data→ B mini− batches
end

The new solution w{1} is computed by moving along the gradient direction ∇ǫ{1} for
a single iteration until it gets to w{2}, the point that minimizes ǫ{1}. This new point
w{2} serves as the starting point for the second mini-batch of data with misfit ǫ{2},
where a new gradient ∇ǫ{2} is computed. We move along ∇ǫ{2} until there is no
further reduction in ǫ{2}. This process is repeated until the iterative solution w{B}

is found for the last batch of data. This is defined as one epoch of iterations. The
data are randomly reshuffled into a new group of B non-overlapping batches, and the
process is repeated until the solution at epoch 2 is reached. This iterative procedure
can be repeated for more epochs until the objective function value is below a specified
threshold value.

The iterative solution by the mini-batch stochastic gradient descent method is guar-
anteed to converge to the global minimum for convex objective functions (Ruder,
2017), and to a local minimum for non-convex functions. The mini-batch can be just
one data example, but typically 50 to 256 are often preferred (Ruder, 2017). The
averaging of gradients in mini-batch SGD efficiently reduces the noise in the gradients
of individual training pairs to give more stable convergence than standard steepest
descent so that mini-batch SGD is typically the algorithm of choice when training a
neural network (Ruder, 2017). Ruder (2017) claims that the SGD gradient can jump
in dramatically different directions from one example to another one, which can lead
to new and potentially better local minima. The mini-batch SGD is very similar to the
Monte Carlo approach to FWI, where mini-batches of shot gathers are inverted from
a randomly selected batch of data (Krebs et al., 2009; Boonyasiriwat and Schuster,
2010; Yang and Wu, 2017; van Herwaarden et al., 2020).

An example of the convergence rate with a CNN is shown in the top plots of Fig-
ure 4.25 for different sized mini-batches. In this example, smaller mini-batches show
faster convergence than the larger batch sizes. Empirical experiments by Keskar et
al. (2017) suggest that large batch sizes are often characterized by objective functions
with sharp minima, and so tend to get stuck in local minima. This is illustrated with
the sharp minimum (with steep sides) shown in the bottom plot of Figure 4.25. In
this example, training with SD will not generalize well to out-of-the-training data. In
contrast, the smaller batch sizes are often characterized by flatter landscapes in the
objective function, and so have less of a tendency to getting stuck in local minima. If
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Figure 4.24: Update arrows for mini-batch SGD using single-example per batch (red) and
gradients for four-examples per-batch (dashed black arrows). The red single-example arrows
move to the next update point after each gradient calculation. The four-example arrows
compute four mini-batch gradients (4 black dashed arrows) evaluated at the same point,
sum them together to get the update direction, and move along this update to the next
model point (long solid black arrow).
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they do get stuck, then they can escape with the next mini-batch iteration.

Dinh et al. (2017) and Kawaguchi et al. (2017) disputed the idea that small-batch
SGD produces flat minimizers that generalize well, while large batches produce sharp
minima with poor generalization. They argue that that generalization is not directly
related to the curvature of loss surfaces, citing some authors that achieve good per-
formance with large batch sizes. What seems to be true here is that it is difficult
to make general conclusions from empirical results on a limited number of sets. This
highlights a weakness of neural networks which lacks a deep theoretical understanding
of its fundamental properties.

9. Step Length. There are many step-length strategies (see Chapter 3), but the adap-
tive ones such as momentum, Adam and Adagrad are quite popular. Nevertheless,
getting trapped in a local minimum and recognizing this is still a challenge. As the
solution gets near the minimum, the step length can be decreased (or annealed) to
avoid overshooting the desired solution. The term step length, like many other terms
in optimization theory, was defined long before the machine learning community re-
discovered this concept, so we often use the term step length rather than the machine
learning (ML) terminology of learning rate.

10. Gradient Verification. If the NN code has a bug in it then the results will likely
be unreliable. To avoid this problem, the gradient calculation of the code ∂ǫ(w)

∂wi
can

be compared to that of the finite-difference estimation of the gradient:

[∂ǫ(w)

∂wi

]FD
=

ǫ(w + δwiêi)− ǫ(w)

δwi
, (4.60)

where δwi is the small perturbation of the ith model component along the unit model
vector êi. The results for validating the NN gradient by a finite-difference compu-
tation are given in Figure 4.26, where the classification problem is the same as that
described in Figure 4.12. Appendix 4.10 presents a fragment of the MATLAB code
that computes this graph.

Alternatively, the gradient computed from your own self-written code can be checked
for accuracy using the automatic differentiation codes that are widely available and
discussed in Chapter 26.

4.6 Summary

The equations for a neural network f(x,W) = y are presented, and their solution
by an iterative gradient method is derived. The NN maps input data to output data by
a concatenated sequence of two operations, matrix-vector multiplication and non-linear
thresholding by an activation function. The greater the number of layers and units/layer,
the more complexity a NN can model in the mapping between x and y. Each matrix in the
neural network is densely populated, which increases the costs of storage and computation
time compared to that of a layer for the sparsely populated convolutional neural network.
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Figure 4.26: Plot of a) RMS misfit versus iteration number. Graphs b)-c) present the
normalized differences ∆ ∂ǫ

∂wij
= ( ∂ǫ

∂wij
− [ ∂ǫ

∂wij
]FD)/γ between the NN gradient ∂ǫ

∂wij
and

the finite-difference gradient [ ∂ǫ
∂wij

]FD. Here, the normalization factor γ = | ∂ǫ
∂wij
| and the

architecture of the 2-layer NN is denoted by [5 10 1] with 5 nodes in the input layer, 10
in the hidden layer, and one in the output layer. The classification problem is the same as
that described in Figure 4.12. The column and row indices are those for the b) 10× 6 W[1]

and c) 1× 10 W[2] matrices in the NN, where the bias variables are included in the model
variables. .
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Two types of problems can be solved by a NN. The first one is a regression problem where
the output elements of y can be a continuous range of numbers on the real line. The second
one is the classification problem where the output values are limited to a small discrete set
of numbers. Each number can be assigned a different class type. The classification problems
typically favor a cross-entropy type objective function while regression problems also use
a L2 misfit function. MATLAB codes are provided and can be used to assess the solution
sensitivity to different parameters such as the damping term, iteration number, step length,
and errors in the data. The more complex equations for finding the gradient of a general
neural network are presented in Chapter 6.

4.7 Exercises

1. Show that ∂g(z)
∂z = g(z)(1 − g(z)), where g(z) is the sigmoid function.

2. A linear operator g(z) has the property that g(αz) = αg(z). Show that g(αz) = αg(z)
is not true if g(z) is the sigmoid function.

3. Assume that the activation function is linear such that g(x) = Wx, where x is an
N × 1 vector and W is an N × N matrix. Show that the multilayer system can be
represented by g(g(g(x)))) = W′x where W′ = W[3]W[2]W[1] and W[i] is the square
matrix associated with the ith layer. Is a multilayer linear system more capable at
modeling a non-linear model than a single-layer linear system? Can the system with
a linear activation function accurately model a non-linear system of equations?

4. Assume that x is the 5 × 1 input vector such that xi ∈ {0, 1} ∀ i ∈ {1, 2, 3, 4, 5}.
Use the same reasoning used for Figure 4.14 to argue that a single-node NN can
distinguish x = (0, 0, 0, 0, 0) from all the other possible inputs. Hint: Each vertex
in Figure 4.14 has two other hidden dimensions, whose points belong to the hidden
planar surface in x4 − x5. This means that there are three extra vertices for each
vertex in Figure 4.14. For example, the vertex (0, 0, 1) has the hidden planar surface
with vertices at (0, 0, 1, 1, 0), (0, 0, 1, 1, 1), (0, 0, 1, 0, 1).

5. Create two separated Gaussian functions from a two-layer NN with four sigmoid
activation functions. The MATLAB code for creating one Gaussian function is in
Box 4.7.1.
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Code 4.7.1. MATLAB code for Generating the Figure 4.9 Gaussian Function
Using a 2-layer Neural Network (Yunsong Huang).

x_ax = linspace(-4,4,51);

[X,Y] = meshgrid(x_ax, x_ax); % x_ax == y_ax

spc = 0.7;

gain1 = 1.75;

thresh2= 3.1;

gain2 = 12;

[output, hiddenSgm, outActvFnt, outActvZ] = assemble4hidden_nodes_fnc(...

X,Y, spc, gain1, thresh2, gain2);

figure

for i = 1:4

subplot(2,2,i)

surf(X,Y,hiddenSgm{i})

xlabel(’x_1’)

ylabel(’x_2’)

end

% print -dpng FourHiddenNeurons.png

figure

subplot(1,4,1)

plot(outActvZ, outActvFnt, ’linewidth’, 1.5)

axis([outActvZ(1), outActvZ(end), -0.05, 1.05])

xlabel(’z’)

title({’Output neuron’’s’, ’activation function’, ’ ’})

subplot(1,4,[2,3,4])

surf(X,Y,output)

xlabel(’x_1’)

ylabel(’x_2’)

title(’The output’)

print -depsc INN.Yunsong.eps

and
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Code 4.7.2. MATLAB code for Generating the Figure 4.9 Gaussian Function
Using a 2-layer Neural Network (cont.)

function [output, hiddenSgm, outActvFnt, outActvZ] = assemble4hidden_nodes_fnc(...

X,Y, spc, gain1, thresh2, gain2)

% Taking inputs in 2-D,

% 4 hidden neuron each has a sigmoid (with gain=gain1, threshold=0), spaced at

% 2*spc apart, a pair facing each other in x, another pair facing each

% other in y. Those 4 sigmoids add up to a max center value at (0,0).

% At the Output neuron taking the 4 hidden neurons as inputs, the threshold

% and gain parameters are thresh2, gain2

% outActvFnt, outActvZ 1D plot of the out neuron’s activation function

%

% X,Y generated by meshgrid

% spc hidden neuron’s facing sigmoids are spaced at 2*spc apart

sz = size(X);

hiddenSgm = cell(1,4);

for i = 1:4, hiddenSgm{i} = zeros(sz); end % init memory

% hiddenSgm’s 1 & 2 are facing each other in x

% 3 & 4 are facing each other in y

% 1 & 3 are increasing functions

% 2 & 4 are decreasing functions

hiddenSgm{1} = 1 ./(1+exp(-gain1.*(X+spc)));

hiddenSgm{2} = 1 ./(1+exp( gain1.*(X-spc)));

hiddenSgm{3} = 1 ./(1+exp(-gain1.*(Y+spc)));

hiddenSgm{4} = 1 ./(1+exp( gain1.*(Y-spc)));

in2 = zeros(sz); % input to the output neuron

for i = 1:4, in2 = in2 + hiddenSgm{i}; end

%--

output = 1 ./(1+exp( -gain2.*(in2-thresh2)));

%--

outActvZ = linspace(2, 4.5, 50);

outActvFnt = 1 ./(1+exp( -gain2.*(outActvZ-thresh2)));

return

6. The bias10 is the average of the squared difference between the prediction ĝ(x) and
the noisy data y = g(x) + ǫ in the equation below:

< (y − ĝ(x))2 > = [Bias(ĝ(x))]2 + V ar(ĝ(x)) + σ2, (4.61)

Bias(ĝ(x)) =< ĝ(x) > −g(x) and V ar(ĝ(x)) =< (ĝ(x)− < ĝ(x) >)2 > .

(4.62)

Here < > represents averaging over the ensemble of the random variables ǫ, where
ǫ is white noise. Note, y and ĝ(x) are random variables because they are functions
of the random variable ǫ. We seek an optimal estimate ĝ(x) that minimizes the sum
of squared errors in equation 4.61. The function g(x) is a deterministic function so
< g >= g and V ar(g(x)) = 0, and we will use the abbreviations g(x) → g and
ĝ(x)→ ĝ .

10The use of the bias term here is different than that which refers to the affine translation term in the
Wx operation of a NN.
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Show that

< (y − ĝ)2 > = < (y − g + g − ĝ)2 >,
= σ2+ < (g − ĝ)2 > +2 < (y − g)(g − ĝ) > . (4.63)

Show that

< (g − ĝ)2 > = < (ĝ− < ĝ > + < ĝ > −g)2 >,
= V ar(ĝ) +Bias2(ĝ) + 2 < (ĝ− < ĝ >)(< ĝ > −ĝ) > .

(4.64)

Show that both cross-product terms are equal to zero:

< (y − g)(g − ĝ) > = < yg − g2 − yĝ + gĝ >,

= g2 − g2− < yĝ > +g < ĝ >,

= − < (g + ǫ)ĝ > +g < ĝ >= 0. (4.65)

Assume that ĝ and ǫ are uncorrelated so < ǫĝ >= 0.

Show that

< (ĝ− < ĝ >)(< ĝ > −g) > = < ĝ < ĝ > − < ĝ >< ĝ > −ĝg+ < ĝ > g >

= 0. (4.66)

Krogh and Vedelsby (1994) show how the bias-variance formula can be used with cross-
validation to estimate NN models that generalize well (Hyndman and Athanasopoulos,
2014).

7. Assume a 1-node perceptron with one layer such that ǫmisfit = 1
2(g(w

Tx)−y)2. Show
that the regularized steepest descent code for updating the bias term w0 = b and the
weights (w1, w2, . . . , wI) is

for k = 1 : niter Loop over iterations

for i = 1 : I Loop over weight index i

wi := wi − α[k]∂ǫ
misfit

∂wi
− λwi,

end

b = b− ∂ǫmisfit

∂b
,

end

(4.67)

The bias term b = w0 does not undergo regularization because its role, in the case of
the linear relationship y = mx+ b, is to shift the decision line, not change its shape.
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8. Does the MATLAB code regularize the bias terms in NNode1.m in
/LAB1/Chapter.Book.FCN/Chapter.Gradient.Neural /lab.html? Change the code
so you can compare the results where the bias terms are regularized versus not regu-
larized. Is there a noticeable difference in convergence rates? Why?

9. Derive equation 4.48.

10. Show that
∑2

i=1 pi = 1, where the binary probability mass distribution function pi
described by the sigmoid function is p1 = σ(z) for y = 1 and p2 = (1−σ(z)) for y = 0.

11. The previous exercise showed that p(y|z) = (1/(1 + e−z))y(1/(1 + e−z))1−y is a PMF
(conditioned on ∞ ≥ z ≥ −∞) in the discrete RV y ∈ {0, 1} because 1 ≥ p(y|z) ≥ 0
and

∑
y=0,1 p(y|z) = 1. If the continuous RV z is drawn from a Gaussian distribution,

can we say that p(y|z) is a probability function in the RV z? Why?

12. Training with inconsistent data. Many data sets have labeling errors, so this results
in a system of NN equations that are inconsistent. For example, the picture of a dog
might be mislabeled as a cat. Introduce 10% error into the labeled training datain
NNode1.m in /LAB1/Chapter.Book.FCN/Chapter.Gradient.Neural/lab.html, i.e. the
labels are wrong so the labeling equations are inconsistent. Rerun the code and
determine the accuracy of predicted labels. Repeat this for different percent errors in
labeled data. Plot percent input error versus percent of prediction error. Is there a
linear relationship between input errors versus label error? Explain.

13. Same as previous question except use the multiclass neural network code in
/LAB1/Chapter.Book.FCN/Chapter.MultiGNN/NNode multiclass.m.

14. Consider the linear affine11 problem where the residual is r = Xw + b − y. The L2

misfit function is

ǫ = 1/2wTXTXw +wTXTb−wTXTy − bTy + bTb+ yTy. (4.68)

Show the following.

• Property 1: the second derivatives of ǫ with respect to the parameters in b do
not depend on the input data in X.

• Property 2: the second derivative of ǫ with respect to (w1, w2, . . .) does depend
on the input data.

• Recall that regularization tends to reduce overfitting so that the predicted output
will not be sensitive to small changes in the input as seen in Figure 4.28b. Use
Properties 1 and 2 to argue why (w1, w2, . . .) needs to be regularized to adjust
the shape of the objective function while w0 = b does not need to be regularized.

11A linear function f(x) preserves the origin of the system of equations such that f(0) = 0, while an
affine function is a composite of a linear function and a translation. For example, z = αx1 + βx2 is a linear
operation for constants α and β, but z = αx1 + βx2 + 4 is an affine operation because it has shifted the
origin by the factor 4.
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15. The Datain.m and Dipslay.m codes are given in Boxes 4.7.3-INN.ZCcode2 and are in
the MATLAB codeNNode1.m in /LAB1/Chapter.Book.FCN/Chapter.Gradient.Neural/lab.html.
Use these codes in conjunction with the one presented in the text to test the perfor-
mance of a single neural network code that classifies 5 × 1 vectors x whose element
values are either 1 or 0. The goal is to train a neural network that can recognize an
input vector x where there is only a single 1 in one of its elements.

• Compare the performance of the least squares algorithm against that of the
cross-entropy algorithm. Which has a faster convergence rate.

• The number of data examples that are classified as 1 should be about the same
as the ones that are classified as 0, otherwise the system of equations will be
ill-conditioned and convergence will slow down. Numerically demonstrate this
fact.

Code 4.7.3. MATLAB Data x = (x1, x2, x3, x4, x5) Generation Subroutine
where xi is either 1 or 0. (Zongcai Feng)

function [x,t,alpha,lim,ww,layer_size,obj,act]=Datain1(M,N,x,t,obj,act,layer_size)

for i=1:M

x(:,i)=round(rand(N,1));

end

for i=1:M

if sum(x(:,i))==0;t(i)=1;end

end

% Now we are setting about 1/2 of x(:,:) to have no 1 in the Nx1 vector

% so about 1/2 data are classed at t=1

t0=find(t==0); t1=find(t==1);

x(:,t0(1:round(M/2)-numel(t1)))=0.0;

t(t0(1:round(M/2)-numel(t1)))=1;

rank = randperm(M);

x=x(:,rank);

t=t(rank);

alpha=1.0; % step size

lim=.00001; % stopping criterion

%layer_size=[N,10,1]; % first and last elements are the input and output layer size

%layer_size=[N,10,1];

%obj=1; %objective function, 1 for L2 norm, 2 for likelihood

%act=1; %active function, 1 for sigmoid norm, 2 for ReLU

layer_num=numel(layer_size); %layer number include the input and output

ww=cell(layer_num-1,1);

for ilayer=1:layer_num-1

% initialize the weights of the neural network with random number

ww{ilayer}=rand(layer_size(ilayer+1),layer_size(ilayer)+1)*0.1; % +1 for bias

end

end
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Code 4.7.4. MATLAB Display of x = (x1, x2, x3, x4, x5) Subroutine (Zongcai
Feng).

function Display1(M,res,nit,ww,layer_size,x,t,obj,act,thresh)

tp=t*0;tpp=tp;

%thresh=.34;

layer_num=numel(layer_size); %layer number include the input and output

aa=cell(layer_num-1,1);

zz=cell(layer_num-1,1);

aa{1}=x;

for iter =1:layer_num-1

aa{iter} = [ones(1, M); aa{iter}];

zz{iter}=ww{iter}*aa{iter};

if iter ==layer_num-1

[aa{iter+1},~] = activation(zz{iter},1);

else

[aa{iter+1},~] = activation(zz{iter},act);

end

end

tp=aa{layer_num};

for m=1:M

if tp(m)>=thresh;tpp(m)=1;end

if tp(m)<thresh;tpp(m)=0;end

end

subplot(131);plot(res(1:nit));

title(’a) RMS Error vs Iter. #’);

if obj==2;text(nit/6,max(res)*.9,’Cross-entropy NN’,’fontsize’,8);

else;

text(nit/6,max(res)*.9,’Least-squares NN’,’fontsize’,8);end

text(nit/15,max(res)*.95,...

[’# nodes/layer = [’,num2str(layer_size),’]’],’fontsize’,8)

if act==2;text(nit/6,max(res)*.85,...

’ReLU activation’,’fontsize’,8);else;

text(nit/6,max(res)*.85,...

’Sigmoid activation’,’fontsize’,8);end

ylabel(’RMS Misfit’);xlabel(’Iteration #’)

subplot(132);plot([1:M],t,’r*’,[1:M],tp,’go’)

ylabel(’Example Class’);xlabel(’Example #’)

title(’b) (Obs=red, Pred=green)’)

subplot(133);plot([1:M],t,’r*’,[1:M],tpp,’g*’)

ylabel(’Example Class’);xlabel(’Example #’)

title([’c) Threshold Value = ’,num2str(thresh)])

text(M/9,.5,’Red * = Mistake’,’color’,’red’)

end

function [ g,dg ] = activation( z,type )

%activation function

%input:

%z: input for atviation function

%type: objetive function type: 1 for sigmoid, 2 for ReLU

%output:

% g is the value of the activation function

% dg is the gradient of g with respective to z

if type==1 % for sigmoid

g = 1.0 ./ (1.0 + exp(-z));

dg = g .* (1 - g); %Compute the gradient

elseif type==2 % for ReLU

g=z*0.0; dg=z*0.0;

g(z>0)=z(z>0);

g(z<=0)=z(z<=0)*0.0;

dg(z>0)=1.0;

dg(z<=0)=0.0;

end

end

16. Prove that the derivative of the univariate softplus function in equation 4.33 is a
sigmoid.

17. Prove that the derivative of the multivariate softplus function in equation 4.34 is the
softmax function for one output node.

18. Create a large training set of data similar to that shown in Figure 4.21, except include
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some mislabeled data. Tune the parameters (such as step length, starting model etc)
of a multilayer NN to give reasonably good convergence and a small RMS error. Now
take a holdout data set that was not used for training and use the trained coefficients
in W to classify each example in the holdout data set. Plot RMS error versus iteration
number for both the training and test data. Is the error rate similar to that of the
training data? Did you overfit the data? Was your training set sufficiently diverse to
account for the characteristics of the holdout data? if you overfitted, what are the
remedies?

19. From the previous problem, generate an RMS error versus network complexity graph
by using deeper networks (or more nodes/layer) so you can compute a graph like that
in Figure 4.27. Can you identify a critical point?

20. Compare the results of using a two-node MATLAB algorithm with the single-node
algorithm. Which one is more tolerant of complexity and noise in the training exam-
ples.

21. In Exercise 4.7.12, how do you determine if you are stuck in a local minima? Hint:
try different starting models. Show results.

22. Show that the derivative of the cross-entropy loss function

ǫ = −
K∑

k=1

yk ln pk, (4.69)

is

∂ǫ

∂oi
= pi − yi, (4.70)

where the softmax function is

pj =
eoj

∑K
k=1 e

ok
. (4.71)

where K is the number of output nodes in the last layer.

23. For the data set from Exercise 4.7.18, test the convergence rate’s sensitivity to different
types of weight initialization for wij : a) random normalized weights of wij between
-1 and 1, b) constant weights with value wij = 1 for all weights, c) wij = 0 for all
weights.

24. An objective function with just one minimum is a convex function (Loiseau, 2020).
The condition for this is that the Hessian matrix H is positive definite bfaTHa ≥ 0
for any vector a. The first step is to show that the following objective function is
convex:

ǫ = − 1

m
[yT lnσ(Xw) + (1− y)T ln(−Xw)], (4.72)
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where m is the number of training examples and

∇wǫ = −XTDX. (4.73)

Each row of X is one of the training examples and each element of y is a label for a
training example. Then show that the Hessian matrix is

H = XTDX, (4.74)

where

D =
1

m
diag[σ(Xw)(1− σ(Xw))]. (4.75)

The second step is to show that bfaTHa ≥ 0.

4.8 Computational Labs

The binary classification lab is in /LAB1/Chapter.Book.FCN/ Chapter.Gradient.Neural/lab.html.
After downloading and unzipping Chapter.Gradient.Neural.zip , execute lab.html. You
will run the MATLAB code NNode1.m to get the results similar to those seen in Fig-
ures 4.13, 4.15, 4.17, and 4.18.

The gradient validation of the NN binary classification code is in /LAB1/Chapter.Book.FCN/
Chapter.Gradient.Neural/lab.html. The MATLAB code NNode test.m generates Fig-
ure 4.26.

The multiclass classification lab is in /LAB1/Chapter.Book.FCN/Chapter.MultiGNN/lab.html.
After downloading and unzipping ./FNN multiclass code.zip , execute lab.html. Now run
the MATLAB code NNode multiclass.m to get the results similar to those seen in Exam-
ple 4.4.2.

4.9 Appendix: Neural Network Workflow

The workflow for finding the optimal model parameters w
[n]
ij for n ∈ {1, 2, . . . , N},

i ∈ {1, 2, . . . , I}, j ∈ {1, 2, . . . , J} that solve the supervised neural network problem consists
of three steps.

1. Training. A large training set of labeled data pairs (x(k),y(k)) are obtained, and
around 80% are randomly selected for training while the rest are selected as the set of
validation data. Computing the optimal values of wij that minimize equation 4.10 is

also known as training. The optimal model parameters w
[n]
ij are found by an iterative

optimization method, e.g. equation 4.11. The training set should be comprehensive
enough to include characteristics seen in all relevant data outside the training set. If
our trained NN model can accurately predict out-of-the-training data then we say that
the NN is well generalized.

How much data is needed for training? According to https:// en.wikipedia.org/ wiki
/ Curse of dimensionality: There should be many more data examples than the to-
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tal number of model dimensions. A typical rule-of-thumb is that there should be at
least 5 training examples for each dimension in the representation (Koutroumbas and
Theodoridis, 2008). Ng and Jordan (2013) suggest the folk wisdom, i.e., the number of
input examples should be linearly related to the number of unknown model parameter-
s. This has some theoretical basis for many models, where the Vapnik–Chervonenkis
(VC) dimension is linear or at most some low-order polynomial in the number of
model parameters. In other words, the sample complexity for the NN is linear in the
VC dimension (Vapnik, 1995).

With a fixed number of training samples, the predictive power of a classifier or regres-
sor first increases as the number of dimensions or features used is increased but then
decreases (Trunk, 1979), which is known as Hughes phenomenon (Hughes, 1968) or
peaking phenomena (Koutroumbas and Theodoridis, 2008). For example, if 5 points
distributed along the real line were considered sufficient to represent the data density,
then in N dimensions we need 5N points with sufficient density. If the input vector
x consist of the brightness intensity values in the N = 106 pixels of a digital picture,
then according to the rule-of-thumb there should be 510

6
training examples! This is

too pessimistic of a rule-of-thumb because the data points mostly exist on a much
lower-dimensional manifold. Nevertheless, it is not surprising that the most labor-
intensive task in supervised learning is often labeling of the large set of training data.
The amount of data needed for training is often a trial-and-error exercise.

For logistic regression, a widely used rule of thumb, the ”one in ten rule”, states
(https://en.wikipedia.org/wiki/Logistic regression) that logistic regression models give
stable values for the explanatory variables12 if based on a minimum of about 10 events
per explanatory variable (EPV); where event denotes the cases belonging to the less
frequent category in the dependent variable. If the network has 106 explanatory vari-
ables, this suggests that O(107) training examples are needed.

2. Validation. The accuracy of the computed model parameters in W are tested13 on
the validation data f(x,W) ≈ y, where (x,y) belong to the validation set, which is
a random selection of about 20% of the labeled data (see Figure 2.8). A satisfacto-
ry model is attained if the prediction accuracy for the validation data is similar, i.e.
within a few percent, to that for the training data. Otherwise, a more comprehensive
data set and/or a better model architecture is needed.

The value of the damping term λ > 0 in equation 4.10 determines which objective
is more important, reducing the data misfit or the regularizing penalty term. Fig-
ure 4.27 illustrates how increasing the complexity of the neural network to the right
of the critical point (red asterisk) leads to overfitting where the accuracy of the test-
data predictions starts to decrease. As an example, the overfitted curve in Figure 4.28b
fits almost every wiggle in the training data because the model complexity is too high.

12The explanatory variables are the coefficients wij that predict the given data.
13Here, W corresponds to the coefficients in W[n] for all of the layers.
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As discussed in section 2.1.6, the tendency to overfit data can be reduced by using a
larger value of the regularization parameter λ > 0 or by reducing the model complexi-
ty with fewer layers and/or nodes in the network. However, if the model is too simple
then it underfit s the data as illustrated by the simple linear model in Figure 4.28a.
Choosing the best model that neither overfits or underfits is sometimes known as the
bias-variance tradeoff, where increasing the bias (see Exercise 4.7.6) will decrease the
variance14 or vice versa (Bishop, 2006). As shown in Figure 4.28c, the well-balanced
model fits the actual pattern in the data and largely ignores the noise. Such models
tend to generalize well to holdout data if its main features are contained in the train-
ing data.

Network Complexity, 1/

E
rr

o
r

Training data

Test data

Overfitted

*

Critical

point

Figure 4.27: Prediction accuracy of the training and test data versus complexity and 1/λ of
the NN. If the network is too complex, as we move to the right of the red critical point, then
it begins to memorize (Arpit et al., 2017; Radhakrishnan et al., 2019) both noise and signal
in the input images. The consequence is that the NN can have difficulty in accurately
predicting the class type of new input data. Increasing the value of the regularization
parameter λ and/or decreasing the number of nodes or layers tends to mitigate memorization
problems at the possible loss of accuracy.

One type of a robust training procedure is cross-validation , which resamples the la-
beled data and trains on different subsets of it. Cross-validation randomly divides your
training data into, say, 10 subsets D(s) for s ∈ {1, 2, . . . , 10}, holding out each subset

14Variance is the variability of the model’s prediction of output target values, which informs us about
the spread of our predictions. Models with high variance tend to overfit, i.e. memorize (Arpit et al., 2017;
Radhakrishnan et al., 2019), training data and cannot easily be generalized to accurately fit holdout or test
data. Small changes in the holdout data lead to large changes in the predictions for an overfitted model.
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a)       Underfit b)      Overfit c)    Balanced Fit
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Figure 4.28: Plots of a) underfit ted, b) overfitted and c) well-fitted (x, y) points.

while training on the other 9 subsets, testing each learned classifier W(s) on the exam-
ples it did not see. The RMS errors from all ten trained classifiersW(s) are averaged to
get an accurate prediction of NN performance (https://en.wikipedia.org/wiki/Cross-
validation (statistics)). In some cases, the W(s) with the best performance is used for
the holdout data (https://www.datarobot.com/wiki/cross-validation/). As an example
of best performance for classification, assume that ten models can be used to make
predictions, and the final class type for an input is by majority vote. For regression
the final output is by averaging the output values at an output node (Krogh and
Vedelsby, 1994).

3. Inference. Once properly trained to get the optimal coefficients W[n] for n ∈
{1, 2, . . . , N}, the model is used to predict the output ypred. from unlabeled data
x. Accurate predictions are achieved if the NN has been well generalized so that W[n]

has captured the hidden patterns from a large set of training examples. However,
even if the network is over-parameterized, Arpit et al. (2019) state the following:”
Yet deep neural networks (DNNs) often achieve excellent generalization performance
with massively over-parameterized models. This phenomenon is not well-understood.”.

4.10 Appendix: MATLAB Code for Validation of the NN

Gradient
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Code 4.10.1. MATLAB Code Fragment for Validating a 2-layer NN Gradient
(Zongcai Feng).

for obj=1:2

for act=1:2

% disp([’obj = ’,num2str(obj),’, act = ’,num2str(act),]);

[grad,~]=gradientnn(M,x,t,ww,layer_size,obj,act);

grad_numel=grad;

ww_numel=ww;

e = 1e-4;

for ilayer=1:layer_num-1

grad_numel{ilayer}=grad{ilayer}*0.0;

for irow=1:layer_size(ilayer+1)

for icolumn=1:layer_size(ilayer)+1

ww_numel=ww;

ww_numel{ilayer}(irow,icolumn)=ww{ilayer}(irow,icolumn)-e;

[~,res1]=gradientnn(M,x,t,ww_numel,layer_size,obj,act);

ww_numel{ilayer}(irow,icolumn)=ww{ilayer}(irow,icolumn)+e;

[~,res2]=gradientnn(M,x,t,ww_numel,layer_size,obj,act);

grad_numel{ilayer}(irow,icolumn) = (res2 - res1) / (2*e); %numerical gradient

disp([’Analytic grad = ’,num2str(grad{ilayer}(irow,icolumn)),...

’, Nume grad = ’,num2str(grad_numel{ilayer}(irow,icolumn)), ...

’, Diff = ’,num2str(grad{ilayer}(irow,icolumn)-grad_numel{ilayer}(irow,icolumn))]);

end

end

end

end

end

diffgrad1=(grad{1}(:,:)-grad_numel{1}(:,:))/max(abs(grad{1}(:)));

diffgrad2=(grad{2}(:,:)-grad_numel{2}(:,:))/max(abs(grad{2}(:)));

figure(2);

subplot(121);imagesc( diffgrad1);colorbar;

subplot(122);imagesc( diffgrad2);colorbar;

figure(1)



Chapter 5

Processing Geophysical Data with
Fully-Connected Neural Networks

We now present several examples where a fully-connected neural network (FCNN) or
a support vector machine method (see Chapter 7) is used to process geophysical data.
The first two examples will be for filtering artifacts from migration images and the third
example will be for designing windows in the frequency-wavenumber (FK) domain so that
the fundamental-mode spectrum is separated from that of the higher-mode arrivals. Readers
not familiar with seismic imaging are referred to Appendix 27.

5.1 FCNN Filtering of Migration Images in z = (x, z)

Seismic migration (see Appendix 27.2) is an imaging method that estimates the subsur-
face reflectivity from seismic data (Yilmaz, 2001); the final result is denoted as the migration
image m(z) where z = (x, z). For the example in Figure 5.1a, seismic data recorded on
the top horizontal surface are migrated to give the large amplitude values of m(z), which
denote the locations of the fan-like reflecting interfaces. Some of the large amplitudes are
artifacts from the migration method and do not indicate an actual reflector. The NN and
support vector machine (SVM) methods will now be used to denoise the migration images
computed from synthetic seismic data. A tutorial for seismic migration is in Appendix 27.2
and more details are in Yilmaz (2001). The SVM method, described in Chapter 7, is closely
related to that of a NN in that it finds the best decision surface that separates one class of
objects from another.

The goal is to use a fully-connected neural network to distinguish noise from the re-
flection signals in the Figure 5.1a migration image. As discussed in Appendix 27.2, the
elliptical features are typically due to aliasing artifacts in the migration image and can be
identified as noise by a geophysical interpreter. If the geophysicist can assign local labels
to a representative set of noisy migration images, then these data can be used to train a
NN to distinguish noise from signal. The trained NN can then be used to suppress coherent
artifacts in test migration images.

The workflow for NN identification of migration noise consists of the following steps,
where the migration amplitude m(zi) at the i

th pixel in Figure 5.1a is denoted as mi.
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Figure 5.1: Images of the a) raw migration section mi, b) dominant dip angle θi, c) mi-
gration coherency φi, and d) envelope amplitudes Ai of the migration image for all pixels
i ∈ {1, 2, ..., N}; the Ai is related to the amplitude of the trace’s Hilbert transform (see Ap-
pendix 5.8). Here, the migration image is a 201×201 digital image soN = 201·201 = 40, 401.
Colorbar values are normalized.

• skeletonized Features in m(z). To train the neural network, the first step is to
define a small 5 × 5 window centered at the ith pixel. Three skeletonized character-
istics are then computed for the image in this small window: dominant dip angle,
coherency and maximum amplitude as described in Appendix 5.8. The human in-
terpreter classifies selected pixels in the training migration image as either noise or

signal. The computer computes the three skeletal characteristics (x
(i)
1 , x

(i)
2 , x

(i)
3 ) at

each of the selected pixels in m(z) and assigns the classification value y(i). Therefore,

the ith input vector1 is the 4× 1 vector (1, x
(i)
1 , x

(i)
2 , x

(i)
3 ) with the label y(i): y(i) = 1

for signal, otherwise y(i) = 0. For the migration examples, only 70 image pixels (0.17
% of original image) are selected for training from the 201×201 migration image m(z)
in Figure 5.1a.

What are the optimal skeletal characteristics of m(z) that can distinguish noise from
signal? The answer is to use intuition and experience to identify the most signif-
icant characteristics that distinguish noise from signal. For example, we recognize
that migration artifacts should have weak coherency φi, large dip angles θi, and weak
amplitudes Ai at the i

th pixel, while the reflection signal should mostly be character-
ized by strong coherency, modest dip angles, and strong amplitudes. As an example,
Figure 5.1 plots the φi values at all pixels where weak coherency is indicated by the
deep-blue color. Therefore we use (θi, φi, A

(i)) as the skeletonized characteristics of

1The ith superscript in x(i) denotes the ith example, and in this case also denotes the i(th) pixel in the
image.
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b) Two-layer Neural Networka) One-Layer Neural Network

Figure 5.2: Neural network architectures for a) one- and b) two-layer neural networks. The
one-layer one-node network diagram is for the logistic network and the two-layer multi-node
architecture is for the neural network used in the examples.

the migration image to distinguish noise from signal. Other characteristics might be
more effective and should be used if needed for better accuracy.

• NN Training. The input training pair is now defined as (x(i), y(i)) = (1, θi, φi, A
(i), y(i))

for 70 points in the migration image in Figure 5.1a. The value 1 is assigned to the
first element of x(i) because it is associated with the bias term in the NN. The ith

example, which is also the specified ith pixel, in the training set is manually labeled
as either signal y(i) = 1 or noise y(i) = 0. There will be two neural-network models,
one of them will consist of a single hidden layer with one node (see Figure 5.2a), and
the other will be two layers (see Figure 5.2b), with the hidden layer consisting of 15
nodes. All of the layers use sigmoid-activation functions.

• Decision Surface. The NN procedure is then used to find the weights of the NN
(including the bias terms for each node) that cleanly label the noise and signal pixels.
This generates a decision surface in the feature spaces shown in Figure 5.3a-5.3b.
Here, the yellow-colored planes in a) and b) define the decision surfaces in the 3D
feature space. On one side of this surface the points are labeled as y = 1, while the
other side has y = 0. This decision boundary was found by using the trained neural
network to predict the class type (either 0 or 1) for all points in the discretized 3D
volume. Then the 2D surface can be found by inspection.

• Fully Connected Neural Network Inference. Once the FCNN model parameters
are found then the other parts of the migration image (i.e., out-of-the-training-set
data) are automatically labeled by inference. If the amplitude of the automatically
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Figure 5.3: Decision boundaries computed by a) single-layer logistic regression and a b)
two-layer NN with 15 nodes in hidden layer. The corresponding decision areas for the
migration images are directly below the feature plots where yellow denotes noise and blue
is signal. The yellow circles in a) and b) denote signal and the black ”+’ symbols denote
noise.

labeled image is noise then that amplitude can later be filtered by some method such
as muting. The automatically labeled features are shown in Figure 5.3c-5.3d, where
yellow indicates noise and dark blue indicates signal. Here, the amplitudes classified
as noise are suppressed by muting in the post-stack image and the resulting migration
images are shown in c) and d).

Instead of a linear model wTx inside the argument of the activation function, we can
employ a non-linear model such as the example shown in Figure 2.7. That is, if the skeletal
data is x = (1, x1, x2, x3) at each pixel2 then our adjusted input data can be the 9 × 1
feature vector

x = (1, x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3), (5.1)

compared to the 4 × 1 input data vector used for Figure 5.3. The results are shown in
Figure 5.4a, where the decision boundary has more curvature than those shown in Figure 5.3.
However, there is not much of a difference in the filtered migration images. As a comparison,
the support vector machine results (see Chapter 7) are shown in Figure 5.4b and 5.4d. Here,
the decision boundary is along a non-linear surface, as expected. The problem with this
simple example is that the strongest amplitudes usually distinguished noise from signal.
This is typically not the case with realistic seismic data and their associated migration
images.

2The pixel superscript (i) is silent in this example.
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Figure 5.4: Similar to the previous figure except the input at each pixel is the 10×1 feature
vector in equation 5.1. For comparison, the support vector machine (SVM) results are
shown in b) and d). In both cases the decision boundary is not along a plane.

5.2 Filtering of Migration Images in the Angle Domain

One of the problems with the above NN strategy is conflicting dips, where signals inter-
sect the coherent noise in the migration image m(z). Undesirably, muting the noise at the
noise+signal intersection can also kill useful signal. A better approach is to transform the
traces into a domain where the signals separate from the coherent noise. In this new do-
main, NN training and filtering can be done to eliminate the noise; here, filtering is nothing
more than muting the noise separated from the signal. Then the filtered data are inverse
transformed to get the filtered migration image in the x − z domain. Instead of explicitly
using NN, we will use the support vector machine to distinguish noise from signal in the
angle domain. The reason for doing this is that the previous section showed that the NN
with several layers had the same capability as that of the SVM.

5.2.1 Angle Domain Transform

The transform that separates different dipping events in the migration image is a local
slant stack applied to each migration trace in the extended domain image m(H,x, z) to get
m̃(θ, x, z), which is denoted the dip-angle angle-domain common image gather (ADCIG)
(see lower left Dip Gather image in Figure 5.5 and Chen et al. (2020)) for a specified value
of the x coordinate. Here, H is the subsurface offset variable. The ADCIG is displayed for
−30o ≤ θ ≤ 30o and 0 ≤ z ≤ zmax−depth at the fixed offset coordinate x. Three feature
panels can be extracted from the ADCIG for SVM training: coherency, amplitude, and
local dip-angle feature panels. Similar to training in the previous examples, a small set of
selected pixels and a few features at each selected pixel in the ADCIG domain are defined,
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Figure 5.5: Workflow for SVM (or NN) applied to ADCIG’s computed from the red migra-
tion trace (and a few neighboring traces) in the upper-left panel. Three feature images are
extracted from each ADCIG, the noise and signals are labeled, and the SVM is trained. The
trained SVM is then used to label pixels in the new ADCIGs, and then the pixels labeled
as noise are muted (Chen et al., 2020).
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Figure 5.6: Migration images a), c) before and b), d) after SVM filtering of the ADCIGs.
The top and bottom rows of migration images were computed from aliased data traces with
source and receiver intervals of 100 m and 200 m, respectively (Chen et al., 2020).

and the selected pixel is labeled as either noise or signal. This allows for muting filters to
be applied to the data in the ADCIG domain, which are then inverse transformed back
into the x− z domain of the migration image (Chen et al., 2020). An example is shown in
Figure 5.6 where aliasing artifacts in the a) and c) migration images are largely eliminated
after filtering in the b) and d) images.

5.2.2 Filtering Angle Domain Migration Images from Marine Data

Filtering of migration images is next applied to marine data from the North Sea (Chen
et al., 2020). Figure 5.7 shows a vertical slice of the 3D migration image (top) before and
(bottom) after SVM filtering of the migration image, which used a Gaussian kernel. We
will only show the results for the SVM and not the NN with two layers (50 nodes in the 1st
layer and 25 in the second) because the synthetic tests showed them to be almost identical
in performance.

In the training phase, noise is labeled in the angle-domain gathers of Figure 5.5, and
the network is then trained over a small set of 4 × 1 feature vectors. The top image in
Figure 5.7 has many aliasing artifacts that show up as jittery interfaces at the shallow
depths 0 < z < 1.5 km. The filtered image is the bottom image and shows that they are
largely eliminated by SVM filtering.
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Figure 5.7: Migration images from the North Sea (top) before and (bottom) after SVM
filtering of ADCIGs with a Gaussian kernel.

5.3 NN Filtering of Surface Waves

The Rayleigh waves in the common shot gather (see Appendix 27.3) displayed in Fig-
ure 5.8b can be inverted to get an estimate of the S-velocity model v(x, z)s in Figure 5.8a.
Such models can be very useful for assessing the strength of near-surface soil and rocks (Y-
ilmaz, 2001). The Rayleigh waves in Figure 5.8b have the largest amplitudes and propagate
with an apparent horizontal velocity that is a weighted average of the shear velocity to a
depth of about 1/3 to 1/2 of a wavelength. Wavelength decreases with increasing frequency
so the higher (lower) frequencies are affected by the S velocities in the shallower (deeper)
portions of the medium.

To invert for v(x, z)s, the common shot gather d(x, t) on the leftside of Figure 5.9 is
Fourier transformed along both the x and t axes to get the magnitude spectrum D̃(k, ω)
shown on the rightside of Figure 5.9. The standard strategy is to either pick the fundamen-
tal dispersion curve3 κ(ω) in the D̃(k, ω) spectrum and invert it for v(x, z)s, or transform
this curve to phase velocity C(ω) and invert this for the shear-velocity model. The prob-
lem is that the higher-order modes can interfere with accurate picking of the fundamental
dispersion curve, especially if an auto-picker is used. Another problem is that manual, or
semi-manual, picking of dispersion curves for a large number of shot gathers requires an
enormous amount of manual labor.

To avoid such problems, the strategy will be to define a window in the k − ω domain

3The fundamental dispersion mode can be conveniently picked because it has the largest magnitude
spectrum in the k − ω domain.
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Figure 5.9: Common shot gather d(x, t) on the left and the fundamental (n=0) dispersion
curves for Love waves in the (top right) k− ω and (bottom right) C(ω)− ω domains. Here
the phase velocity is C(ω) = ω/κ(ω) and κ(ω) is the picked dispersion curve, i.e. the
skeletonized data (Li et al., 2017).

that separates the fundamental from the higher-order mode energy. All energy outside this
window is muted so that the autopicker can more easily identify the fundamental dispersion
cure. To automatically create this window, we will train a neural network to define it in the
k− ω domain, and then apply it to out-of-the-training set data to isolate the fundamental-
mode energy in D̃(k, ω). A standard auto-picker can then be used to pick κ(ω), which can
then be inverted for v(x, z)s.

Figure 5.11 illustrates the workflow for NN identification of the window that only con-
tains fundamental-mode energy in D̃(k, ω). The workflow consists of the following steps.

• skeletonized Features of D̃(k, ω). Three features that will be used to identify the
window for the fundamental-mode energy in D̃(k, ω) are coherency, local-dip angle,
and frequency range as illustrated in Figure 5.10 and described in Appendix 5.8. The
brown window in the bottom right of Figure 5.11 partly coincides with the steeply
dipping orange zone seen in Figure 5.10b. Local dip angle and coherency have been
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Figure 5.10: Three feature images associated with the magnitude spectra of a shot gather:
a) amplitude coherency, b) dip angle by slant stacking, and c) the frequency range.

defined in the previous sections.

Frequency range is the third skeletonized feature selected for the fundamental disper-
sion window. The boundary of the orange slab in Figure 5.10b has shallow dip angles
at low frequencies 5-12 Hz and steep dip angles at higher frequencies 30-80 Hz. This
suggests that the frequency and wavenumber of the fundamental mode are correlated
with one another, and roughly follow the pattern of the orange slab. To ensure that
this correlation between dip and frequency is noticed by the NN, we also include the
skeletal data denoted as the frequency range map in Figure 5.10c. It associates each
pixel in the skeletal input image with the actual frequency in the magnitude spectrum.
For example, comparing Figure 5.10c with Figure 5.10b allows the human observer
to guess that the orange slab has steep dips at higher frequencies and shallow dips at
lower frequencies. If the human can detect this correlation, so will the NN.

• Training. Training is similar to that for the migration filtering in section 5.1. The
difference is that the three features are obtained from the magnitude spectrum of a
shot gather, and the three feature maps are shown in the lower left of Figure 5.11. If
the pixel in the k − ω domain belongs to the Rayleigh-wave window, then that pixel
is labeled y = 1. As an example, the window for the fundamental mode is shown on
the lower right side of Figure 5.11 as a brown finger-like body. The model is trained
until there is a clear separation boundary in the feature space that separates regions
within (blue symbols in middle plot) and outside (orange symbols in middle plot) the
fundamental mode window.

• Decision Surface. The decision boundary that separates the y = 1 and y = 0 points
can be determined by finding the labels for every point in the middle plot and finding
the decision boundary by inspection.

• Inference. Once the NN model is trained it is then applied to unlabeled magni-
tude spectra to determine the window associated with the fundamental modes. The
fundamental curve can then be auto-picked more easily because there are no distract-
ing higher-order modes. The auto-picked curves for the fundamental mode are then
inverted using the procedure described in Li et al. (2017, 2020) to get v(x, z)s.
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Figure 5.11: The classical machine learning workflow consists of four steps: data prepro-
cessing, feature extraction, model learning and model evaluation.

As an example, the shot gather in Figure 5.8b is computed for a shot at the surface of
the Figure 5.8a model. The P-velocity model is the same as the S-velocity model except
that it is scaled by the multiplicative value of, e.g., 2. We will test four different machine
learning models for binary classification: a single-hidden layer NN with one node in the
hidden layer (also denoted as logistic regression), a single-layer NN with 10 nodes in the
layer, a SVM with a Gaussian kernel, and a two-layer neural network with 50 nodes in the
first layer and 25 nodes in the layer just before the output.

The frequency spectrum of the raw shot gather in Figure 5.8b is shown in Figure 5.12a.
After training, the windowed spectra computed by logistic regression, single-layer NN, and
SVM are shown in Figure 5.12b, 5.12c,and 5.12d, respectively. The window for the two-layer
NN is almost identical to that for the SVM. Inverse transforming these windowed spectra
gives the shot gathers in Figure 5.13. The 2-layer NN gives a shot gather almost identical
to the SVM shot gather.

Which filtered shot gather in Figure 5.13 is correct? To partially answer this question
we assume a three-layer approximation to the Figure 5.9a model, and analytically compute
its fundamental-dispersion curve. The analytic dispersion curve is plotted as a dashed white
line in Figure 5.14. It is seen that the fundamental-dispersion curve most closely follows the
spectrum associated with the SVM window. The results for the SVM window are almost
identical to those in Figure 5.15 computed by the 2-layer NN window.

5.4 MATLAB Codes

The migration images in Figure 5.1 are created by MATLAB codes, with the main
code fragments given below. Before they are executed the user selects and labels y = 0
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Figure 5.12: a) The frequency spectrum of the raw shot gather. Also, b), c) and d) show
the output mute-window delineated by the logistic regression, neural network and SVM
windows, respectively (Li et al., 2020).
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Figure 5.13: a) Raw shot gather. The b), c) and d) panels show the shot gathers filtered
by the logistic regression, neural network and SVM windows, respectively. (Li et al., 2020).

for about 50 points in the migration image that are migration artifacts. About the same
number of points are selected as reflectors with the label y = 1. These labeled points are
then used to train the algorithms. This lab is in the Computational labs directory LAB1/
Chapter.Book.GNN/NNMigration/lab.html. The main fragment of the logistic regression
code is given in Appendix 5.9.
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Figure 5.14: The dispersion curves of a) the raw shot gather and those filtered by the b)
logistic regression, c) neural network, and d) kernel SVM windows.
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b)   Window of Multi-layer Neural Network

c) Processed Shot Gather of Multi-layer NN
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d) Processed Dispersion of Multi-layer NN

Figure 5.15: a) The frequency spectrum of the raw shot gather, b) the fundamental-
dispersion curve window delineated by the two-layer neural network, c) the shot gather
filtered by the multilayer NN and d) the dispersion curve of the multilayer NN processed
data.

5.5 Summary

Geophysical examples are presented for processing seismic data by neural networks. In
each of the cases, the raw data were skeletonized as features that were thought to distinguish
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signal from noise. Sometimes this separation is best achieved by transforming to a domain
where noise and signal are untangled from one another. The challenge is to use experience,
trial-and-error, and physics-based intuition to identify the skeletal features in the data that
strongly distinguish noise from data. MATLAB codes are provided in order to reproduce
some of the examples, and they can be adjusted to tackled other geophysical problems.

5.6 Exercises

1. What other skeletonized features could be used to distinguish migration noise from
signal? Adjust the code in LAB1/Chapter.Book.GNN/NNMigration/lab.html and
try your new ideas.

2. Use the code in LAB1/Chapter.Book.GNN/NNSurfaceWave/lab.html to separate
left and right going waves in a shot gather. Compare these results to those using
conventional quadrant muting in the FK domain.

3. Subsample your traces in the shot gather at more than 1/2 of a horizontal wavelength,
which means that the data are aliased. Train a ML filter to eliminate the leakage of
the aliased energy in the FK domain, assuming it does not overlap the signal.

4. Create some traces in time. Add in large amplitude noise at short time intervals, also
known as burst noise. Train a NN to eliminate this burst noise.

5.7 Computational Labs

1. Go to the lab in LAB1/Chapter.Book.GNN/NNMigration/lab.html and run the lab.
This MATLAB code computes the decision boundaries that separate signal from noise
in migration images, and then mutes the noise in the migration image in the (x, z)
domain. The performance of the SVM is compared to that of the neural network and
logistic regression algorithms.

2. Go to the lab in LAB1/Chapter.Book.GNN/NNSurfaceWave/lab.html and run the
lab. This MATLAB code computes the window in the k−ω domain that isolates the
fundamental mode Rayleigh wave from the higher-order modes.

5.8 Appendix: Dip Angles, Coherency and Amplitudes of a
Migration Image

The dip angle, coherency and amplitude at each pixel of a migration image are skele-
tonized characteristics that can be used to sometimes distinguish aliasing noise from signal.
We now describe the computation of each feature.

To compute these three skeletonized characteristics we first define a sliding 5×5 window
centered at the ith pixel in the migration image. The 5x5 window is used because it is about
one wavelength in size for our migration example, and it is slid from one pixel to the next
to compute each pixel-centered feature. We apply a local slant stack (Yilmaz, 2001) to
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the windowed data centered at the ith pixel to get the dip angle of the dominant reflection
energy. The local slant stack is the summation of amplitudes of migration traces that
intersect a line slanted at a specified angle. Only the neighboring six or so traces (i.e., 1-2
wavelengths) centered around the ith pixel are used for this summation. The dip angle of
the line is iteratively incremented by about 5-15 degrees and the dip angle with the largest
summed amplitude is assigned to be θi. To reduce noise, the summation can be over trace
amplitudes that intersect a ”fat line”, where the thickness of the ”fat” line is about one-half
of a wavelength.

The 5× 5 window is shifted over by one pixel and the slant-stack procedure is repeated
to give θi+1. Repeating this procedure for all the training set pixels in Figure 5.1a gives the
dip angle image shown in Figure 5.1b. In practice, only 70 pixels are in the actual training
set.

The coherency φi at the ith pixel of Figure 5.1a is computed by forming a common
image gather (CIG) or a common angle gather (CAG) from the prestack migration images
(Yilmaz, 2001). If the migration velocity is accurate then summing along the offset axis
(or angle axis if the CAG is used) should give a strong coherency value φi at the i

th pixel.
Repeating this procedure for all the pixels in Figure 5.1a gives the coherency image shown
in Figure 5.1c.

The amplitude image in Figure 5.1d is obtained by computing the Hilbert transform of a
trace in the migration image (Yilmaz, 2001). Then the envelope amplitude Ai is computed
in the window centered at the ith pixel.

5.9 Appendix: MATLAB Code for Logistic Regression

The main fragment of the logistic regression code is given below.
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Code 5.9.1. MATLAB Logistic Regression Code (Yuqing Chen)

[m,n]=size(X); % Get the size of training example

X2=[ones(m,1) X]; % Add intercept term to the training set

disp(’Calculating decision boundary’)

maxiter=500; % Iteration numbers

theta=rand(n+1,1)-0.5; % Initialize the model parameters

step=10; % Set the step length

for iter=1:maxiter

[cost, grad] = costFunction2(theta, X2, Y); % Compute data misfit (cost) and gradient (grad)

if(mod(iter,20)==0) % Show the data misfit at every 20 iterations

fprintf(’iter= %d res = %f\n’,iter,cost)

end

theta2=theta-step.*grad; % Update the model parameters with a

% trial step length

[cost1, grad_temp] = costFunction2(theta2, X2, Y);% Compute the new misfit (cost1)

% and gradient (grad_temp)

% fprintf(’res1 = %f\n’,cost1)

if(cost1>cost) % If the new misfit (cost1) is larger than the previous misfit (cost),

% then we reduce the step length and try again

step=step*0.8; % Reduce the step length

theta2=theta-step.*grad; % Update the model parameters with reduced trail step length

[cost1, grad_temp] = costFunction2(theta2, X2, Y); % Compute the new misfit

fprintf(’step = %f, res1 = %f\n’,step,cost1) % Print the step length and data misfit

end % When the new misfit is smaller than the

%misfit at the previous iteration (cost1 < cost), we update the model parameter

theta=theta2;

end

%

%

disp(’Display decision boundary’)

[X_surf1,Y_surf1]=meshgrid(min(cohe_vec2):0.01:max(cohe_vec2),min(angl_vec2):0.01:max(cohe_vec2));

Z_surf1=-(theta(1)+theta(2).*X_surf1+theta(3).*Y_surf1)./theta(4); % compute the hyperplane

% predicted by the logistic

% regression

hold on

surf(X_surf1,Y_surf1,Z_surf1) % Display the hyperplane
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The main fragment of the neural network code is given below.

Code 5.9.2. MATLAB Neural Network Code (Yuqing Chen)

lamda=0.0; step=10; maxiter=500; % lambda: regularization term (higher lambda can avoid

% over-fitting but will lost accuracy)

for iter=1:maxiter

[cost,grad] = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...

num_labels, X2, Y, lamda); % nnCostFunction is the kernel used to

% compute the data misfit and gradient

if(mod(iter,50)==0||iter==1)

fprintf(’iter= %d, res = %f\n’,iter,cost)

end

nn_params2=nn_params-step*grad;

[cost1,grad_temp] = nnCostFunction(nn_params2, input_layer_size, hidden_layer_size, ...

num_labels, X2, Y, lamda);

while(cost1>cost)

step=step*0.8;

nn_params2=nn_params-step*grad;

[cost1,grad_temp] = nnCostFunction(nn_params2, input_layer_size, hidden_layer_size, ...

num_labels, X2, Y, lamda);

fprintf(’step = %f, res1 = %f\n’,step,cost1)

end

nn_params=nn_params2;

end
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Chapter 6

Multilayer Fully-Connected Neural
Networks

The recursive equations for both the feed-forward and backward-propagation operations
are derived for a multilayered fully-connected neural network. For each iteration, the feed-
forward and gradient computations cost about O(N2M) algebraic operations for N layers,
each one associated with an M ×M weight matrix. The workflow and pseudo-MATLAB
codes are presented for implementing the multilayer neural network algorithm.

6.1 Introduction

A fully-connected neural network consists of a sequence of computational nodes arranged
in distinct layers (see Figure 5.11). Each layer is a vertical sequence of computational
nodes, where we assume N layers in the neural network and each layer can have a different
number of nodes. The input nodes are not counted as a network layer because there is no
computational processing at these nodes. The FCNN matrix for each layer is dense and
fully populated with mostly non-zero numbers.

There are two operations required for computing the gradient of the objective function:
feed-forward and back-propagation. The next two sections derive the formulas for these two
operations so they can be computed in an efficient recursive fashion.

6.2 Feed-forward Operation

The feed-forward operation of the neural network inputs the features a
[0]
i from the s-

tarting 0th layer and produces the predicted target value a[N]

i at the last N th layer:

a[N]

i = g(

z
[N]
i︷ ︸︸ ︷

µN−1∑

j=1

w[N]

ij g(

z
[N−1]
j︷ ︸︸ ︷

µN−2∑

k=1

w[N−1]

jk g(.... g(

z
[0]
m︷ ︸︸ ︷

µ1∑

n=1

w[1]
mna

[0]
n )...))), (6.1)
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where µi is the number of nodes in the ith layer and we have assumed the same type of
activation function g(·) in each layer. If different activation functions are used then we can
append a superscript such that g[k](·) denotes the activation function in the kth layer. Here,

the variable z
[k]
i and output parameters a

[k]
i = g(z

[k]
i ) of the kth layer can be assembled into

the µk×1 vectors z[k] and a[k] = g(z[k]), respectively. The activation function g(·) is applied
to each element of z[n] so that g(z[n]) is a vector of the same dimension as z[n], with the
components

z
[n]
i =

µn−1∑

j=1

w
[n]
ij a

[n−1]
j , (6.2)

for i ∈ {1, 2, ...µn}.
The components of the µn × 1 vector a[n] can be recursively computed from the com-

ponents of a[n−1] in the lower-order (n− 1)th layer. This recursion can lead to a significant
gain in efficient computations as seen in the pseudo-MATLAB code below.

load a[0];

for n = 1 : N

load W[n]

z[n] = W[n]a[n−1]

a[n] = g(z[n])

end

where the matrix coefficients w
[n]
kl for the nth layer are the elements of the µn × µn−1

matrix W[n] and the µn × 1 vector z[n] contains the components z
[n]
i in equation 6.2. For

convenience the bias terms b
[n]
i for the nth layer are implicitly represented in the first column

of the matrix W[n]. Assuming that all of the layers have the same numberM of nodes, then
each matrix-vector product/layer costs O(M2) operations. Thus, the computational count
for recursively computing the predicted target vectors a[n] for n ∈ {1, 2, ..., N} is O(M2N).
Without using this recursive procedure, the computational count is O(M2N2) to compute
a[n] for all of the layers.

6.3 Back-propagation Operation

The gradient term in equation 4.11, i.e.

w
[n]
ij := w

[n]
ij − α

∂ǫ

∂w
[n]
ij

, (6.3)

can be recursively computed backward by updating w[N−1]

ij from the higher-order terms in the

N th layer. Unlike forward propagation where recursion computes the higher-order activation
term from the previous-order one, back-propagation recursively computes lower-order terms
from the higher-order ones. Similar to forward propagation, the computational count for
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recursively computing gradients at all of the layers is O(M2N).

6.3.1 Formula for ∂ǫ/∂w[N]

jk

The gradient of the misfit function in equation 4.11 for the weights in the N th layer is

∂ǫ

∂w[N]

jk

=

µN∑

i=1

residual︷ ︸︸ ︷
(a[N]

i − yi)
∂a[N]

i

∂w[N]

jk

, (6.4)

where we set λ = 0 for pedagogical simplicity. From the chain rule, the definition a
[N ]
i =

g(z
[N ]
i ) and equation 6.2 we have

∂a[N]

i

∂w[N]

jk

=
∂a[N]

i

∂z[N]

i

∂
∑

p w
[N]
ip a

[N−1]
p︷ ︸︸ ︷

∂z[N]

i

∂w[N]

jk

= g(z[N]

j )′a[N−1]

k δij , (6.5)

and

∂a[N]
m

∂a[N−1]

i

=
∂g(z[N]

m )

∂z[N]
m

∂z[N]
m

∂a[N−1]

i

= g(z[N]
m )′w[N]

mi , (6.6)

where g(z[N]

j )′ =
∂g(z

[N]
j )

∂z
[N]
j

and δij represents the Kronecker delta function. Plugging equa-

tion 6.5 into equation 6.4 gives the gradient wrt w[N]

jk in the N th layer:

∂ǫ

∂w[N]

jk

=

∆
[N]
j︷ ︸︸ ︷

(a[N]

j − yj)g(z
[N]

j )′ a[N−1]

k , (6.7)

where ∆[N]

j is the jth component of the weighted residual that vector multiplies the ”forward”

field value a[N−1]

k at the kth node in the (N − 1)th layer. If g(z) is a sigmoid function then
g(z)′ = g(z)(1 − g(z)). Other types of activation functions will provide different formulas
for the derivative.

Can we recursively use the term ∆[N]

j in the formula for the calculation of the next
lower-order gradient? The answer is yes as the next section demonstrates.

6.3.2 Formula for ∂ǫ/∂w[N−1]

ij

To derive the expression for ∂ǫ/∂w[N−1]

ij , recall the multidimensional chain rule where
f(a1(t), a2(t), a3(t)...aM (t)) is a regular function of M smooth functions ai(t). In this case
the derivative ∂f(t)∂t can be expressed as

∂f(a
[N ]
1 , a

[N ]
2 , ...a

[N ]
M )

∂t
=

M∑

m=1

∂f(a
[N ]
1 , a

[N ]
2 , . . . a

[N ]
M )

∂a
[N ]
m

∂a
[N ]
m

∂t
, (6.8)
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where we append the superscript [N ] to the ai variables. Setting t→ a[N−1]

i , this equation
says that, for forward propagation of the feature values, a perturbation in a[N−1]

i will affect
the values of the outputs a[N]

i in the next highest-order layer. Since this perturbation t
will also affect the misfit function ǫ(a[N]

1 , a[N]

2 , ...a[N]
µn ), then according to the chain rule in

equation 6.8 the gradient w/r to the weights in the N − 1 layer becomes

∂ǫ

∂w[N−1]

jk

=

µN∑

m=1

(a
[N]
m −ym)︷ ︸︸ ︷
∂ǫ

∂a[N]
m

µN−1∑

i=1

eq. 6.6: g(z[N]
m )′w

[N]
mi︷ ︸︸ ︷

∂a[N]
m

∂a[N−1]

i

eq. 6.5: g(z
[N−1]
j )′a

[N−2]
k δij︷ ︸︸ ︷

∂a[N−1]

i

∂w[N−1]

jk

,

=

µN∑

m=1

r[N]

︷ ︸︸ ︷
(a[N]

m − ym) g(z[N]
m )′g(z[N−1]

j )′a[N−2]

k

µN−1∑

i=1

w[N]

miδij ,

=

dg[N−1]

︷ ︸︸ ︷
g(z[N−1]

j )′
a[N−2]

︷ ︸︸ ︷
a[N−2]

k




W[N]T

︷ ︸︸ ︷
µN∑

m=1

w[N]

mj

dg[N]

︷ ︸︸ ︷
g(z[N]

m )′
r[N]
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(a[N]

m − ym)



, (6.9)

where the summation in the m index is over the µN nodes in the N th layer and j is the
index of the output vector associated with this matrix-vector multiplication. Here, the role

of the {W[N ]Tdg[N ]. ∗ r[N ]}j term is to back-propagate the weighted residual vector from
the N th layer to the jth node in the (N −1)th layer. Note that dg.∗a indicates an element-
by-element MATLAB multiplication of the two vectors and the summation associated with

the matrix-vector multiplication is over the first subscript m of w
[N ]
mj . Thus, we use the

transpose symbol T in the superscript of W[N ].

6.3.3 Formula for ∂ǫ/∂w[N−2]

ij

The previous section derived the gradient formula for the N−1 hidden layer next to the
output layer N . We now derive the gradient ∂ǫ/∂w[N−2]

ij for the hidden layer surrounded
only by hidden layers. In this case the objective function will be a function of the activation
parameters in two neighboring links of the chain of layers. This means we need a two-link
chain rule for f = f(g(h(t))), where f(g) is a function of g and g(h) is a function of h(t).
Therefore, the single-link chain rule in equation 6.8 can be extended to the two-link chain
rule where ai(t)→ ai(b1(t), b2(t) . . . bM (t)):

∂f(a1, a2, ...aM )

∂t
=

M∑

m=1

M∑

n=1

∂f(a1, a2, . . . aM )

∂am

∂am
∂bn

∂bn
∂t

. (6.10)
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Setting ai → a
[N ]
i , bi → a

[N−1]
i , f → ǫ and t→ a

[N−2]
i gives the formula for ∂ǫ

∂w
[N−2]
jk

:
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,

(6.11)

where the boldface variables are also seen in equation 6.9 and g(z[N]
m )′(a[N]

m − ym) is the
residual component in equation 6.7.

Each layer of the neural network has the same type of structure, so the formula for the
gradient in the P th layer, where 1 < P < N − 2, is given by

∂ǫ

∂w
[P ]
jk

= g(z[P ]

j )′a[P−1]

k

(
V[P+1]V[P+2] . . .V[N−1]V[N ]r[N ]

)
j
, (6.12)

where

(V[P ])ij = w[P ]

ij g(z
[P ]
i )′, i ∈ [1, 2 . . . µP ], j ∈ [1, 2 . . . µP−1], (6.13)

The numerical implementation of equation 6.12 is ripe for recursion. Unlike the recursive
algorithm of forward propagation that starts at layer 1, backward recursion starts from the
N th layer to get V[N ]r[N ], and then recursively computes the next lower-order terms until
reaching the layer of interest. This is known as backward propagation of the residual.

The pseudo-code for recursively computing theM×M gradient matrix dǫ at the (J−1)th
layer is given below. Here we assume the bias values are absorbed into the matrix W[N ] and
N > J > 1, where J is a positive integer. Assume W[i], a[i], dg[i] are the M ×M weight,
M×1 activation andM×1 gradient ∂g

∂z matrices, respectively, that have been pre-computed
for all N layers. For notational simplicity we assume that the number of nodes in each layer
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is M .

Load (a[0], a[1] . . . a[N ]), y, (dg[0], dg[1] . . . g[N ]), (W[0], W[1] . . .W[N ])

in = a[N ] − y

for i = N : −1 : J

in = dg[i]. ∗ in
in = W′[i] ∗ in

end

in = in. ∗ dg[i−1]

dǫ(j, k) = in(j) ∗ a(k)[i−2]

Each gradient calculation for a layer’s weights will cost about O(M2) algebraic operations
per iteration because of the matrix-vector product. If the number of layers is N then the
total cost will be about O(M2N) algebraic operations for computing the weight gradients
for all the layers.

6.4 MATLAB Code

The MATLAB code for the fully-connected neural network can be derived from the
above pseudo-code. There are two principal portions of the code, forward and backward
propagation in gradientnn.m and the main code NNode.m. Below is the major fragment
from NNode.m.
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Code 6.4.1. MATLAB NNode.m Code

M=100; % # of equations constraint

N=5; % # of unknowns (w1, w2, w3, w4, w5) for 1st node

x=zeros(N,M);t=zeros(1,M);

[x,t,alpha,lim,ww1,layer_size,obj,act]=Datain(M,N,x,t); % Create training data

act=1;obj=1;nit=400;res=zeros(nit,1);ww_old=ww1;

layer_num=numel(layer_size); % layer number include the input and output

for k=1:nit % Looping over iterations

alpha=1; % step size (orig, case: 1)

[grad,res(k)]=gradientnn(M,x,t,ww_old,layer_size,obj,act);

for ilayer=1:layer_num-1

ww{ilayer}=ww_old{ilayer}-alpha*grad{ilayer};

end

% Bisection line search for step length

[~,res1]=gradientnn(M,x,t,ww,layer_size,obj,act);

while (res1>res(k)) && (alpha>lim)

alpha=alpha*0.5;

for ilayer=1:layer_num-1

ww{ilayer}=ww_old{ilayer}-alpha*grad{ilayer};

end

[~,res1]=gradientnn(M,x,t,ww,layer_size,obj,act);

end

ww_old = ww; %%% update successful

end

Display(M,res,nit,ww,layer_size,x,t,obj,act)

A fragment of the pseudo-code for forward propagation modeling in gradientnn.m is
shown below.

Code 6.4.2. MATLAB Forward-propagation Code

%% Part 1: Feedforward the neural network and return the cost in the variable res.

% Do forward propagation

for iter =1:layer_num-1

aa{iter} = [ones(1, M); aa{iter}]; % z[n]=W[n]a[n-1], 1 is for bias

zz{iter}=ww{iter}*aa{iter}; % a[n]=g(z[n])

if iter ==layer_num-1 %output layer use sigmoid

[aa{iter+1},~] = activation(zz{iter},1);

else

[aa{iter+1},~] = activation(zz{iter},act);

end

penalize =penalize+ sum(sum(ww{iter}.^ 2)); % add regularization

end

t_pred = aa{layer_num};

[res,in]= misfit( t_pred,t,1/M,obj); %obj=1 for L2, 2 for likelihood

and the back-propagation MATLAB code is below
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Code 6.4.3. MATLAB Back-propagation Code

%% Part 2: Implement the backpropagation algorithm to compute the gradients.

% Implement backpropagation

for iter=layer_num-1:-1:1

if iter ==layer_num-1 %output layer has to use sigmoid

[~,dg]=activation(zz{iter},1);

else

[~,dg]=activation(zz{iter},act); %in=dg[i].*in

end

in=dg.*in; % in is the backward field

grad{iter}=in*aa{iter}’; % de(j,k)=in*(a[i-2])T

in=ww{iter}’*in; % in=W’[i]*in

in = in(2:end, :);

end

end

The activation function activation.m is given by

Code 6.4.4. MATLAB Activation Function Code

function [ g,dg ] = activation( z,type )

%z - input- for activation function

%type: objective function type: 1 for sigmoid, 2 for ReLU

% g - output- value of the activation function

% dg- output- gradient of g with respective to z

if type==1 % for sigmoid

g = 1.0 ./ (1.0 + exp(-z));

dg = g .* (1 - g); %Compute the gradient of the sigmoid function

elseif type==2 % for ReLU

g=z*0.0; dg=z*0.0;

g(z>0)=z(z>0);

g(z<=0)=z(z<=0)*0.0;

dg(z>0)=1.0;

dg(z<=0)=0.0;

else

display(’You entered the wrong type for the activation function’);

stop

end

end

A vectorized version of the back-propagation and forward propagations algorithms are
in the pseudo-code of Appendix 6.8.

6.5 Summary

The recursive equations are derived for the forward-propagation and back-propagation
operations of a neural network. These operations can be used to iteratively update the

weights w
[n]
ij in each layer that minimize the objective function. The recursive nature of

these equations provide for an efficient steepest descent procedure that requires O(M2N)
computations per iteration, whereM is the number of nodes per layer and N is the number
of layers. Here, we assume that the number of nodes M is the same for each layer.

The next chapter presents the automatic differentiation algorithm, which computes the
exact values of the derivatives of a complicated objective function. These values are com-
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puted by a basic computer code that is applicable to any neural network.

6.6 Exercises

1. Derive the gradient formula with the cross-entropy loss function instead of the L2 loss
function in equation 6.11.

2. Derive the L2 gradient formula with the ReLU activation function instead of the
sigmoid activation function in equation 6.11.

3. Show that equation 6.9 reduces to equation 4.44 for the two-layer neural network.

4. Write the pseudo-MATLAB code for the steepest descent method, where the bias
vector and its gradient are explicitly computed.

5. Write the pseudo-MATLAB code for the steepest descent method where regularization
is used.

6. Write the pseudo-MATLAB code where the input is a batch matrix that represents
the training set.

7. Write the pseudo-MATLAB code for the steepest descent method where the number
of nodes per layer is different from one another.

6.7 Computational Labs

1. Go to the Fully-Connected Neural Network lab in /LAB1/Chapter.Book.FCN/ Chap-
ter.Gradient.Neural/lab.html. After downloading and unzippingChapter.Gradient.Neural.zip
, run the MATLAB code NNode1.m to get the results seen in Figures 4.13, 4.15, 4.17,
and 4.18. LAB1/Chapter.Book.FCN/Chapter.GenNN/lab.html and run the MAT-
LAB code. It uses a fully-connected neural network to classify input vectors that have
1’s and 0’s for its elements.

6.8 Appendix: Vectorized Steepest Descent Formula

Assume a network architecture where there are M nodes per layer. The vectorized

stochastic steepest descent formula for computing w
[n]
ij for each layer is given by the following
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MATLAB pseudo-code.

Load a[0], y; Initialize α, matrices W[i] for i = [1, 2, . . . N ]

for m = 1 : N

a[m] =forw(a[0],W[1] . . .W[N ]) Compute predicted data a[N ]

dg[m] =deriv(a[m]) Compute predicted derivative dg[m]

end

for n = 1 : niter Iterate steepest descent

in = a[N ] − y Residual

for i = N : −1 : 1 Compute W[i] at each layer

in = dg[i]. ∗ in
dǫ = (in. ∗ dg[i−1]) ∗ a[i−1]T

in = W′[i] ∗ in
W[i] := W[i] − αdǫ

end

for m = 1 : N Compute new prediction a[N ]

a[m] = forw(a[0],W[1], . . .W[N ])

dg[m] = deriv(a[m])

end

end

The above code is vectorized because we have almost entirely eliminated the explicit use of
for loops, which can speed up computations by more than order-of-magnitude. If the input
data are a batch of data then this can be accommodated by an outer loop over the different
training examples. However, this is inefficient so a vectorized version can be obtained by
replacing the input M × 1 data vector a[0] → A[0], where the M × P batch-data matrix
has P columns, each one a different training example of input values. Similarly, the M × 1
target vector y can be transformed into a M × P target matrix. This assumes that there
are M nodes per layer.



Chapter 7

Support Vector Machines

A support vector machine (SVM) is a supervised learning method that classifies binary
data into two classes (Cortes and Vapnik, 1995). It has the same purpose as logistic re-
gression or NN in classifying data, but SVM is sometimes preferred because it is simpler in
that there is no need for the design of a complicated network architecture. Similar to NN
or CNN, there are three stages for building a SVM model: training on a set of classified
data, validating the model on a smaller set of validation data, and finally applying the SVM
to test data. Unlike a NN, the linear SVM is always guaranteed to converge for linearly
separable data because it is free of local minima1. Consequently, it is a very popular clas-
sifier in the biomedical community. If the data are not linearly separable, then they can
be transformed to a higher-dimensional space to find the separation boundary between the
binary classes. SVM can also be generalized to classifying data that has more than two
classes (Bishop, 2006) and its popularity has been growing over the last two decades (see
Figure 7.1 and Cervantes et al. (2020)). The SVM is also extended to regression problems
with the support vector regression (SVR) algorithm.

7.1 Introduction

There are many useful geophysical applications of SVM, including well-log classification
(Al-Anazi and Gates, 2010a,b; Sebtosheikh, M. and A. Salehi, 2015; Sebtosheikh et al.,
2015; Deng et al., 2017), migration filtering (Chen et al., 2020a), frequency filtering of
surface waves (Li et al., 2019), AVO inversion (Kuzma, 1999; Kuzma and Rector, 2004),
and seismic trace interpolation and inversion (Kuzma et al., 2006). Earthquake seismologists
and engineers also use SVMs for classification of seismic events (Appoloni, 2009; Körtström
et al., 2016; Tang et al., 2019) and for picking the traveltimes of events (Jiang and Ning,
2020). Traffic engineers also use SVR for predicting the flow of traffic at different times of
the week (Wu et al., 2004; Akter et al., 2015), where the SVRs are trained on historical
traffic data. Wu et al. (2004) show that the SVR predictor significantly outperforms the
other baseline predictors for traffic data analysis.

1Wu et al. (2004) reinforce the claim that SVMs are free of local minima: ”This is largely due to
the structural risk minimization (SRM) principle in SVM, which has greater generalization ability and is
superior to the empirical risk minimization (ERM) principle as adopted in neural networks. In SVM, the
results guarantee global minima, whereas ERM can only locate local minima. ”
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Figure 7.1: Usage of the word support vector machine plotted against calendar year.

Both rock physics and simultaneous seismic inversion can be used to identify the reser-
voir zones by applying SVM to seismic data (Torres and Reveron, 2013). Such data can
be geologically interpreted by SVM methods as well. For example, Zhao et al. (2014)
introduced the efficient proximal support vector machines (Fung and Mangasarian, 2001)
into lithofacies classification in the Barnett Shale. They demonstrated the validity of the
proximal support vector machines classifier for binary classification of shales and limestones.
Seismic interpreters can use multi-attribute SVMs for reliable fault identification in seismic
sections (Di et al., 2017) and use multiclass SVMs (Crammer and Singer, 2001) to interpret
geology from seismic sections (Liu et al., 2020a,c). The next section describes the theory of
SVM.

7.2 SVM Theory

In the binary classification problem we are given a set of training data consisting of N
feature vectors

(x(i), y(i)), (7.1)

where x(i) is the ith feature vector with dimension D × 1 and y(i) = ±1 is the binary label
value for classification. For a set of two-dimensional feature2 vectors x(i), the goal of SVM
is to find the best line that separates the two classes of data, denoted as +’s and -’s, in
Figure 7.2. Here, the best line is the dashed black one with the fattest margin width3 2d

2Sometimes feature vectors φ(x) are defined as the input data x transformed into a higher-dimensional
vectors z = φ(x).

3We will use Bishop’s definition of margin: the shortest distance between the decision boundary and any
of the sample points. Unfortunately, margin has a different definition in the dictionary so the use of margin
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and is equidistant between the solid black lines that are parallel to one another. This dashed
line, also known as the decision line or decision boundary, is mathematically characterized
by the normal vector w and intercept value b, where any vector x on the decision line
satisfies w1x1 + w2x2 + b = 0. The black solid lines intersect the circled margin points x(i)

known as support vectors for the specified index values i. These support vectors define the
points with the closest perpendicular distance to the decision boundary.

A less than optimal decision line is represented by the red dashed line in Figure 7.2
that also separates the two classes of data. Here, the margin thickness is skinnier than the
one associated with the black lines. The skinnier the margin thickness, the easier it is to
misclassify data subject to errors in the training pair (x(i), y(i)).

Once the w is found after sufficient training, the SVM classifies new points x̃(i) that are
out of the training set. Figure 7.2 depicts points in a two-dimensional space, but points in
a D-dimensional space can be separated by a (D− 1)-dimensional hyperplane. In this case
the point x on the hyperplane satisfies wTx + b = w1x1 + w2x2 + . . . + wDxD + b = 0. If
the points are not linearly separable then a nonlinear transformation of coordinates can be
found where the data are linearly separable. In this new domain, the linear SVM can be
used to find the correct decision boundary (see section 7.4).

The advantage of SVM over classification by logistic regression is that the optimal SVM
line has the thickest margin, which is not necessarily the case with logistic regression when
the points are linearly separable. In addition, the linear SVM solution never gets stuck in
a local minimum, and requires fewer points for training because it only needs to be trained
with the support vectors. The SVM procedure is very popular as a classification method,
as evidenced by its citations in Figure 7.1 and some of the examples shown in this book. It
is still one of the most effective classification methods.

7.2.1 SVM Applications

Many fields of science and engineering use SVM for classification, which include the
following.

1. SVMs are helpful in text and hypertext categorization.

2. Classification of images can also be performed using SVMs. According to Wikipedi-
a (https : //en.wikipedia.org/wiki/Support vector machine) ”experimental results
show that SVMs achieve significantly higher search accuracy than traditional query
refinement schemes after just three to four rounds of relevance feedback. This is also
true of image segmentation systems, including those using a modified version SVM
that uses the privileged approach as suggested by Vapnik (DeCoste, 2002).”.

3. Hand-written characters can be recognized using SVM (DeCoste, 2002).

4. According to Wikipedia (https : //en.wikipedia.org/wiki/Support vector machine)
”The SVM algorithm has been widely applied in the biological and other sciences.
They have been used to classify proteins with up to 90% of the compounds classified

as a distance in the SVM literature is in conflict with its definition in English language.
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Figure 7.2: The points x(i) denoted by the class symbols ± are separable by a decision line.
The decision line with the thickest margin (dashed black line) is the optimal one estimated
by SVM and the circled margin points x(i) are known as support vectors. In this example
we assume the special case d = |wTx+ b| = 1 for x on the solid black lines.
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correctly. Permutation tests based on SVM weights have been suggested as a mech-
anism for interpretation of SVM models (Gaonkar and Davatzikos, 2013). Support
vector machine models can be used to identify features in the biological sciences.”.

5. According to a review article on medical hyperspectral imaging, Lu and Fei (2014) and
Fei (2020) write the following: ”SVM is a kernel-based machine learning technique
which has been widely used in the classification of hyperspectral images. Due to its
strong theoretical foundation, good generalization capability, low sensitivity to the
curse of dimensionality, and ability to find global classification solutions, SVMs is
usually preferred by many researchers over other classification paradigms.”.

6. SVM is also useful for detection of code maliciously placed in computers. Kauser et al.
(2011) write the following: ”Support vector machine (SVM) is used for classification
in (computer operating systems) intrusion detection systems (IDS) due to its good
generalization ability and nonlinear classification using different kernel functions and
performs well as compared to other classifiers.”.

7. SVM is widely used in remote sensing methods for classification and detection of ob-
jects in aerial and satellite images (Mountrakis et al., 2011). They state the following:
”First, SVMs are not as well-known as other classifiers (e.g., decision trees, variants
of neural networks) in the general remote sensing community, yet they can match if
not exceed the performance of established methods. Second, their performance gains
seem well-suited for some remote sensing applications, where a limited amount of ref-
erence data is often provided. Third, even though the method is not widely popular,
in recent years there has been a significant increase in SVM works on remote sensing
problems suggesting this review is current and appropriate.”.

7.3 Linear SVM

The linear SVM finds the hyperplane is a binary classification scheme that finds the
hyperplane. or linear decision surface, that separates one class of feature vectors from the
other. It can be adjusted for multiclass classification of points (Bishop, 2006) and it can be
adapted to find non-linear decision surfaces.

Define the N feature vectors (x(n), y(n)) for n ∈ [1, 2 . . . N ], with the binary classification
of y(n) = ±1. We assume that the set of points (x(n), y(n)) are linearly separable so that there
exist lines that separate the positive and negative classes from one another in Figure 7.2.
SVM seeks the decision boundary, i.e. line, with the fattest margin thickness. This margin
thickness can be defined by first defining the perpendicular distance d̃ between x on the
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Figure 7.3: The perpendicular distance between x on the plane defined by ŵTx+ b̃ = 0 and
x(i) is given by d̃ = |ŵT (x(i)−x)|. Here, ŵ is the unit vector perpendicular to the decision
plane and b̃ = −ŵTx.

decision plane in Figure 7.3 and any other point x(n) as

d̃ =
1

||w|| |w
T (x(n) − x)|,

=
1

||w|| |w
Tx(n) + b−

= 0 for x on decision boundary︷ ︸︸ ︷
(wTx+ b) |,

=
1

||w|| |w
Tx(n) + b|, (7.2)

where ŵ = w/||w|| is the unit vector perpendicular to the plane in Figure 7.3 and b = b̃||w||.
Note, if x(n) is on the decision line then wTx(n) + b = 0. If x(n) is on the same side of the
decision plane that w is pointing towards then wTx(n) + b > 0. If x(n) is on the other side
then wTx(n) + b < 0.

The annoying absolute value operator in equation 7.2 can be eliminated by replacing it
with the product of the target value y(n) and wTx(n) + b:

d̃ =
1

||w||y
(n)(wTx(n) + b), (7.3)

which is always positive if x(n) is correctly classified as the value of y(n). For example, if
w in Figure 7.2 points to the right then the product y(n)(wTx(n) + b) > 0 is positive for
x(n) to the right of the decision line. This is because y(n) = +1 and (wTx(n) + b) > 0
are also positive. For points x(n) to the left of the decision line y(n) = −1, then the value
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y(n)(wTx(n)+ b) > 0 is positive because both (wTx(n)+ b) < 0 and y(n) = −1 are negative.

For a given w and b that cleanly separates the data, the margin thickness is given by
the perpendicular distance between the decision boundary and the closest point in the data
set that satisfies the following conditions:

1

||w|| min
x(n)

[y(n)(wTx(n) + b)]

subject to y(n)(wTx(n) + b) > 0 ∀ x(n), (7.4)

where the inequality constraint can be described as the clean-separation condition.

As illustrated by the dashed black and red lines in Figure 7.2, there are many different
sets of (w, b) that satisfy the above conditions. However, there is only one set of (w, b) that
satisfies the following conditions:

(w∗, b∗) = argmax
w, b
{ 1

||w|| min
x(n)

[y(n)(wTx(n) + b)] }, (7.5)

subject to y(n)(wTx(n) + b) > 0 ∀ x(n). (7.6)

where the 1/||w|| term is outside the minx(n) operation because it does not depend on the

points x(n). The optimal set (w∗, b∗) and the support vectors on the margin boundary
describe the SVM slab with the thickest width.

Assume that the smallest value on the lefthand side of equation 7.6 is α > 0 when x(n)

is a support vector. In this case we can replace the inequality > 0 in equation 7.5 by ≥ α.
Dividing by α transforms equation 7.6 into

y(n)(wTx(n) + b) ≥ 1 ∀ x(n), (7.7)

where

y(n)(wTx(n) + b) = 1, ∀ x(n)
supp. (7.8)

Here, x
(n)
supp defined as a support vector on the margin boundary.

The vectors x(n) in equation 7.5 that minimize the numerator minx(n) [y(n)(wTx(n)+ b) ]

are the support vectors x
(n)
supp on the margin boundaries. Therefore, equation 7.8 says that

the numerator in equation 7.5 can be replaced by the value 1 so that the optimization
problem can be redefined as finding (w, b) such that

(w∗, b∗) = argmax
w, b
{ 1

||w|| },

subject to y(n)(wTx(n) + b) ≥ 1 ∀ x(n). (7.9)

It is algorithmically convenient to transform this maximization problem into a minimization
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problem by replacing 1/||w|| with 1
2 ||w||2:

(w∗, b∗) = argmin
w,b

1

2
||w||2,

subject to y(n)(wTx(n) + b) ≥ 1 ∀ x(n). (7.10)

The inequality demands that (w, b) cleanly separates the training set (x(n), b) and the
minimization requirement is satisfied by the decision boundary with the thickest margin
d̃ ∝ 1/||w|| (see equation 7.3). A numerical solution by, e.g. quadratic programming
(Nocedal and Wright, 1999; Press et al., 2007), will give the optimal values of (w, b) that
have the fattest margin in Figure 7.2. We can treat quadratic programming as a black
box, where the algorithmic details are given in Nocedal and Wright (1999). More efficient
solution methods such as sub-gradient descent and coordinate descent algorithms can be
applied to the dual problem (https://en.wikipedia.org/wiki/Support vector machine).

7.4 Nonlinear SVM

A set of training data might not be linearly separable, such as the data points shown in
Figure 7.4a. In this case, a line (or hyperplane) cannot separate the different classes of data
but higher-order polynomials might be able to describe a wiggly separation boundary. To
determine this nonlinear separation boundary we use a nonlinear transformation zi = φ(x)i
of the coordinates in x to add extra dimensions to the solution space, just as we did for the
motorcycle model in equation 2.35.

As an example, the black and green classes of data in Figure 7.4a can be separated by
the red circle. This decision boundary can be described by the transformation from 2D
feature coordinates (x1, x2) to the 3D space of (z1, z2, z3) defined by

(x1, x2) → (z1, z2, z3) = (

φ(x)1︷︸︸︷
x1 ,

φ(x)2︷︸︸︷
x2 ,

φ(x)3︷ ︸︸ ︷√
x21 + x22). (7.11)

A hyperplane in the transformed space is described by the 3 × 1 normal vector w̃ =
(w̃1, w̃2, w̃3)

T and the bias term b̃. Figure 7.4b depicts the data plotted in this transformed
coordinate system, which are now separated by the horizontal plane defined by z3 = 1. Once
the coordinates (zb1, z

b
2, z

b
3) of the boundary are determined from (w̃, b̃), then the associated

decision boundary in the original space (x1, x2) can be found by the inverse mapping from
z to x.

Therefore, a nonlinear SVM defines a nonlinear transformation such that the new fea-
ture coordinates are zi = φ(x)i and we seek the solution (w̃, b̃) to the following optimization
problem with inequality constraints.
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Figure 7.4: Data with a binary classification are plotted in a) the original 2D and b)
transformed 3D spaces using equation 7.11. The green points above the plane z3 = 1 in b)
are cleanly separated from the black points below it.
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Key Idea 7.4.1. Primal Optimization Problem with Inequality Constraints

The primal optimization problem in the transformed coordinate system is defined as
finding (w̃∗, b̃∗) such that

(w̃∗, b̃∗) = argmin
w̃,b̃

1

2
||w̃||2,

subject to y(n)(w̃T z(n) + b̃) ≥ 1. (7.12)

where the linear inequality constraint is with respect to the z-coordinates and the
tilde indicates the parameters associated with the hyperplane in the z-space. The op-
timal parameters (w̃∗, b̃∗) define the hyperplane with the fattest margin that cleanly
separates the transformed training data in z-space. After (w̃∗, b̃∗) is computed, new
unlabeled points x can be transformed into the z domain and the sign of w̃T z + b̃
will determine its class type. The computational cost of finding the optimal solu-
tion to equation 7.12 by a direct matrix inversion is dominated by O(D3), which is
the same as inverting the normal matrix in a D × D system of normal equations
XTXw = XTy. Here, w is the D × 1 vector, y is the N × 1 target vector and
Xw = y is the N ×D system of equality constraint equations.

As in the original problem, a quadratic programming method can be used to find the
solution.

The penalty in going to a higher dimension is that it can increase the computational
cost by a significant amount. For example, if the feature vector is a D× 1 = 105 × 1 vector
and the nonlinear transform increases the dimension by a factor of four, then the cost of
the quadratic programming solution increases from O(D3) to O(43D3) algebraic operations.
For a very large D , this extra cost can be reduced by solving the dual Lagrangian problem
as discussed in the next section.

7.5 Primal and Dual Solutions

The constrained optimization problem with inequality constraints in equation 7.10 or
equation 7.12 is defined as the primal problem. Its numerical solution can be as high as
O(D3) algebraic operations, where D is the dimension of the D × 1 vector w. This can be
expensive for D ≫ 1 so the alternative is to solve the dual problem.
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Key Idea 7.5.1. Dual Optimization Problem with Inequality Constraints

The dual problem is defined as finding w and b that minimize and α that maximizes
the Lagrangian L(w, b,α):

(w, b, α) = max
α

min
w,b

L(w, b,α) = max
α

min
w,b


1
2
wTw −

N∑

n=1

αn(

dn︷ ︸︸ ︷
y(n)(wTx(n) + b)−1)


, (7.13)

∇L(w, b,α) = 0, subject to αn ≥ 0 for n = 1, 2 . . .N, (7.14)

where L is the Lagrangian function discussed in Appendix 7.16. Here, N is the
number of inequality constraints, αn is the Lagrange multiplier for the nth inequality
equation and α = (α1, α2 . . . αN )T is the N × 1 Lagrange multiplier vector. We will
show that this approach only requires finding N unknowns. For SVM the number
of inequality constraints is equal to the number of feature vectors in a mini-batch of
data. This can result in a significant reduction in computational costs if N is much
less than the number of elements in the D×1 vector w. However, the most significant
benefit in the dual space is that the kernel method can be devised with the reduced
dual optimization algorithm described in Box 7.5.2.

The solution to the dual problem can be obtained by a quadratic programming
method (Nocedal and Wright, 1999) or algorithms such as the sub-gradient or co-
ordinate descent methods (https://en.wikipedia.org/wiki/Support vector machine).
In this case, the non-support vectors x(i) i ∈ Inon−support will be associated with
αi = 0 ∀i ∈ Inon−support to minimize the cost function. The only non-zero pa-
rameters αi 6= 0 ∀i ∈ Isupport will be those associated with the support vectors
x(i) ∀i ∈ Isupport. This means that, unlike a NN, training of a SVM model does not
require a large training set if it contains the necessary support vectors.

The starting point for computing the solution to equation 7.14 with a reduced Lagrangian
is to find w and b in terms of αn. The resulting Lagrangian is denoted as the reduced
Lagrangian. Once this is done we can pass the problem to a quadratic programming code
to solve for the N values of αi.

We have replaced the primal problem with inequality constraints in equation 7.10 or
equation 7.12 with a similar one in equation 7.14, so what have we gained? Nothing is
gained until we eliminate the w and b in terms of the variables αn. This can be done by
setting the gradients of the Lagrangian L w.r.t. to wi and b to zero:

∂L

∂wi
= wi −

N∑

n=1

αny
(n)x

(n)
i = 0→ w =

N∑

n=1

αny
(n)x(n), (7.15)
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and

∂L

∂b
=

N∑

n=1

αny
(n) = 0. (7.16)

Inserting equation 7.16 into equation 7.14 gives the transformed Lagrangian:

L(w, b,α) =
1

2
wTw −

N∑

n=1

αn(y
(n)(wTx(n) + b)− 1),

=
1

2
wTw −

N∑

n=1

αny
(n)wTx(n) +

N∑

n=1

αn −

α
Ty=0 by eq. 7.16︷ ︸︸ ︷

b

N∑

n=1

αny
(n) ,

=

N∑

n=1

αn +
1

2
wTw −

N∑

n=1

αny
(n)wTx(n), (7.17)

where b is now eliminated.

Key Idea 7.5.2. Reduced Dual Optimization Problem with Inequality Constraints

The w in equation 7.17 can be eliminated by plugging w =
∑N

n=1 αny
(n)x(n) from equa-

tion 7.15 into equation 7.17 to get the reduced Lagrangian:

L(α) =
N∑

n=1

αn −
1

2

N∑

n=1

N∑

m=1

y(n)y(m)αnαmx(n)Tx(m),

subject to αn ≥ 0; αTy = 0, (7.18)

where the only unknowns are the N variables αn that maximize L(α) subject to the inequality
constraints. Here, N is also the number of feature vectors in the training set which can be
small if the original training data set is broken up into mini-batches. In this case, solving
the reduced dual optimization problem is much more efficient if the dimension of the D × 1
feature vector is huge compared to the number N of feature vectors in a mini-batch. An
important SVM example that demands the more efficient dual optimization approach is in
medical diagnosis where each input D× 1 vector can be a tomographic scan with millions of
pixel per scan (Gaonkar and Davatzikos, 2013).
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Multiplying the reduced Lagrangian by −1 transforms it to a minimization problem w.r.t. αi:

min
α

1

2
αT

quadratic coefficients︷ ︸︸ ︷


y(1)y(1)x(1)Tx(1) y(1)y(2)x(1)Tx(2) . . . y(1)y(N)x(1)Tx(N)

y(2)y(1)x(2)Tx(1) y(2)y(2)x(2)Tx(2) . . . y(2)y(N)x(2)Tx(N)

. . . . . . . . . . . .

y(N)y(1)x(N)Tx(1) y(N)y(2)x(N)Tx(2) . . . y(N)y(N)x(N)Tx(N)



α+ (−1T )α

(7.19)

subject to yTα = 0 andαn ≥ 0 ∀n, (7.20)

where 1 is the N × 1 vector 1 = (1, 1, . . . 1). If yi = 1 ∀ i then the N ×N matrix of dot products
is known as the Gram matrix (Bishop, 2006). For yi taking on the values of ±1 then we will refer
to it as a scaled-Gram matrix. The optimal solution can be found, for example, by a quadratic
programming method with a computational cost as high as O(N3) for inverting this matrix.

If the nonlinear SVM method is used then we are seeking the (w̃, b̃) that gives rise to the same
type of scaled-Gram matrix seen in equation 7.19, except x(n)Tx(m) is replaced by z(m)T z(m):

min
α

1

2
αT

quadratic coefficients︷ ︸︸ ︷


y(1)y(1)z(1)T z(1) y(1)y(2)z(1)T z(2) . . . y(1)y(N)z(1)T z(N)

y(1)y(2)z(2)T z(1) y(2)y(2)z(2)T z(2) . . . y(2)y(N)z(2)T z(N)

. . . . . . . . . . . .

y(N)y(1)z(N)T z(1) y(N)y(2)z(N)T z(2) . . . y(N)y(N)z(N)T z(N)



α+ (−1T )α

(7.21)

subject to yTα = 0 andαi ≥ 0. (7.22)

Here, we have to construct z(n) ∀n and then use z(n) to compute the dot products. However,
computation of these dot products is impractical if the dimension of z(n) is large or has an infinite
dimension. The remedy is to specify the dot products as a kernel z(x)T z(x′)→ k(x,x′), as will be
discussed in the next section. In this way we avoid the explicit computation of the dot product in
the z domain, and only compute the value of the kernel k(x,x′) in the x domain, e.g. k(x,x′) =

e−||x−x′||2/σ2

. This is the kernel trick or kernel substitution (Bishop, 1996), but the kernel must
honor the symmetry and semi-positive definite properties described in the next section.

7.6 Kernel Methods

A problem with the nonlinear SVM method is that the choice of a very high-order transfor-
mation z = φ(x) will increase the number of unknowns per feature vector and therefore increase
the computational cost of, for example, the dot products. However, we must be cautious about
overfitting of the training data if a highly oscillatory polynomial is selected. This problem can be
mitigated by soft-margin regularization in section 7.9.

To overcome the dot-product expense in the z-domain we can reformulate the nonlinear SVM
problem in the dual space by specifying an infinite-dimensional kernel function k(x,x′) = z(x)T z(x′).
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In this case, equation 7.21 becomes the scaled-Gram matrix:

min
α

1

2
αT




y(1)y(1)k(x(1),x(1)) y(1)y(2)k(x(1),x(2)) . . . y(1)y(N)k(x(1),x(N))

y(2)y(1)k(x(2),x(1)) y(2)y(2)k(x(2),x(2)) . . . y(2)y(N)k(x(2),x(N))

. . . . . . . . . . . .

y(N)y(1)k(x(N),x(1)) y(N)y(2)k(x(N),x(2)) . . . y(N)y(N)k(x(N),x(N))



α+ (−1T )α.

(7.23)
The stationary conditions in equations 7.15-7.16 become

∂L

∂w̃i
= w̃i −

N∑

n=1

αny
(n)z

(n)
i = 0→ w̃ =

N∑

n=1

αny
(n)z(n), (7.24)

and

∂L

∂b̃
=

N∑

n=1

αny
(n) = 0. (7.25)

Here b̃ and w̃ define, respectively, the bias and Dz × 1 hyperplane normal vector in the z-space.
For a high-dimensional z, there is a huge computational savings in explicitly computing the

kernel k(x,x′) in equation 7.23 rather than computing z(x)T z(x′) in equation 7.21. If z is an
infinite-dimensional vector z then its dot product z(x)T z(x′) cannot be practically computed. In
contrast, if k(x,x′) is specified as a, e.g. Gaussian kernel

k(x,x′) = e−
1
σ2 ||x−x′||2 , (7.26)

then the kernel k(x,x′) can easily be computed for any specified pair of vectors x and x′. Here, 1
σ2

is a scalar that determines the width of the Gaussian kernel, and the Gaussian kernel is also known
as the radial basis function (RBF). If ||x − x′||2 is replaced with ||x − x′|| then this known as an
exponential or Laplacian kernel.

As an example, take the scalar case where σ = 1 and

k(x′, x) = e−(x′−x)2 ,

= e−x2

e−x′2

e2xx
′

,

= e−x2

e−x′2
∞∑

k=0

2kxkx′k

k!
,

= e−x2

e−x′2

Taylor series︷ ︸︸ ︷
(1 + 2xx′ + 2x2x′2 + . . . ),

= (

z(x)︷ ︸︸ ︷
e−x2

(1,
√
2x,
√
2x2, . . . ),

z(x′)︷ ︸︸ ︷
e−x′2

(1,
√
2x′,
√
2x′2, . . . )). (7.27)

Here, the infinite-dimensional vector z(x) and its inner product with z(x′) cannot be practically

computed, but the computation of the kernel k(x, x′) = e−||x−x′||2 is trivial.
The kernel k(x,x′) must satisfy two properties (Press et al., 2007) in order to be used as a

substitute for z(x′)T z(x) in equation 7.21:

• k(x,x′) must be symmetric such that k(x,x′) = k(x′,x).

• The Gram matrix must be positive semi-definite. Symmetry for the Gaussian kernel is proven
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by inspection and the positive semi-definite property can be empirically tested by using an
example matrix.

Some kernels (Bishop, 2006) that satisfy the above properties include the radial basis function
or Gaussian kernel, the polynomial kernel (xTx + 1)p where the polynomial order p is specified
by the user, the linear kernel where p = 1 and the two-layer neural net SVM with the kernel
tanh(β0x

Tx + β1). Here, β0 and β1 are specified by the user and only some values are effective
(https://en.wikipedia.org/wiki/Support vector machine).
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Key Idea 7.6.1. SVM Kernel Algorithm

In summary, the nonlinear SVM kernel algorithm with an infinite-dimensional kernel is the
following.

1. Specify the functional form of the kernel, e.g. k(x(n),x(m)) = e−γ||x(n)−x(m)||2 , and
compute the N ×N Gram matrix in equation 7.23. Here, γ is a constant specified by
the user where large values of γ indicate that the main influence of this basis function
is only around points x(n) and x(m) that are close neighbors to one another. Use
quadratic programming (QP), the Lagrangian barrier (Nocedal and Wright, 1999),
sub-gradient or coordinate descent methods to solve for αn ∀n.

2. Define the feature vector x so that its predicted classification value y is given by
sign(w̃T z(x) + b̃), which is also known as the decision function. Substituting w̃ from
equation 7.24 gives the predicted classification value:

y = sign(

N∑

n=1

αny
(n)z(x)T z(x)(n) + b̃),

= sign(
∑

n∈Bsupport

αny
(n)k(x,x(n)) + b̃), (7.28)

where Bsupport is the set of indices associated with the support vectors where αi 6= 0.
Note, the final class decision for x is computed by summing the weighted classes of
its neighboring points, where the weights are αnk(x,x

(n)). If k(x,x(n)) is a Gaussian
kernel where γ is large then only the classes of its very nearest neighbors determine
the class of x. This is analogous to nearest neighbor interpolation.

The value of b̃ in equation 7.28 is obtained by noting that the support vector z(xi) for
i ∈ Bsupport is associated with the non-zero Lagrange multiplier αn 6= 0 that satisfies
the constraint equation

y(i) = w̃T z(x(i)) + b̃,

=
∑

n∈Bsupport

αny
(n)z(x(n))T z(x(i)) + b̃ for i ∈ Bsupport, (7.29)

where equation 7.24 is used for w̃. Substituting k(x(n),x(i)) = z(x(n))T z(x(i)) gives

∑

n∈Bsupport

αny
(n)k(x(i),x(n)) + b̃ = y(i). (7.30)

This equation is now solved for in terms of b̃. To get a more robust estimate of b̃,
compute the average of the different support vectors to get b̄:

b̄ =
1

Nsupport

∑

i∈Bsuport

[y(i) −
∑

n∈Bsupport

αny
(n)k(x(i),x(n))], (7.31)

where Nsupport is the number of support vectors in the dual space where αi 6= 0.

3. All of the feature vectors in the validation and test sets can now be classified with
equation 7.28. An example of a wiggly decision boundary is given in Figure 7.5.
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Figure 7.5: Feature points in (x1, x2) space with the black-decision boundary computed by
the Gaussian-kernel method in the dual space. The support points are the large filled circles
and the input examples are classified as either blue or red points.

7.7 Numerical Examples

Chapter 5 presented several examples of filtering migration images and dispersion spectra of
surface waves using the SVM method. The SVM is trained to distinguish noise from signal in the
classified images, and once identified, a suitable filtering method can be used to suppress the noisy
artifacts in the migration image.

To train the SVM for migration filtering, the first step is to define a small 5×5 window centered
at the ith pixel. Three skeletonized characteristics are then computed for the image in this small
window: dominant dip angle, coherency and maximum amplitude as described in section 5.8. The
user classifies each point in the training migration image as either noise or signal. The computer

computes the three skeletal characteristics (x
(i)
1 , x

(i)
2 , x

(i)
3 ) at each point of m(x) and assigns the

classification value y(i). Therefore, the input feature vectors are the 4×1 vectors (x(i)1 , x
(i)
2 , x

(i)
3 , y(i)).

For the migration examples, fewer than 100 image points are selected for training from the 201×201
migration image m(x), which means that less than 0.2 % of the original migration image is used for
training.

Figure 7.6 depicts the migration images after filtering by either a NN or an SVM method. The
training was conducted using the input data of the three features maximum dip angle, coherence,
and amplitude for each pixel. The signals in the images are colored yellow in Figure 7.6 as classified
by a) two-node logistic regression, b) a two-layer neural network, c) SVM with a Gaussian kernel
without regularization, and d) SVM with a Gaussian kernel with regularization. The SVM image
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Figure 7.6: Migration images classified as signal (yellow) by a) logistic regression of order
two, b) a neural network with 2 layers and 15 nodes in the hidden layer, c) SVM with a
Gaussian kernel w/o regularization and d) SVM with a Gaussian kernel with regularization.
Images courtesy of Yuqing Chen.

w/o regularization in Figure 7.6c is judged to be the best result because it picks out most of the
steeply dipping interfaces in the red box. This suggests that the regularization strategy should be
improved to not exclude steep dips.

7.7.1 MATLAB Codes

The migration images in Figure 7.6 were created by MATLAB codes4. Before they are executed
the user trained the models by selecting 50 pixels in the raw migration image that are migration
artifacts and then selects 50 pixels that are reflectors. These classified pixels are then used to train
the algorithms. This lab is in the Computational labs directory5.

4LAB1/Chapter.Book.SVM/Chapter.SVM1/lab.html
5See LAB1/Chapter.Book.SVM/Chapter.SVM1/lab.html.
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7.8 Multiclass SVM

Sometimes the data need to be divided into more than two types of data, in which case a
multiclass SVM method can be used. In this case the one-versus-all SVM approach (Vapnik, 1998;
Crammer and Singer, 2001) can be used. In this method if there are K classes of data, then one of
the data types, denoted as the k = 1 class, is assigned one binary value by the SVM method and
the rest of the data are assigned the other one. This procedure is repeated for the k = 2 class, and
then again one at a time until all the classes are separated. However, Bishop (2006) points out that
this approach can sometimes lead to inconsistent classifications.

Another problem is that the data are imbalanced, with fewer data in the specified class than
the rest of the data, and promote an imbalanced gradient that mainly reduces the residuals for the
rest of the class compared to that for the specified class. This can lead to slow convergence if an
iterative solver is used and a large percentage error in the predicted classifications. Balancing the
gradient, also known as preconditioning in full waveform inversion, can be a partial remedy where
the weight of the minority class has +1 while the other data have a weight of 1/(K − 1). If the
number of points in each class differs significantly from one another then each point in a class is
divided by the number of points in that class. Rebalancing the data in this way is similar to the
rebalancing of drone photos in Chapter 11.

Sometimes data points are assigned by the one-versus-all SVM to more than one class, which
is an error in classification. This contradiction is sometimes resolved by assigning the misclassified
point to the class with the largest value of the predicted target function y.

A number of other heuristic approaches to multiclass SVM are described in Bishop (2007), but
he states that the one-versus-all approach is the one that is most widely used today. Research into
better multiclass SVM methods is still an ongoing effort, including the multi-kernel SVM which is
used to classify multiclass lithofacies from seismic data (Liu et al., 2020c). A good overview of this
issue and its partial remedies is in Cervantes et al. (2020).

7.9 Hinge-Loss and Soft-Margin SVM

The linear SVM assumes that the binary data points are linearly separable with the conse-
quence that the QP solution to the dual problem will give a hard-margin decision boundary. This
is sometimes referred to as hard-margin SVM6. However, data are often polluted with errors in
misclassification and/or feature coordinates. To account for these errors a regularization function
γ(z(n)) can be added to the SVM objective function

ǫ =

penalty︷ ︸︸ ︷
λ||w||2 +

unregularized objective︷ ︸︸ ︷
1

N

N∑

n=1

γ(z(n)) , (7.32)

where λ > 0 is a damping term and

γ(z(n)) = max(0, 1−
z(n)

︷ ︸︸ ︷
y(n)(wTx(n) + b)). (7.33)

6When the dimensionality of w is in the millions while the sample sizes are in the hundreds, one can
always find ’hyperplanes’ (the high-dimensional analogue to lines) that can separate any possible labeling of
points (Gaonkar and Davatzikos, 2013). This allows us to use the hard margin SVM formulation of Vapnik
(1995) instead of the soft-margin SVM described in this section.
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Figure 7.7: Plots of γ(z) versus z for a) blue and b) red points for the input data (x, z) in c).
The filled yellow circles in a) and b) are data points incorrectly labeled and the open circles
are correctly labeled but within the margins. This is useful because the margin thickness
can be widened to tolerate these deviant points by minimizing the soft-margin objective
function in equation 7.36.

Now λ||w||2 is considered as the regularization term, aka the penalty function, while
∑N

n=1 γ(z
(n)) is

the unregularized objective function. If λ is nearly zero then the optimal model (w∗, b∗) will devote

most of its computations to minimizing 1
N

∑N
n=1 γ(z

(n)) and, therefore, create a skinny margin
thickness where no points are misclassified.

The term γ(z(n)) is denoted as the hinge-loss function (Bishop, 2006) because the loss plots as
the hinged lines in Figure 7.7a-7.7b. The loss becomes larger as the point x(n) plots farther away on
the wrong side of the margin line. As examples, the open blue or open red circles, where 0 < z < 1,
belong to points on the wrong side of the margin boundary but are still on the correct side of the
decision line. The hinge losses for these points are relatively small between 0 and 1, so a modest-sized
value of λ > 0 will allow for a thick margin that contains the open-circle points between the decision
and margin boundaries. This margin thickness will certainly be thicker than the one for λ ≈ 0 where
all the points have to be on the correct side of the margin boundaries. This is equivalent to the
original hard-margin SVM margin described in the previous sections.

The hard-margin boundaries can be considerably softened if λ >> 0. In this case, the hinge-
loss function will be insignificant compared to λ||w||2 even if there are many misclassified point.
The consequence is that the optimal model (w∗, b∗) will produce a very small value for ||w|| and
therefore allow for a very wide margin thicknesses7 at the expense of many misclassified points. These
misclassified points are the yellow-filled circles for z < 0 in Figure 7.7a-7.7b and in Figure 7.7c.

In summary, the parameter λ in equation 7.32, determines the tradeoff between maximizing the
margin width and ensuring that as many points x(n) are correctly classified. For a small enough

7Recall, the margin thickness is inversely proportional to ||w||.
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value of λ ≈ 0, the decision boundary is the same as that for the hard-margin SVM. In this case the
margin thickness can be quite skinny if there are slight errors in the feature coordinates. However,
the margin thickness can get larger in the presence of such errors if λ >> 0. A concern is that strong
outliers might unduly influence the final solution, so these points should be eliminated if possible.

Key Idea 7.9.1. Soft-Margin Regularization: Primal Problem

Another form of regularization widens the margin thickness even if the classification boundary
correctly classifies all of the training data (Bishop, 2006). Widening the boundary admits
that some of the support vectors might be in error, such as point x5 in Figure 7.8a, and
so the margin thickness might actually be wider and more accurate. This is illustrated in
Figure 7.8b, where the point x5 has been effectively ignored (by moving it) and the new
margin thickness and classification boundary have changed.

We can’t arbitrarily ignore a point, but we can move a point according to the expected error
tolerance denoted by ξ5. Moving x(5) to x(5) + ∆x(5) where it is located farther from the
decision boundary yields the adjusted primal problem as

min
w,b

ǫ =
1

2
||w||2, subject to y(i)(wTx(i) + b) ≥ 1 ∀i 6= 5 and

y(5)(wT {x(5) +∆x(5)}+ b) ≥ 1→ y(5)(wTx(5) + b) ≥ 1− ξ5, (7.34)

where ξ5 = y(5)wT∆x(5) > 0. Instead of manually deciding the points to be moved we will
let the learning algorithm determine which ones get moved and which ones are left alone by
defining the general soft-margin problem as

min
w,b

ǫ =
1

2
||w||2, subject to y(i)(wTx(i) + b) ≥ 1−

slack variable︷︸︸︷
ξi ; i ∈ {1, 2, . . . , N}, (7.35)

where ξi = y(i)wT ξ′
(i)

is the slack variable obtained by the inversion methoda. It can also be
interpreted as the effective distance the point x(i) is perpendicularly moved away from the
decision boundary. However, this is not a good strategy to let the computer decide the values
of ξi because it will expand the decision boundary to be as wide as possible. This means that
there is no limit to how far the points will be moved. We need a penalty constraint to keep
the move distance ξi to within a tolerable error so that large moves will be penalized. This
leads to the final formula for the soft-margin regularization:

min
w,b

ǫ =
1

2
||w||2 + C

∑

i

ξi, subject to y(i)(wTx(i) + b) ≥ 1− ξi ; i ∈ {1, 2, . . . , N},(7.36)

where C ≥ 0 is a user-specified regularization parameter. If C >> 0 then the algorithm
will tend to make the tolerable errors ξi as small as possible, so it will compute a thin
margin thickness as if no errors can be tolerated. This would be equivalent to SVM without
regularization. If C is nearly zero then the tolerable errors are large so that the computed
decision boundary will have a large margin thickness, otherwise known as a soft margin.

The constant C is user-defined and controls the tradeoff between the maximization of the
margin and the minimization of classification errors on the training set.

a

It is possible that there is no solution to the problem where |y(i) − (wT
x
(i) + b)| < ǫ ∀ i. To remedy this problem, we

introduce a slack variable ξi for each point. These slack variables allow regression errors to exist up to values |ξi|.
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Key Idea 7.9.2. Soft-Margin Regularization: Dual Problem

The dual formulation of the primal problem in equation 7.36 is similar to that of equation 7.14,
except we include the slack variable term. This leads to the Lagrangian:

L(w, ξ,α, b) =
1

2
||w||2 + C

∑

i

ξi +
∑

i

αi[1− ξi − y(i)(wTx(i) + b)] ; i ∈ {1, 2, . . . , N}.(7.37)

The first step is to minimize L(w, ξ,α, b) w/r to w, b and ξ = (ξ1, ξ2, . . . , ξN ):

min
w,b,ξ

L(w, ξ,α, b), subject to ξi ≥ 0 ∀ i. (7.38)

Similar to the procedure in Box 7.5 for defining the SVM dual problem, we can use the
stationary equations of constraint to eliminate all but the αi variables in equation 7.38 to
get the reduced Lagrangian:

L(α) =

N∑

n=1

αn −
1

2

N∑

n=1

N∑

m=1

y(n)y(m)αnαmx(n)Tx(m), (7.39)

subject to 0 ≤ αn ≤ C; αTy = 0. (7.40)

The inequality constraint in equation 7.40 is bounded by C in order to ensure that L(α) is
bounded (Ricci and Perfitti, 2007). For example, if C−αi is negative then ξi in equation 7.38
can go to −∞ to minimize L(α).

The Python code in Box 7.10.1 implements the SVM with and without regularization, so
that the regularized decision boundary in Figure 7.10b is thicker and has a different slope
than the unregularized decision boundary in Figure 7.10a.

The soft-margin and hinge-loss SVM formulations are often treated separately (Bishop, 2006).
However, Michael Jordan at Berkeley8 shows that the soft-margin SVM is equivalent to hinge-loss
SVM.

Micheal Jordan’s Claim: The soft-margin SVM is a convex program for which the objective
function is the hinge loss.
Proof: The soft-margin SVM is:

argmin
w,b,ξ

1/2||w||2 + C
∑

i

ξi, subject to ξi ≥ 1− y(i)(wTx(i) + b); ξi ≥ 0. (7.41)

When the data are misclassified s.t. y(i)(wTx(i) + b) ≤ 0, the optimal ξi that minimizes the misfit
function is ξi = 0. When the data are correctly classified, as indicated by y(i)(wTx(i) + b) > 0,
the best value of ξi that minimizes the misfit function is y(i)(wTx(i) + b). So, equation 7.41 can be
expressed as the formula for hinge-loss regularization:

argmin
w,b,ξ

1

2
||w||2 + C

∑

i

max(0, y(i)(wTx(i) + b) ). (7.42)

8https://people.eecs.berkeley.edu/ jordan/courses/281B-spring04/lectures/lec6.pdf
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Figure 7.8: Black decision line a) before and b) after ignoring point x5 in computing the
optimal decision line.

7.10 SVM Lab with CoLab

The SVM lab9 implements a SVM classifier on a small set of 2 × 1 training points for different
kernels. It allows the user to also test the soft-margin regularization on this data set. The Python
code in Boxes 7.7.10.1-7.7.10.2 are authored by Gaël Varoquaux with documentation by Jaques
Grobler.

Another lab10 tests the effects of different values of γ and C for soft-margin SVM. Here, the
RBF kernel in equation 7.26 is used where γ = 1/σ2.

9https://colab.research.google.com/drive/1RyYlRJLqECz8ACglY1Tlz9Mx-gekCaD0?usp=sharing
10https://colab.research.google.com/drive/1-SzbxFhuRgPyYdxaT1hvXLv1LAVtFwWx?usp=sharing
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Figure 7.9: Binary labeled points on the left column and the columns to the right are
the soft-margin SVM results for various values of γ = 1/σ2 in equation 7.26 and C in
equation 7.36.

Code 7.10.1. Python Code for SVM written by Gae”l Varoquaux, with documentation by
Jaques Grobler: BSD Lic. 3.

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm

print(__doc__)

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm

# we create 40 separable points

np.random.seed(0)

X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]

Y = [0] * 20 + [1] * 20

# figure number

fignum = 1

# fit the model

for name, penalty in ((’unreg’, 1), (’reg’, 0.05)):

clf = svm.SVC(kernel=’linear’, C=penalty)

clf.fit(X, Y)

# get the separating hyperplane

w = clf.coef_[0]

a = -w[0] / w[1]

xx = np.linspace(-5, 5)

yy = a * xx - (clf.intercept_[0]) / w[1]

# plot the parallels to the separating hyperplane that pass through the

# support vectors (margin away from hyperplane in direction

# perpendicular to hyperplane). This is sqrt(1+a^2) away vertically in

# 2-d.

margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2))

yy_down = yy - np.sqrt(1 + a ** 2) * margin

yy_up = yy + np.sqrt(1 + a ** 2) * margin

# plot the line, the points, and the nearest vectors to the plane

plt.figure(fignum, figsize=(4, 3))

plt.clf()

plt.plot(xx, yy, ’k-’)

plt.plot(xx, yy_down, ’k--’)

plt.plot(xx, yy_up, ’k--’)
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a) Data & Non-regularized SVM b)  Data & Regularized SVM 

Figure 7.10: Solid black line is the SVM decision boundary a) before and b) after soft-margin
regularization.

Code 7.10.2. Python Code for SVM (continued)

plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80,

facecolors=’none’, zorder=10, edgecolors=’k’)

plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired,

edgecolors=’k’)

plt.axis(’tight’)

x_min = -4.8

x_max = 4.2

y_min = -6

y_max = 6

XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]

Z = clf.predict(np.c_[XX.ravel(), YY.ravel()])

# Put the result into a color plot

Z = Z.reshape(XX.shape)

plt.figure(fignum, figsize=(4, 3))

plt.pcolormesh(XX, YY, Z, cmap=plt.cm.Paired)

plt.xlim(x_min, x_max)

plt.ylim(y_min, y_max)

plt.xticks(())

plt.yticks(())

fignum = fignum + 1

plt.show()

The results in Figure 7.10 shows the data with the solid black line as the decision boundary a)
before and b) after soft-margin regularization. Notice how the slope changed after regularization.

Another SciKit-Learning code compares the performance, displayed in Figure 7.11, of several
clustering algorithms which includes a support vector machine with Gaussian kernel. The code11

is described in Box 7.10.3. Note, the linear SVM decision boundary is straight and leads to larger
errors, but it avoids overfitting .

11
https://colab.research.google.com/drive/1WB5GCIbrJnlHUP7ED9vNWyHXCqlDm68l#scrollTo=QvpQJqAl1sE0
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Figure 7.11: Ground truth point distributions on the left column and on the right are shown
the results after classification by different clustering methods. The total testing error for
classification is at the bottom of each classified image, and the training data are not shown.
The term RBF denotes the radial basis function which is similar to the Gaussian basis
function discussed in the previous section. The Python code in Box 7.10.2 reproduces these
figures.
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Code 7.10.3. Python Code for Clusteringa written by Gae”l Varoquaux, with documentation
by Jaques Grobler: BSD Lic. 3. See Figure 7.11.

# Code source: Gael Varoquaux, Andreas Muller & modified by Jaques Grobler

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.datasets import make_moons, make_circles, make_classification

from sklearn.neural_network import MLPClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import SVC

from sklearn.gaussian_process import GaussianProcessClassifier

from sklearn.gaussian_process.kernels import RBF

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

h = .02 # step size in the mesh

names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process",

"Decision Tree", "Random Forest", "Neural Net", "AdaBoost",

"Naive Bayes", "QDA"]

classifiers = [

KNeighborsClassifier(3),

SVC(kernel="linear", C=0.025),

SVC(gamma=2, C=1),

GaussianProcessClassifier(1.0 * RBF(1.0)),

DecisionTreeClassifier(max_depth=5),

RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),

MLPClassifier(alpha=1, max_iter=1000),

AdaBoostClassifier(),

GaussianNB(),

QuadraticDiscriminantAnalysis()]

X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,

random_state=1, n_clusters_per_class=1)

rng = np.random.RandomState(2)

X += 2 * rng.uniform(size=X.shape)

linearly_separable = (X, y)

datasets = [make_moons(noise=0.3, random_state=0),

make_circles(noise=0.2, factor=0.5, random_state=1),

linearly_separable

]

figure = plt.figure(figsize=(27, 9))

i = 1

# iterate over datasets

for ds_cnt, ds in enumerate(datasets):

# preprocess dataset, split into training and test part

X, y = ds

X = StandardScaler().fit_transform(X)

X_train, X_test, y_train, y_test = \

train_test_split(X, y, test_size=.4, random_state=42)

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5

y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5

xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

# just plot the dataset first

cm = plt.cm.RdBu

cm_bright = ListedColormap([’#FF0000’, ’#0000FF’])

ax = plt.subplot(len(datasets), len(classifiers) + 1, i)

if ds_cnt == 0:

ax.set_title("Input data")

# Plot the training points

ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,

edgecolors=’k’)

# Plot the testing points

ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6,

edgecolors=’k’)

ax.set_xlim(xx.min(), xx.max())

ax.set_ylim(yy.min(), yy.max())

ax.set_xticks(())

ax.set_yticks(())

i += 1

# iterate over classifiers

for name, clf in zip(names, classifiers):

ax = plt.subplot(len(datasets), len(classifiers) + 1, i)

clf.fit(X_train, y_train)

score = clf.score(X_test, y_test)

a

https://colab.research.google.com/drive/1WB5GCIbrJnlHUP7ED9vNWyHXCqlDm68l#scrollTo=QvpQJqAl1sE0
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Code 7.10.4. Python Code for Clustering (continued)

# Plot the decision boundary. For that, we will assign a color to each

# point in the mesh [x_min, x_max]x[y_min, y_max].

if hasattr(clf, "decision_function"):

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])

else:

Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

# Put the result into a color plot

Z = Z.reshape(xx.shape)

ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)

# Plot the training points

ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,

edgecolors=’k’)

# Plot the testing points

ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,

edgecolors=’k’, alpha=0.6)

ax.set_xlim(xx.min(), xx.max())

ax.set_ylim(yy.min(), yy.max())

ax.set_xticks(())

ax.set_yticks(())

if ds_cnt == 0:

ax.set_title(name)

ax.text(xx.max() - .3, yy.min() + .3, (’%.2f’ % score).lstrip(’0’),

size=15, horizontalalignment=’right’)

i += 1

plt.tight_layout()

plt.show()

7.11 SVM Regression

SVM can also be used for solving the regression problem (Drucker et al., 1996; Wu et al., 2004),
and this method is known as support vector regression (SVR). It only requires a subset of the training
data because the cost function does not care about points that are not support vectors. Training the
SVR seeks the optimal vector w that minimizes the following quadratic objective function ξ subject
to the inequality constraints:

min
w,b

ξ =
1

2
||w||2,

subject to |y(i) −wTx(i) − b| ≤ ǫ, i ∈ {1, 2, . . . , N}, (7.43)

where ǫ is the specified threshold value of tolerable errors and N is the total number of relevant
training examples. Note, the specified value of y(i) is a scalar value that can be any number on
the real line such that y(i) ≈ wTx(i) + b. In this case, wTx(i) + b is the predicted value of y(i)

and all predictions have to be within the specified tolerance of ǫ. Slack variables and soft margin
regularization are used to allow for approximate solutions in the presence of large errors. The
description of SVM regression MATLAB codes12 is at the MATLAB website13.

7.12 Practical Issues for Implementing SVM

There are three problems that must be addressed prior to the choice of a clustering method:
scaling of feature variables, data augmentation, and computational cost.

12https://www.mathworks.com/help/stats/fitrsvm.html
13https://www.mathworks.com/help/stats/support-vector-machine-regression.html
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7.12.1 Scaling

Each of the feature values might have different units (e.g. the migration filtering problem in
section 7.7), so the input data need to be normalized. The SVM tries to maximize the distance
between the separating plane and the support vectors. If one component, feature value, of the input
vector has different units and much larger values, then it will dominate the other features when
calculating the distance. If you rescale all features between, e.g. 0 and 1, they will all have the same
influence on the distance metric.

This scaling can take the form of dividing each feature xi, e.g. at the i
th pixel, by its standard

deviation:

x̂i =
xi − x̄
σ

, (7.44)

where the data are also demeaned by subtracting the mean value x̄ from the feature value xi. An
alternative is the mean normalization formula:

x̂i =
xi − x̄

max(xi)−min(xi)
, (7.45)

where max and min take the maximum and minimum values of the feature values for all examples.
This will provide an input data set with feature values varying between 1 and −1 with a zero mean.

7.12.2 Data Augmentation

Data augmentation is used to increase the size of the training data, generalize the SVM predictive
properties, balance the different types of data, and in some cases improve the accuracy of hybrid
NN and SVM methods (Shima, 2018). Classification accuracy can be boosted by using dropout
training and data augmentation for both linear and nonlinear SVMs (Chen, N. et al., 2018). As is
well known, dropout tends to reduce the tendency for overfitting . In the case of Chen et al. (2018),
input data were corrupted to give a new corrupted data set. This allowed the regularized SVM
model to learn robust weights in the presence of noisy data.

Balancing the different types of data is important in order to increase the accuracy of the SVM
prediction (Wu and Chang, 2003; Chawla et al., 2002; Ben-Hur and Weston, 2010). One way to do
this is to oversample the minority class of samples that are undersampled (Chawla et al., 2002; Han
et al., 2005) and over-weight the undersampled equations. The correction strategy used by Chawla
et al (2002) randomly generated new synthetic samples along the border line between the minority
samples and their random nearest neighbors. This algorithm first estimates the over-sampling rate,
and then it randomly selects the minority samples and calculates their k-nearest neighbors. The
final step is to generate new samples along the line between the minority sample and a random
sample of the k neighbors. Han et al. (2004) only oversampled the minority class of samples near
the borderline samples.

Deng et al. (2017) found that, after correcting for imbalanced data problems, the SVM classifier
with a RBF could outperform a neural network in identifying the lithology of crystalline rocks taken
from a deep borehole. Figure 7.12a depicts the human, NN and SVM interpretations of the well log.
Figure 7.12b shows that the SVM interpretation is often more accurate than the NN interpretation.
They used the one-versus-all strategy for the multiclassfier SVM discussed in section 7.8. Other
possible remedies are reviewed in Cervantes et al. (2020).

7.12.3 Computational Cost

The computational cost of the kernel SVM method depends on the number N of training exam-
ples and the dimension of the feature space. As an example, the solution to the primal regularized
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Figure 7.12: a) Well logs interpreted by a (left) human, (middle) NN, and (right) SVM. b)
Accuracy of SVM and NN interpretations. Figure adapted from Deng et al. (2017).

least squares problem14 requires the computation of the inverse to D ×D matrix (XTX+ λI) and
the computation of the matrix-matrix multiplication XTX. This gives a computational complexity
of O(ND2 +D3) (Chapelle, 2007), assuming a direct method for inversion of (XTX+ λI).

To solve the related dual problem, the computational complexity is O(DN2 + N3), where the
computational complexity is O(N3) for the direct matrix inverse of (XXT +λI) and O(DN2) for the
matrix multiplication XXT ; here, the dimension of the matrix X is N×D. The matrix (XXT +λI)
corresponds to the scaled Gram matrix for SVM. If an efficient gradient optimization method is used
then the computational cost can be as low as O(mN2) for m << N iterations. It is argued that one
should solve either the primal or dual problem depending on whether N is larger or smaller than
D. In both cases, computations can also be speeded up with fast and efficient SVM algorithms for
parallel computers (Perkins et al., 2015).

A solution strategy that avoids numerical inverses is the Sequential Minimal Optimization (SMO)
strategy of Platt (1998). The SMO method breaks the QP solution into a sequence of much smaller
QP solutions. These smaller QP solutions are analytically computed and avoid having to invert
large matrices. The memory requirements grows as O(N) as the number of training examples grow.
SMO’s computation time is dominated by the SVM evaluation, hence SMO is fastest for linear SVMs
and sparse data sets.

It is often the case that the dual problem is solved and the primal one is ignored. However,
Chapelle (2007) shows that solving primal optimization can be superior to dual optimization when
only approximate solutions are required.

14The primal solution to a regularized least squares (RLS) problem can be posed as finding w∗ that
minimizes λwTw+ ||Xw− y||2, where the dimensions of w and X are D× 1 and N ×D, respectively. The
RLS solution is w∗ = (XTX+ λI)−1XTy, where (XTX + λI) is a D ×D matrix. The computational cost
for minimizing the quadratic objective function with equality constraints is the same as that with inequality
constraints.
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If the number of training data and the dimension of the feature vectors are both large, then
the computational cost of SVM can be prohibitive. An ad hoc strategy is to reduce the number of
points for training by restricting most of the training set to be those with a high probability of being
support vectors (Chau et al., 2010, 2013; Liu et al., 2017b). Otherwise, a NN or CNN approach can
be more efficient and about as accurate.

7.12.4 Procedures for Users

Hsu et al. (2003) and Ben Hur (2010) proposed a list of procedures that users can follow when
implementing SVM.

1. Transform data to the format of an SVM package.

2. In addition, data should be scaled and balanced w/r to the binary class types. The equations
for the unbalanced class should be overweighted. The main importance of scaling is to prevent
attributes with a wider range of numerical values from dominating those with a smaller range.

For example, the input component x
(i)
j should be scaled such that−1 ≥ x(i)j ≥ 1 or 0 ≥ x(i)j ≥ 1

∀ i, j.
For example, assume that the first attribute of training data is scaled from [−10;+10] to
[−1;+1]. If the first attribute of testing data lies in the range [−11;+8], then we must scale
the testing data to [−1 : 1;+0 : 8].

3. Systematically try a few kernels listed in this chapter. The Gaussian kernel is usually favored
(Hsu et al., 2003). The linear kernel provides a useful baseline, and in many bioinformatics
applications provides the best results (Hsu et al., 2003). The flexibility of the Gaussian and
polynomial kernels can lead to overfitting in high-dimensional datasets with a small number of
examples. An SVM with a linear kernel is easier to tune since the only parameter that affects
performance is the soft-margin constant. Once a result using a linear kernel is available, it can
serve as a baseline to improve upon using a nonlinear kernel. Experience (Hsu et al., 2003)
suggests that the Gaussian kernel usually outperforms the polynomial kernel in both accuracy
and convergence time if the data are normalized correctly and an optimal value of the width
parameter is chosen.

4. Use cross-validation described in section 4.9 to test the best values of the hyperparameters. For
example, C and γ = 1/σ2 are the hyperparameters for the Gaussian kernels. Hsu et al (2003)
successfully used an exponentially growing sequence of C values such as C = (2−5, 2−3, . . . , 23)
to identify the optimal parameter. A coarse grid of C values is initially searched, then a fine
grid search is used to find the best value of C.

5. Ben-Hur and Weston (2010) show examples for weighting unbalanced SVM data using an
SVM library15 of codes.

7.13 Summary

The linear SVM is a binary classification method that finds the optimal (w, b) which gives the
fattest margin distance in a D−1 hyperplane for N training examples. This is known as the solution
to the primal problem where w and b minimize ||w||2 subject to linear inequality constraints. Its
solution can be computed by a quadratic programming method. If the dimension of the D×1 feature
vector x(i) is huge compared to the number N of feature vectors, then the computational cost is
dominated by O(D3) operations. In this case, solving the reduced dual problem is more efficient
because its cost is dominated by O(N3).

15https://www.csie.ntu.edu.tw/ cjlin/libsvm/
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If the data are not linearly separable by a hyperplane, then a higher-order transform can be
found that linearly separates the transformed points in the higher-dimensional space. This nonlinear
transformation z(i) = φ(x(i)) maps the original feature vectors x(i) to the new Dz× 1 feature vector
z, where Dz > D. To reduce the computational costs, the primal SVM problem is transformed
into the dual Lagrangian problem, where the number of unknowns N is the same as the number of
training examples.

Kernel methods are used to avoid the problems of highly oscillatory basis functions with a
nonlinear transform. The first step is to replace the dot product z(x)T z(x′) with a suitable kernel
k(x,x′), where there is no explicit specification of z. This kernel must be symmetric and its Gram

matrix must be positive semi-definite. An example is the Gaussian kernel k(x,x′) = e−||x−x′||2/σ2

and indicates the similarity of x and x′ just like the dot product z(x′)T z(x); if x ≈ x′ then k(x,x′) =
1 and ẑ(x′)T ẑ(x) = 1. The solution to the reduced Lagrangian is then obtained by a QP method
with a computational complexity dominated by O(N3) if a direct matrix inversion method is used.

There are benefits and liabilities of SVM compared to neural networks.

1. Mountrakis et al. (2011) state that ”SVMs are particularly appealing in the remote sensing
field due to their ability to successfully handle small training data sets, often producing higher
classification accuracy than the traditional methods .”. In contrast, the NN model typically
requires a much larger training set to generalize to new data. The SVM is more efficient
because it only requires training data with the support vectors to accurately determine the
margin boundaries. In medical diagnosis, accurate classification of disease is the most impor-
tant outcome, and so medical imaging diagnosis has a long successful use of SVM classification.
However, autonomous vehicles (Kocić et al., 2019) often use NNs for classification even though
SVMs can also be used.

2. Jeeva (2018) claims that ”...published article trend for the neural nets vs support vector
machines starting from 2000. There is a significant uptake in the article volume for the neural
nets, and they have surpassed SVM significantly in active research in the last seven years.”.

3. The nonlinear SVM can find a higher-dimensional space where the data are linearly separable.
In this case the SVM can properly classify the binary data. This is not always guaranteed for
a NN because it might get stuck in a local minima (de Luca, 2020).

4. The SVM has only a few hyperparameters to choose, such as the type of kernel and the
value of the regularization term. In contrast, the NN has many hyperparameters such as the
number of filters, the number of layers, the filter sizes, the type of activation functions, and
the architecture of the NN.

5. The SVM can have many fewer unknowns to solve for than the NN, so it can be computa-
tionally less expensive than a NN. SVMs are generally very fast to train (de Luca, 2020).

6. Both a NN and a SVM can classify with about the same accuracy. However, de Luca (2020)
claims that ” If given as much training and computational power as possible, however, NNs
tend to outperform SVMs.”. If the training set is huge then SVM can become too costly using
the kernel method.

7. Unlike a NN, the number of unknowns increases with the number of input examples for an
SVM. However, for well-separated classes the number of training examples is not large for an
SVM (deLuca, 2020). If needed, the size of the input data can be reduced by only including
data points that have a high probability of being a support vector.

Chapelle (2007) shows that solving primal optimization is superior to dual optimization when
only approximate solutions are required.

8. The performance and accuracy of NNs depends on the initial weights and the number of
iterations. In contrast, SVMs most often converge to the global minimum and don’t require
random initialization weight.
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7.14 Exercises

1. Form the Lagrangian for the dual problem of soft-margin SVM in equation 7.32. Write down
the equations for the stationarity conditions of L(α,w, b). The derivative of the max operator
cannot be strictly defined. Replace it with a suitable approximation that can be differentiated.

2. Reformulate the objective to be ǫ = 1/2||w||2 + C
∑N

n=1 ξn with the constraint

wTx(n) + b − 1 ≥ ξn, (7.46)

where ξn ≥ 0. Here, C is a specified tradeoff parameter. What are the Karush-Kuhn-
Tucker conditions? See Appendix 7.17 for the definition of the Karush-Kuhn-Tucker (KKT)
conditions.

3. Derive the reduced Lagrangian for the above problem and state the constraints. See page 333
in Bishop (2007).

4. Go to the CoLab site16 and execute the Python code for classifying a small set of 2×1 vectors.

5. Download the SVM regression codes17 and fit a SVM curve to a cosine function with additive
random noise. Assess the effects of changing the value of σ using a Gaussian kernel.

6. Use the cross-validation procedure listed at the MATLAB www site18 for fitting the noisy
cosine function.

7.15 Computational Labs

1. Go to the CoLab site19 and execute the Python code for classifying a small set of 2×1 vectors.
This code was written by G. Varoquaux to perform regularized and unregularized SVM for
different kernels.

2. Go to the soft-margin SVM lab20 and explain the different results for different values of γ and
C.

3. Go to the SVM lab in LAB1/Chapter.Book.SVM/Chapter.SVM1/lab.html and run the
SVM lab. This MATLAB code computes the decision boundaries that separate signal from
noise in migration images, and then mutes the noise in the migration image. The performance
of the SVM is compared to that of the neural network and logistic regression algorithms.

4. Go to the CoLab21 and compare the clustering effectiveness on two clouds of noisy points,
each one hugging one of the two neighboring cosine functions.

7.16 Appendix: Defining the Dual Problem with a Lagrangian

Finding the optimal x that minimizes or maximizes a quadratic functional f(x) subject to N
inequality constraints g(x)(n) ≥ 0 can be recast as the solution to the dual problem. The objective
function for the dual problem is formed by adding N weighted inequality constraints onto f(x) to
form what is known as the Lagrangian: L = 1

2f(x)−
∑

n αng(x)
(n) subject to the simpler inequality

16https://colab.research.google.com/drive/1RyYlRJLqECz8ACglY1Tlz9Mx-gekCaD0?usp=sharing
17https://www.mathworks.com/help/stats/fitrsvm.html
18https://www.mathworks.com/help/stats/fitrsvm.html
19https://colab.research.google.com/drive/1RyYlRJLqECz8ACglY1Tlz9Mx-gekCaD0?usp=sharing
20https://colab.research.google.com/drive/1-SzbxFhuRgPyYdxaT1hvXLv1LAVtFwWx?usp=sharing
21

https://colab.research.google.com/drive/1WB5GCIbrJnlHUP7ED9vNWyHXCqlDm68l#scrollTo=QvpQJqAl1sE0
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Figure 7.13: Red and black contours for the functions f(x) and g(x), respectively; the
green areas define the points x ∈ Vo that satisfy the inequality constraint g(x) ≥ 0. In a)
the constraint g(x) =

√
x21 + x22 ≥ 0 is satisfied everywhere so the minimum of f(x) is at

the red dot x∗. In b), g(x) = −
√
x21 + x22 + 3 ≥ 0 so the possible, i.e. feasible, solution

points x are restricted to be inside the small green disk. The points x ∈ Bo on the dashed
circular boundary satisfy g(x) = 0, and the optimal point where L is stationary and a
maximum is at the ”kiss” point f(x) on Bo where ∇L(x, α) = ∇f(x) − α∇g(x) = 0. The
points along the dashed blue line are defined to be the ones where the elliptical and circular
contours ”kiss” each other, i.e. they satisfy the stationary condition ∇f(x) − α∇g(x) = 0
where α = |∇f(x)|/|∇g(x)|.

constraints αn ≥ 0. There is an unknown weight αn, also known as the Lagrange multiplier, for each
constraint so that there are N more unknowns to be determined. This dual problem is sometimes
computationally less expensive to solve than the primal problem, as discussed in section 7.5. We
now give a heuristic and intuitive derivation of a Lagrangian function for one inequality constraint,
i.e. n = 1.

Consider the following minimization problem with one inequality constraint:

minimize
x

f(x)

subject to g(x) ≥ 0,
. (7.47)

Figure 7.13a shows a 2D example where f(x) describes the red elliptical contours and g(x) =√
x21 + x22 describes a circle for the inequality constraint. In this case all points in the infinitely-

extended green region in Figure 7.13a satisfy the inequality constraint g(x) ≥ 0 so that the solution
to equation 7.47 is at the center point x∗ of the red ellipse. An unconstrained steepest descent
method can then be used to search for x that satisfies ∇f(x) = 0.

If g(x) = −
√
x21 + x22 + 3 ≥ 0 then the feasible points x are only in the small green disk in

Figure 7.13b. Which of these feasible points minimizes f(x)? It is geometrically clear that the
dashed red ellipse with the contour value f(x) = 4 just kisses22 the boundary of the green disk at

22The kiss point is the point where the tangents of the g(x) and f(x) contours are parallel to one another.
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x∗. No other ellipse contour with a smaller value intersects the green region. Therefore, x∗ must
be the solution that minimizes f(x) and also satisfies the inequality constraint in equation 7.47. As
discussed below, L achieves a maximum at this stationary point.

Notice that the circular contour at x∗ in Figure 7.13b is tangent to the red dashed contour of the
ellipse. This means that the normal vectors ∇g(x) and ∇f(x) at x∗ are parallel23 to one another at
the minimization point x∗. This suggests that we can define a new function L that is the weighted
sum

L(x, α) = f(x)− αg(x), (7.48)

which has the property of being stationary at the kissing point x∗:

∇L(x, α)|x=x∗ = [∇f(x)− α∇g(x)]x=x∗ ,

= 0, (7.49)

which implies α = |∇f |/|∇g| ≥ 0. The weight α ≥ 0 because the gradients of both functions are
parallel and have the same sign at x∗, so α ≥ 0 to satisfy equation 7.49. In the third quadrant of b),
the gradients ∇f and ∇g at their kissing points are anti-parallel so α ≥ 0 excludes the stationarity
condition in equation 7.49.

Equation 7.49 is a necessary but not sufficient condition for x∗ to be a minimizer of f(x), because
equation 7.49 cannot be satisfied for multiple x∗ ’s lying on the blue kiss24 curve in Figure 7.13b.
The blue kiss curve, can extend into the green disk in Figure 7.13, and can be parameterized as
x∗(α) because along this curve, given a feasible α, there exists a kissing point x∗ that satisfies
equation 7.49. With this parametrization, the reduced Lagrangian L(α) is given by

L(α) = L(x∗(α), α). (7.50)

We therefore need another mathematical condition in addition to equation 7.49 to pick out the
optimal kiss point x̂∗ at the dashed black boundary in Figure 7.13b. This new condition is that,
if we let the optimal x̂∗ be associated with α̂, namely, x̂∗ = x∗(α̂), then L(α̂) is maximum over α
along the kiss curve x∗(α). This is found by

dL(α)
dα

=
[
dx∗

dα

]T 0︷ ︸︸ ︷
∇L(x, α)|x=x∗ +

−g(x∗)︷ ︸︸ ︷
∂L(x, α)

∂α
|x=x∗ , (7.51)

= −g(x∗), (7.52)

which follows from equations 7.48 and 7.49. At the boundary point x̂∗ = x∗(α̂) we have dL
dα =

−g(x̂∗) = 0. In case of α > α̂, the kiss point enters the green disk, and so the slope −g(x∗(α)) < 0.
In the case of α < α̂, the kiss point exits the green disk, and so the slope −g(x∗(α)) > 0. This is
the condition for L(α) to be a maximum at α̂ along the kiss curve.

Therefore, the two conditions that are necessary and sufficient for x∗ to minimize f(x) subject
to the inequality constraints are

maximize
α

L(α),

subject to ∇f(x)− α∇g(x) = 0 and α ≥ 0.

For N inequality constraints, the Lagrangian takes the form of equation 7.14. The next section

23The values of the ellipse and circle are both increasing to the left at x∗. Hence, the gradients are parallel
to one another, not anti-parallel.

24The blue kiss curve is defined by the kissing points where ∇L = 0 for α = |∇f |/|∇g|
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shows a 1D example for solving the Lagrangian dual problem.

7.16.1 Simple Example of a Dual Solution

For a simple 1D convex minimization problem with inequality constraints, the optimization
problem is defined as

minimize
x

f(x)

subject to g(x) ≥ 0,
. (7.53)

For the example f(x) = x2 and one inequality constraint, equation 7.53 becomes

minimize
x

f(x) = x2

subject to g(x) = 0.7x− 0.14 ≥ 0,
(7.54)

where f(x) = x2, g(x) = 0.7x − 0.14, and h(x) = f(x) − αg(x) are plotted in Figure 7.14. The
inequality constraint is g(x) = 0.7x − 0.14 ≥ 0 so that the feasible points are for x ≥ 0.2. It is
obvious that x∗ = 0.2 at the green star minimizes f(x) for the feasible points x ≥ 0.2. In contrast,
the global minimum of f(x) is at x = 0 to the left of x∗, but x = 0 will violate the inequality
constraint x ≥ 0.2.

An alternative to the above optimization problem is to find x that maximizes the reduced
Lagrangian

maximize
α

L(x(α), α) = f(x)− αg(x),

subject to α > 0,
. (7.55)

where α is the Lagrange multiplier. These two stationarity conditions are expressed as

∂L

∂x
=

∂f

∂x
− α∂g

∂x
= 0

∂L

∂α
= −g(x) = 0 subject to α > 0. (7.56)

For the equation 7.54 example,

L(x(α), α) = x2 − α(0.7x− 0.14), (7.57)

so that equation 7.56 becomes

∂L

∂x
=
∂x2

∂x
− α∂(0.7x− 0.14)

∂x
= 2x− 0.7α = 0 → α = x/0.35, (7.58)

∂L

∂α
= −0.7x+ 0.14 = 0 → x = 0.2. (7.59)

Plugging equation 7.59 into equation 7.58 gives α = 0.2/0.35 = 0.57, which is associated with the
dashed blue curve L(x, α = 0.57) plotted in Figure 7.14. This value of α = 0.57 > 0 satisfies
the positivity constraint and also balances out the gradients of df/dx and dg/dx so that the sum
∂L/∂x = ∂f/∂x− α∂g/∂x = 0 is stationary at x∗ = 0.2.

At each value of x there is a unique value of α = x/0.35 (see equation 7.58) that allows ∂L/∂x =
0. Setting α → α(x) = x/0.35 from equation 7.58 says that L(x, α(x)) is a maximum at x∗ = 0.2



7.16. APPENDIX: DEFINING THE DUAL PROBLEM WITH A LAGRANGIAN 201

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.05

0

0.05

0.1

0.15

0.2

h(
x)

h(x) vs x 

     

solid red: h(x) --> f(x) = x 2

solid green: h(x) --> g(x) = 0.7x - 0.14

dashed curves:    h(x) =         - α    f(x) g(x)

x*

α = 0

α = 0.29

α = 0.57

α = 0.86

α = 1.14

Figure 7.14: Plots of f(x) = x2, g(x) = 0.7x − 0.14, and f(x)−αg(x), where x∗ is the
optimal solution that minimizes L subject to the inequality constraint. The Lagrangian
L(x, α) = f(x)− αg(x) is plotted as dashed lines for various values of α. Notice how the
Lagrangian h(x) is first minimized for fixed values of α ∈ {0, 0.29, 0.57, 0.86, 1.14} to give
a list of h(x) values at the open circles. The maximum value in this list is the green open
circle at x∗, which is the optimal solution.
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because it satisfies the maximality conditions: ∂L/∂α = 0 for x = 0.2 and its second derivative

∂2L(x = 0.35 ∗ α, α)
∂α2

=
∂2(0.1225α2 − 0.245α2 + 0.049α)

∂α2
,

= −.245 (7.60)

is negative25. Thus, the values of L(x, α(x)) plotted against x intersect the circled points in Fig-
ure 7.14 where L(x, α(x)) is a maximum at x∗ = 0.2.

7.16.2 Concavity and Maximization of the Reduced Lagrangian

The previous section showed a simple example where a max-min optimization procedure is used
to find the optimal solution to a quadratic function subject to a linear inequality constraint. The
optimization procedure is used to find the minimum of L w/r to w and b because ||w||2 is a convex
function in w. And then the maximum of L w/r to α is found because L is a concave function in α.
We now show this procedure is valid for a more general Lagrangian function with many inequality
constraints.

From equation 7.48, it follows that

L(x, (1− β)α0 + βα1) = f(x)− [ (1− β)α0 + βα1 ] g(x),

= [(1− β) + β] f(x) − [ (1− β)α0 + βα1] g(x),

= (1− β) {f(x)− α0g(x)} + β {f(x)− α1g(x)},
= (1− β)L(x, α0) + β L(x, α1), (7.61)

where the interpolation coefficient β ∈ [0, 1]. By evaluating this equation at x = x∗ with x∗ =
argmin

x

L(x, (1−β)α0+βα1), which depends implicitly on (1−β)α0+βα1, and by using equation 7.50

on the left-hand side (LHS) of equation 7.61, we arrive at

L((1 − β)α0 + βα1) = (1− β) L(x∗, α0)︸ ︷︷ ︸
to be bounded

+ β L(x∗, α1)︸ ︷︷ ︸
to be bounded

. (7.62)

We now show that the two Lagrangians L(x, α0) and L(x, α1) can be bounded from below w/r to
variations in x. For j = either 0 or 1, let xj,∗ = argmin

x

L(x, αj), namely,

L(xj,∗, αj)︸ ︷︷ ︸
L(αj)

≤ L(x, αj), ∀x, specifically x = x∗

︸ ︷︷ ︸
L(x∗,αj)

, (7.63)

where the left under-brace follows from equation 7.50. Equation 7.63 says that x∗ is not as good
as xj,∗ at bringing L(·, αj) to the minimum, because x∗ is best at doing something else, namely,
minimizing equation 7.61. Evaluating j = 1 and 2, in 7.63 gives

L(α0) ≤ L(x∗, α0), (7.64a)

L(α1) ≤ L(x∗, α1). (7.64b)

Inserting the right-hand sides (RHS’s) of inequalities 7.64(a) and 7.64(b) into the RHS of equa-
tion 7.62 leads to

L((1 − β)α0 + βα1) ≥ (1− β)L(α0) + βL(α1). (7.65)

25The negative second-derivative is an alternative to the first-derivative maximum conditions we used
earlier.
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Figure 7.15: The function f(x) is convex for x1 ≤ x ≤ x2 and concave for x3 ≤ x ≤ x4.

Equation 7.65 says that the reduced Lagrangian L(·) is concave. An example of a concave function
is plotted on the right of Figure 7.15. It is known that a concave function has one global maximum.
In case the ≥ sign in equation 7.65 is flipped to ≤, then the function of interest would be convex,
with an example plotted on the left of Figure 7.15.

7.17 Appendix: Karush-Kuhn-Tucker Conditions

We now define the Karush-Kuhn-Tucker conditions for the optimization problem with inequality
constraints discussed in Appendix 7.16. If optimal solution x is in the inactive region where g(x) > 0
then the inequality constraint g(x) ≥ 0 is denoted as inactive and α = 0 for the solution to the
Lagrangian problem. For example, the optimal solution is at the center of the green circle in
Figure 7.13a where g(x) > 0. This constraint is not needed when x is in the inactive region so it
makes sense to set α = 0 because it leads to a larger Lagrangian, i.e.

x ∈ inactive region; [f(x) − αg(x)] α>0 < [f(x)− αg(x)]α=0. (7.66)

However, if the optimal solution x is somewhere on the boundary defined by g(x) = 0 then the
constraint is active and α > 0. Being active implies that the stationary condition is not just the
unconstrained stationary condition ∇f(x) = 0 but requires ∇f(x)− αg(x) = 0.

Assigning α to be either 0 or > 0 is compactly summarized by the condition αg(x) = 0, where
α > 0 for x on the boundary or α = 0 for x in an inactive region where g(x) > 0. Thus, this leads to
three constraints for the Lagrangian problem known as the Karush-Kuhn-Tucker (KKT) conditions:

g(x) ≥ 0,

α ≥ 0,

αg(x) = 0. (7.67)
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If there are N inequality constraint such that g(x)(n) ≥ 0 for n = [1, 2, . . .N ] then there are N
Lagrange multipliers with αn ≥ 0 and g(x)(n)αn = 0 for n = [1, 2, . . .N ]. See Nocedal and Wright
(1999) for more details.
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Chapter 8

Convolution and Correlation

The convolution operation is the basis of a convolutional neural network. It effectively replaces
the densely populated matrices W[n] in a fully connected NN with sparsely populated matrices. This
reduces the amount of memory, computation and the tendency to overfit. This chapter presents the
fundamentals of the convolution operation and its related cousin correlation.

8.1 Convolution

A system is defined to be any process that alters an input signal, such as the discrete N × 1
vector x = {x1, x2, . . . , xN}, to produce the response signal, such as the discrete M × 1 vector
y = {y1, y2, . . . , yM} (Oppenheim et al., 1996). For example, the input is the transient source signal
x (see the stick-o-gram in Figure 8.1a) of a hammer striking the ground and the output signal is the
recorded seismogram y at a nearby geophone.

The linear discrete system response of the input x gives the output y = Wx represented by the
matrix-vector product

yi =

N∑

j=1

wijxj , (8.1)

where W is the M ×N impulse-response matrix with coefficients wij :

Trace︷ ︸︸ ︷∣∣∣∣∣∣∣∣∣∣∣∣

y1

y2

.

.

yM

∣∣∣∣∣∣∣∣∣∣∣∣

=

Each column=impulse response︷ ︸︸ ︷∣∣∣∣∣∣∣∣∣∣∣∣

w11 w12 ... w1N

w21 w22 ... w2N

. . ... .

. . ... .
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∣∣∣∣∣∣∣∣∣∣∣∣

Source︷ ︸︸ ︷∣∣∣∣∣∣∣∣∣∣∣∣

x1

x2

.

.

xN

∣∣∣∣∣∣∣∣∣∣∣∣

. (8.2)

Each column of W is considered to be the impulse response of the system. For example, if the
input hammer signal is an impulse that only turns on with unit amplitude at the time index k then
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xn = δnk is written in vector notation as

x =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1

x2
...
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0

1

0

...

0
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. (8.3)

Plugging equation 8.3 into 8.2 yields the Earth’s impulse response:
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Therefore the kth column vector of the MxN matrix W is interpreted as the impulse response of the
system for an impulsive input xn = δnk excited at time k∆t at the hammer location. The output
y is the seismogram recorded at the specified geophone position. Obviously, the vibrations cannot
be recorded at time n∆t until after the source is excited at time k∆t so a causal system demands
wnk = 0 for n < k.

8.1.1 Time or Shift Invariance

A linear system is linear time invariant (LTI) if a k-shifted input leads to the original output,
except shifted by k samples (Oppenheim et al., 2006). This means that the columns (or rows) of W
in equation 8.4 are shifted replicas of their neighbors. The column shift is by one time sample if it
is an immediate neighbor, which leads to the time invariance property

wij = wi−j , (8.5)

where wi−j = 0 for i < j is the defining property of a causal LTI filter. The LTI property implies
that wij = wi+1j+1 = wi−j , where the coefficients wi−j of the row vector w = {w0, w1, . . . } will be
denoted as filter, aka kernel1, coefficients. Note, the time subscript j for wi−j can take on the value

1The term kernel is used in many branches of engineering and science (https :
//en.wikipedia.org/wiki/Kernel), but each has a specialized meaning. We will define the kernel
function k(x,y) in the sense of an integral transform: f(y) =

∫
k(x,y)dx, where y and x can be n-tuples

x ∈ RM , y ∈ RN and k(x,y) is the kernel function. For example, the kernel of a 2D Fourier transform is
eik1x1+ik2x2 where k = {k1, k2}. This integral can be discretized to become a matrix-vector multiplication
so that the coefficients in the matrix are the kernel, i.e. filter, coefficients.
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Figure 8.1: The a) causal filter w(τ) = {w0, w1, w2}, b) the filter w(−τ) which is w(τ)
reflected about the origin τ = 0, c) the convolution matrixW where each output yt is the dot
product of the input vector x = {x0, x1, x3} with the row vectorw(t−τ); here, the row vector
is shifted by t samples. d) is an example ofWx = y for the filterw = {w0, w1, w2} = {2, 6, 9}
and the input x = {x0, x1, x2} = {1, −1, −1}. The top row of zeros w−1 = w−2 = w−3 = 0
in the matrix are eliminated to give a trimmed, i.e. compact, version of the matrix W.

zero, which is often used as the reference time when the hammer strikes the ground.

Equation 8.5 says that the unit impulse response wij = wi−j does not depend on the absolute
start time index j of the impulse or the recording time index i. It only depends on the time difference
(i− j)∆t between the observation and excitation times, where ∆t is the time-sampling interval.

For i = 0, wi−j |i=0 = w−j is the original filter except wj is reflected through the origin. As
an example, Figure 8.1a plots the discrete filter w(τ) = wτ for τ ∈ {−3,−2,−1, 0, 1, 2, 3} and its
reflected version w(−τ) = w−τ in Figure 8.1b. If a time shift t is included then w(t − τ) = wt−τ

and the filter is shifted to the right by t samples. Otherwise it is shifted to the left for t < 0.
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8.1.2 1D Convolution

An example of an LTI matrix W for the 1D filter coefficients w = {w0, w1, w2} is obtained by
substituting x = {0, 1, 0, 0, 0, 0, 0} and equation 8.5 into equation 8.2 to get

Wx =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w0 0 0 0 0

w1 w0 0 0 0

w2 w1 w0 0 0

0 w2 w1 w0 0

0 0 w2 w1 w0

0 0 0 w2 w1

0 0 0 0 w2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

1

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

w0

w1

w2

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= y, (8.6)

where w is known as a 1D convolution filter (Oppenheim et al., 1996) that forms one of the building
blocks of CNN. It is 1D in the sense that the filter only depends on a single variable, which is time
in this example. Note, the storage requirement for the matrix W is no larger than the number Nf of
non-zero elements in the Nf ×1 vector w. Moreover, the number of algebraic operations to compute
the matrix-vector multiplication Wx is O(NfM), where M is the number of rows.

In terms of a seismic experiment time invariance says that the outcome seismogram of the
experiment is not determined by the day or hour it started, the outcome depends on the temporal
difference between the start time of the source and the observation times in the seismogram. That
is, the earth’s impulse response is time invariant. For example, the seismogram amplitude observed
3 seconds after the hammer hits the ground is the same whether it hits the ground on a Monday or
a Tuesday.

Substituting the LTI property of equation 8.5 into equation 8.1 gives the equation for convolution:

yi =
∑

j

wi−j xj (dot− product of reflected− shifted vector), (8.7)

which can be represented by the more compact notation

y = w ⋆ x, (8.8)

where ⋆ denotes convolution. More generally the upper and lower limits in the summation of
equation 8.7 span the number of samples in x.

The convolution operation for a fixed observation index i can also be described as a dot product
of the shifted vector w with the vector x. If the units associated with the shift index i are some-
thing other than time, then the LTI system is referred to as a Linear Shift Invariant (LSI) system
(Oppenheim et al., 1996). It also can be viewed as a weighted running average of the elements in
the input vector, where the weighting elements are given by (. . . w−1, w0, w1, . . . ).

An example of using 1D convolution is illustrated with the computation of the synthetic seis-
mogram in Figure 8.2e. This seismogram represents the amplitude recorded as a function of 2-way
propagation time for a wave propagating vertically in the earth and reflecting back to the surface
from impedance discontinuities. In this case, the source is a point source on the surface with the
time history w(t) shown in Figure 8.2d. The strengths of the upgoing reflections are governed by
the reflection coefficients at each interface (see Chapter 27.1). The reflection coefficients are plotted
as a function of depth in Figure 8.2a and two-way time in Figure 8.2b.

The time series r(t) in Figure 8.2b is also known as the impulse response of the medium. Con-
volving this time series r(t) with the source wavelet w(t) gives the seismogram s(t) = r(t) ⋆ w(t)
in Figure 8.2e. Notice that there is a delay in the source wavelet in Figure 8.2d so the response in
Figure 8.2e is also delayed by about the same amount of time. This highlights the property of a
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Figure 8.2: Plots of a) sonic log v(z) vs depth, b) v(t) converted from v(z), and c) reflectivity
computed from b) assuming density is constant. The 40 Hz source wavelet is in d) and the
synthetic seismogram s(t) = r(t) ⋆ w(t) is in e).
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causal filter r(t), i.e. the the seismogram s(t) = r(t) ⋆ w(t) only records non-zero amplitudes at the
same time or later after the source wavelet w(t) turns on. Mathematically, this causal property of
the Earth is characterized by convolution which flips the r(t) across the time=0 origin before taking
shifted dot products with w(t). It is only when the positive time shift matches the delay time of
the source will the seismogram record non-zero amplitudes. In this example the wavelet didn’t start
until about 0.04 seconds, which is the same start time of the seismogram. In contrast, correlation
does not flip the reflectivity series so there will be non-zero dot products computed at the shift
time=0 and even at negative shift times.

Distinguishing the difference between correlation and convolution is extremely important in
geophysics. However, such a distinction is perhaps not so not important in machine learning. Small
spatial shifts in correlated patterns compared to convolved patterns might not be so important for
machine learning applications.

8.1.3 2D Convolution

For two-dimensional convolution, the input is a 2D array of, for example, intensity values of a
grayscale photograph. The intensities on a

√
N ×

√
N grid are mapped, i.e. flattened, to a N × 1

vector x. This is illustrated by the image in the blue box of Figure 8.3c being flattened into the x
vector in d).

The 2D convolutional filter w that acts on x is an array of weights ωi for i ∈ {0, 1, 2, . . . , Nf−1}
that occupy a 2D block in the image, such as the one in Figure 8.3a where Nf = 9. The equation
for 2D convolution is

yr,c =
∑

r′

∑

c′

wr−r′,c−c′xr′,c′ , (8.9)

where the filter weights ωi depicted in Figure 8.3a are given by

w−1,−1 = ω8; w−1,0 = ω7; w−1,1 = ω6;

w0,−1 = ω5; w0,0 = ω4; w0,1 = ω3;

w1,−1 = ω2; w1,0 = ω1; w1,1 = ω0. (8.10)

Each weight at a red point in Figure 8.3a is reflected through the origin {r, c} = {0, 0} to give the
reflected filter wr−r′,c−c′|r=0,c=0 in Figure 8.3b for r = c = 0.

The blue box in Figure 8.3c contains the intensity coefficients of the 2D input image x =
{x0, x1, . . . , xN−1}, and the reflected filter coefficients w−r,−c are in the brown box. For wr−r′,c−c′ ,
the r and c indices correspond to the row and column samples by which the filter w−r′,−c′ is shifted.
For example, at r = c = 0 the filter w−r,−c is unshifted and centered at the origin (red-filled circle)
in the brown boxes of Figure 8.3b-8.3c.

The filled-red circle in the blue box is at {r, c} = {1, 1}, where the origin of the blue-box’s
coordinate system is in the center of the uppermost left pixel at the {r, c} = {0, 0} gridpoint. The
output yr,c|r=1,c=1 in equation 8.9 is obtained by centering the 3× 3 filter w1−r′,1−c′ onto the red-
filled circle at {r, c} = {1, 1}, and summing the products

∑
r′
∑

c′ w1−r′,1−c′xr′c′ to get y1,1. The
variable y1,1 is redefined to be y0 and placed in the output yellow box on the right. This process of
computing the dot products of the input with shifted filters wr−r′,c−c′ can be repeated to get the
values of y1,2 = y1, y2,1 = y2, and y2,2 = y3. Here, the shifted filters are centered, respectively, at the
blue ({r, c} = {1, 2}), green ({r, c} = {2, 1}) and purple ({r, c} = {2, 2}) circles. The convolution
filter in c) can be flattened and placed as shifted row vectors to form the convolution matrix in
Figure 8.3d. This equation represents discrete 2D convolution of the input x with the LSI filters in
W to get the output y.

The 4 × 1 dimension of the output vector y in Figure 8.3d is smaller than that of the 16 × 1
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Figure 8.3: Plots of the filter a) wr,c and its b) reflection w−r,−c through the origin. The c)
input image x is in the blue box and the reflected filter coefficients are plotted in the brown
boxes. The corresponding convolution matrix is in d).

input vector. This can be inconvenient for coding multi-layer CNNs, so zero-padding is applied to
the input x as illustrated in Figure 8.4. In this example, pixels with an intensity value of zero are
padded to the outside of the blue box in Figure 8.3c to give the zero-padded input x in Figure 8.4.
Centering the 3× 3 filter w at each of the filled-red circles in the blue box and computing its inner
product with x gives the element values of y = {y0, y1, y2, . . . , y15} on the right. Now the dimension
of y is the same as for x.

8.1.4 3D Convolution

The input can sometimes be a 3D image, such as the red, green and blue images in Figure 8.5.
In this case the blocky 3× 3× 3 convolution filter is a 3D rather than a 2D filter. For the Figure 8.5
example the filter dimensions are 3× 3× 3 and the output is a 4× 4 image on the right. The filter
is only centered at points in the input image x so that the filter stencil stays within the 6× 6 grid
of the input image.

8.2 Correlation and Matched Filters

If

wr+r′,c+c′ = wr−r′,c−c′ , (8.11)



214 CHAPTER 8. CONVOLUTION AND CORRELATION

x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

=

Zero Padded Convolution

y5 y6
y10 y9

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

w 0 0 0 0 0 0

0 0 0 0 0 0

0 0

0 0

0 0

0 0

y4 y7

y3y2y1y0

y15y14y12

y8
y13

y11

x

y

Figure 8.4: Zero-padded convolution y = w⋆xpad pads zeros (dark blue rectangles in middle
image) to the boundary of the input image x so that the output dimension of y is the same
as the input dimension of the unpadded x vector.

is plugged into equation 8.9 we get the cross-correlation between the input x and the cross-correlation
filter w:

yr,c =
∑

{r′,c′}∈B{r,c}

wr+r′,c+c′xr′,c′ , (8.12)

where B{r,c} are the set of coordinates that the filter coincides with for a specified shift pair of shift
coordinate {r, c}. More compactly this correlation equation is denoted by

y = x⊗w, (8.13)

where ⊗ is the symbol for cross-correlation. In fact, setting r = c = 0 shows that

wr′,c′ = w−r′,−c′ , (8.14)

which says that the correlation wavelet wr′,c′ is a flipped, aka reflected, version of the convolution
filter wr′,c′ . For example, Figure 8.1b is the 1D correlation wavelet and Figure 8.1a is the 1D
convolution wavelet. One is the flipped version of the other. Another example, Figure 8.3b is
the correlation filter and Figure 8.3a is the convolution filter. Many papers in machine learning
mislabel the correlation filter as the convolution filter. The convolution filter is only the same as
the correlation filter if the filter coefficients are symmetrically distributed about the origin, which is
generally not the case for most applications.

The correlation filter w can also be considered as a matched filter (https : //en.wikipedia.org/
wiki/Matched filter). Assume the image in Figure 8.6c

i(x, y) = w(x, y)f + w(x, y)s + 0.9n(x, y), (8.15)

is obtained by adding the fat w(x, y)f and skinny w(x, y)s signals in Figure 8.6b to the weighted
random noise 0.9n(x, y) uniformly distributed between −0.5 and 0.5. Here, w(x, y)s is 15 times
skinnier than w(x, y)f . The 2D Fourier transform F [·] applied to w(x, y)⊗ {s(x, y) + n(x, y)} gives
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3D Convolution

4X4

=

4X4
3X3X3

6X6X3

x w = y

Figure 8.5: An example of 3D convolution filter is the 3 × 3 × 3 filter w convolved with
the 6 × 6 × 3 input x to give the 4 × 4 × 1 output y. The yellow 3 × 3 × 3 filter w is
centered at the red triangle in the 6 × 6 × 3 input x on the left. A dot product between
the filter and input weights x is computed, and the result is placed in the red triangle of
y on the right. The correlation filter w is centered at another interior gridpoint of x, the
dot product is computed and the result is placed in the appropriate gridpoint of y. This
process is repeated for all interior gridpoints in x to fill up the 4× 4 grid in y If the input
x has more than three panels then the output y will be a 3D block of numbers. Most
convolutional filters in ML are 3D but will only output a 2D panel of numbers because the
dimension of the 3D filter in the out-of-the-page axis is the same as for the input block x.
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Figure 8.6: a) Fat matched filter wmatch(x, y) = w(x, y)f , b) fat and skinny coherent signals
s(x, y) = w(x, y)f +w(x, y)s, c) noise+signal to give the image i(x, y) = 0.9n(x, y)+s(x, y),
and d) the result after correlating wmatch(x, y) = w(x, y)f with i(x, y). In this example, the
skinny signal has all but disappeared in d).
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F [w(x, y)⊗ {s(x, y) + n(x, y)} ] =

W (kx,ky)
∗
f︷ ︸︸ ︷

W (kx, ky)
∗[

W (kx,ky)f+W (kx,ky)s︷ ︸︸ ︷
S(kx, ky) +N(kx, ky)]

= |W (kx, ky)f |2 +W (kx, ky)
∗
fW (kx, ky)s +

≈0︷ ︸︸ ︷
W (kx, ky)

∗
fN(kx, ky),

≈ |W (kx, ky)f |2 +
attenuated︷ ︸︸ ︷

W (kx, ky)
∗
fW (kx, ky)s, (8.16)

where F [a(k) ⊗ b(k)] = A(k)∗B(k) and uppercase letters denote the spectrum of the function in
the kx − ky domain (see Exercise 8.7). Correlating the fat matched filter w(x, y) = w(x, y)f with
i(x, y) gives the denoised result in Figure 8.6d. Here, the noise has been suppressed, but so has the
correlation wf ⊗ ws. This is because the low-wavenumber spectrum W (kx, ky)f of the fat signal
is only alive around the origin, while that of the skinny spectrum W (kx, ky)s is alive over a much
wider band. Multiplying these two spectra together results in a low-wavenumber spectrum and
significantly attenuates the amplitude of w(x, y)⊗ w(x, y)s in Figure 8.6d.

In contrast, if the wideband matched filter w = ws is correlated with i(x, y) it results in the
image shown in Figure 8.7d. Here, the relative amplitudes of both the fat wf and skinny ws signals
are preserved because the correlation filter w = ws is wideband. A significant observation is that
the small correlation filter will not only pass both high and low wavenumbers of the input, but it
is invariant to the spatial locations of the cylindrical patterns. No matter where the patterns are
located, the filter will output the response at these locations.

The spectra of W (kx, ky)fN(kx, ky)
∗ is nearly zero in equation 8.16, because the correlation

value of n(x, y)⊗ w(x, y)f , for a specified shift value, is

n(x, y)⊗ w(x, y)f =
∑

{x′,y′}∈B

n(x′, y′) w(x + x′, y + y′)f ,

=
∑

{x′,y′}∈B{x,y}

n(x′, y′), (8.17)

which is the sum of the random noise series in a round window defined by the points in B{x,y}

for each specified pair of shift coordinates B{x,y}. This dot product incoherently adds out-of-phase
random numbers between −0.5 and 0.5. Compared to a coherent signal added over the same number
of points, the signal-to-noise ratio grows as

√
N where N is the number of points in the circle.

8.2.1 Multilayer and Multifilter Convolution

The FCNN in Chapter 6 employed many layers in order to accurately approximate the relation-
ship between the input data and the target data. The same must be done with the convolutional
neural network except it needs to increase the number of different filters in each layer. Only one
set of shifted filters per layer does not have the capability of detecting widely varying patterns in
the same image. Therefore, the convolutional neural network employs many filters per layer as il-
lustrated in Figure 8.8. Each 3× 3 filter wk for k = {1, 2, 3, 4} is associated with a different dipping
pattern. The output pre-feature map yk is the correlation of the wk filter with x, which gives the
location and correlation strengths of the patterns with similar dip patterns.

An example of a 3× 3 filter that extracts horizontal dips from the image is given by

whoriz. =

∣∣∣∣∣∣∣

−1 −1 −1
0 0 0

+1 +1 +1

∣∣∣∣∣∣∣
, (8.18)

which is a finite-difference approximation to the derivative d/dy. A horizontal line in an image
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Figure 8.7: Same as Figure 8.6 except the matched filter is the skinny signal w(x, y)s.
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Figure 8.8: Multiple filters wk k ∈ {1, 2, 3, 4} in the same layer. Each one is tuned to
a different dipping pattern which can capture, i.e. correlate, with a different feature, i.e.
pattern, with the same dip in the input image. The output of the correlation of wk with
x gives the pre-feature map yk. We denote yk as a pre-feature map because the threshold
function has not yet been applied to suppress noisy cross-talk.
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represents a strong change in intensity along the vertical axis. Correlating the above filter with an
image with horizontal lines will produce strong horizontal patterns in the pre-feature map. This is
illustrated by the gently dipping yellow line in the yellow pre-feature map of Figure 8.8.

In general, equation 8.18 is a special case of a dip filter that is strongly activated by strong
vertical variations in intensity. For example, a fat horizontal bar where the intensity values of the
pixels are strongly discontinuous across the horizontal edges of the bar. This filter can be tuned to
any dip angle by using a finite-difference approximation to a directional derivative.

Unfortunately, whoriz. will moderately correlate with lines that might have a gentle to moderate
dip, which is a noisy distraction that might result in a moderately dipping line as a horizontal line.
Therefore a threshold filter, such as a sigmoid function, needs to be applied to each of the elements in
yhoriz. to window out such noise. Thus, applying a threshold filter σ(·) to a multitude of pre-feature
maps yk gives, ideally, the output ak of features with only a small variation of dip angles around
0o. This output σ(yk) image is known as a feature map and forms the basis of the convolutional
neural network architecture. The next chapter explains the CNN architecture and workflow in much
greater detail.

8.3 Summary

The convolution operation is defined for 1D, 2D and 3D filters. They all can be recast as
matrix-vector products where the input image has been flattened into the vector x. Any row is a
shifted replica of a neighboring row for a regular numbering scheme. Therefore, convolution can be
described as a series of shifted dot products between the reflected filter and the input data. The
convolution matrix is sparsely populated and so reduces the amount of memory, computation and
the tendency to overfit compared to a FCNN. It’s maximum correlation value is also invariant to
the location of the correlated pattern in the input image. For the FCNN, each different location of
the cylindrical object might demand a completely new row of coefficients in the W matrix. This
is not the case with the convolutional matrix where each row is a shifted copy of the filter that is
tuned to a different location in the image. If it is small enough, one set of coefficients can strongly
correlate with objects with different scales and locations.

The convolution kernel wr,c is a flipped version of the correlation kernel w−r,−c. Therefore, we
can also think of convolution as applying the matching filter w−r,−c to the input x. If the patterns
in x are similar to those in w−r,−c then there will be a high value of the correlation value. If the
pattern is different then there will be a low correlation value. If patterns are to be detected by a
neural network it is better that the first layer has a wide-band filter in order to allow for a wideband
response of the neural network.

8.4 Exercises

1. Your first convolutions.

• Use MATLAB’s stem subroutine to plot x = [x(0) x(1) x(2)] = [1 .5 .25], where x(n) =
xn and n is the time sample index. Now plot x(−n+3), x(n−3), x(−n−3) and x(n+3)
w/r n. Which is the delayed and which is the advanced version of x(n)? Make sure you
plot against the correct time values, including negative time if necessary.

• Plot x(−n) and explain why we say x(−n) is a reflected version of x(n). Explain why
we say that x(n− 3) is a reflected-shifted version of x(n). Is it shifted to the right or to
the left of the origin?

2. Convolve [h(−1) h(0)] = [−1 1] with x (i.e., y = h ⋆ x ). Use MATLAB’s conv subroutine,
and make sure you properly label the time axis.
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3. Now convolve x with [h(−1) h(0)] (i.e., y′ = x ⋆ h ), where the elements of x comprise the
matrix and h is the vector in the matrix-vector multiply. Note that yT = y, which is true
for any LTI system; the property of x ⋆ h = h ⋆ x is the commutative property of any LTI
systems. Note that, in general, matrix-matrix multiplication is not commutative.

4. How long is the output vector y′? What is the length of the output of convolving an Nx1
vector x with the Mx1 vector h? Explain.

COMMUTATIVE PROPERTY OF CONVOLUTION

------ ------

I I I I

x -----> I H I ------> y or h -----> I X I ------> y

I I I I

------ ------

5. In general, multiplying an M × 1 vector x by a dense M ×M matrix costs O(M2) algebraic
operations. Explain why it costs O(hM) to convolve the M × 1 vector x with a short h × 1
vector h. Here, h << M .

6. Convolve h = [h(−10) h(−9)] = [−1 1] with x = [x(0)] = [1] (i.e., y = h ⋆ x ). Display the
results. Is h a causal or acausal filter.

7. For two continuous functions a(x) and b(x), show that F [a(x) ⊗ b(x)] = A(k)∗B(k), where
F [a(x)] =

∫∞

−∞ a(x)eikxdx.

8. Assume that f(t) and g(t) are evenly sampled functions with the sampling index given by the
integer t for t ∈ {1, 2, 3, ...}. Show by substitution of variables (t′ = t+ τ) that

(f ⊗ g)(τ) =

∞∑

t=−∞

f(t)g(t+ τ),

=

∞∑

t′=−∞

f(t′ − τ)g(t′). (8.19)

Notice that, unlike convolution, the shift variable τ has a minus in front of it in the argument
of f(t′ − τ). T
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Chapter 9

Convolutional Neural Networks

The theory and practice of convolutional neural networks (CNNs) are introduced where the
dense matrices of a fully-connected neural network (FCNN) are replaced by the sparse correlation
matrices. In a convolutional neural network, the densely-populated rows of the O(M × N) FCNN
matrix W[n] are replaced by sparsely-populated rows of Nf non-zero elements. Most often, Nf is
no more than a few dozen and Nf << N . Moreover, each row of non-zero elements is, roughly, a
shifted replica of the previous row of elements, except at the boundaries of the image. Thus, the
CNN matrix represents a spatially invariant convolution filter with O(Nf ) memory1 and matrix-
vector computation requirements compared to O(MN) for each layer of a FCNN. Hence, the CNN
is typically much less expensive for storage and computation of the matrix-vector multiplications.
Moreover, the local pattern-matching nature of convolutional filters is often more effective at detect-
ing localized patterns in the data than a FCNN. For these reasons and the successes of CNN since
the early 2010s, CNN and its variants are arguably the most popular ML algorithms in use today.

9.1 Introduction

Chapter 8 discussed the motivation for replacing the matrices of a fully connected neural network
by those of convolution (or matching filter) matrices. Figure 9.1 illustrates the key differences
between the matrix-vector operation of a FCNN and a CNN, which result in CNN’s three most
important advantages.

1. Reduced Computational and Storage Costs=Convolution. The CNN only requires
O(Nf ) memory locations for storing the Nf non-zero filter coefficients in any row vector of W.
In addition, only O(MNf ) algebraic operations are needed for the matrix-vector multiplication
Wx. This compares to O(MN) storage sites and computational operations for a FCNN layer
with a densely-populated matrix W.

2. Local Pattern Matching=Small CNN Filters. The number Nf of the CNN filter co-
efficients is much smaller than the number O(N) of non-zero coefficients in any row vector
of W, so the CNN filter captures localized patterns in the input. Such small patterns might
be all that is needed to be resilient to different scales, rotations or translations of the same
object2. In addition, the shift-invariance property of the matching filter provides location

1Irregular numbering of pixels will require the locations of the filter coefficients for each row. In this case,
the locations must be stored for each row so that the memory requirement is O(MNf ).

2The CNN filter in the first layer should be fairly small, being no larger than a few dominant wavelengths
associated with the input image. To estimate the smallest significant wavelength in the input image, apply
a 2D Fourier transform (Yilmaz, 2001) to the input picture d(x, z) to get D(kx, kz), where the wavenumber
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Figure 9.1: Matrix-vector multiplication for a (left) FCNN where the output value of zi
at the yellow circle is computed by summing together every weighted input value in a. In
comparison, the CNN on the right computes the values of zi at the yellow circle from a
few input components of a in the yellow 5× 5 rectangle, also known as the receptive field.
Furthermore, the weights in the correlation filter are the same for all shift values of i.

resilience with a CNN that is lacking in the FCNN. As will be discussed later, a large number
of convolution filters can be incorporated into the first layer so that a large number of local
features in an image can be detected.

3. Regional Pattern Matching=Pooling+Deeper Layers. Patterns much larger than the
size of the filter can be detected by including more layers in the CNN and downsampling
the output of these layers. This downsampling operation, known as pooling in section 9.2.1,
typically halves the number of pixels along any one side of the picture, which automatically
doubles the gridpoint spacing ∆x. This means that the, e.g. 2 centimeter, gridpoint interval
in the small convolutional filter is doubled to 4 centimeters to capture larger, i.e. regional,
features. Multilayer downsampling can also provide scaling resilience when the object size
varies from input picture to picture.

The combination of small matching filters, activation functions, pooling, and multilayer CNNs defines
basic operations of the convolutional neural network (CNN). Another important aspect of a CNN is
regularization, which will be discussed in section 9.2.6.

9.1.1 Brief History of CNN

CNN partly owes its inspiration to the biology experiments in the 1950-1960s where Hubel and
Weisel (1959, 1962) discovered that a cat’s visual cortex greatly responded to different orientations
of a localized object. Figure 9.2 depicts the recorded responses of a cat’s visual neurons, which
are most responsive to horizontal or oblique orientations of a bar. This suggests that a cluster of
neurons in the cat’s brain is significantly responding to certain orientations of a localized object.

components are k = (kx, kz) space. The large values of |D(kx, kz)| associated with the largest wavenumbers
kmax =

√
k2
x + k2

z = 2π/λmin usually define the most important small-scale features λmin of the object of
interest.
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From a digital processing point of view, this response is similar to the actions of a localized 2D dip
filter (see Figure 8.8) that only lights up for certain dips of an object.
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Figure 9.2: (Top) Cat and (bottom) plot of the cat’s neural visual response for different
orientations of the black bar. Figure roughly adapted from Hubel and Weisel (1959), who
discovered that different neurons fired rapidly when lines were oriented at different angles.
Other neurons detected edges no matter where they were located, just like a dip filter. Their
work on establishing a foundation for visual neurophysiology and ocular columns was most
deservedly rewarded by a Nobel Prize in Medicine in 1981.

In the 1980s, Fukushima (1980) proposed a spatially invariant operation, the summation of a
localized set of input values with neural weights, to explain the neural mechanisms of a cat’s visual
pattern recognition. This is a classical neural network model except the number of correlation
weights is much less than the number of input nodes and only scanned a small receptive field of the
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input image. Similar to the horizontal matching filter in equation 8.18, the inner product (wk,x) is
the correlation of a small matching filter with the input image. The size of the scanned field in the
input image is known as the receptive field, which is also the size of the matching filter in a CNN.
Fukushima (1980) pointed out that the response of the filter is invariant to a shift in the location of
the pattern. It is also invariant to small changes in the shape or the size of the pattern.

Later, LeCun et al. (1989) presented one of the first convolutional networks trained by a gradient
method. In their application, the goal was to recognize hand-written numbers for zip code identifi-
cation on letters. Later, LeCun et al. (1998) developed the LeNet-5 CNN architecture illustrated in
Figure 9.3 where the input 32× 32 image is a hand-written letter. The goal is to identify its identity
in the alphabet.

1. In the first layer, six 5 × 5 filters are applied to the input image to generate the six feature
maps (FMs). Each FM has a dimension of 28×28. No zero-padding is used so the 5×5 filters
are centered no closer than two gridpoints from the edge of the image. This means that there
are only 28 · 28 = 784 gridpoints which allow centering of the 5 × 5 filter so that no part of
the filter stencil falls off the image.

In the context of the Figure 9.1 illustration we have the output of the matrix-vector multipli-
cation given by

z
[n]
i =

∑

j∈Bi

w
[n]
i−ja

[n−1]
j . (9.1)

Here, wj for j ∈ [1, 2, 3 . . .Nf ], Nf << N , and Bi is a small set of integers that characterize
the non-zero weights wi for the shift index i.

2. After convolution, the activation function is applied to z to get the components of the activa-
tion vector a[n]:

a
[n]
i = g(z

[n]
i ), (9.2)

where g(·) is the activation function, which can be a ReLU, sigmoid or one of the many
discussed in section 4.2.

3. The data are subsampled from the first layer to the second layer in Figure 9.3 by a factor of
two, which can be accomplished by a max pooling operation. However, a common means for
doing this is by using a correlation filter that is shifted by every two samples rather than one.
This is known as a filter with stride 2. The combination of filtering input values, application
of the activation function and subsampling the FMs comprises the operations of one filter for
one layer.

4. Instead of using six 2D matching filters, sixteen 3D filters with the dimension of 5× 5× 6 are
used for the second layer3 at S2 in Figure 9.3. This produces 16 FMs at C3.

5. The C5 layer uses a 120× 400 matrix W to produce the 120× 1 output vector z in Figure 9.3.

6. The last layer used a softmax-like function to produce probabilities for the 10 possible class
types.

The immediate application of the LeNet-5 network was to recognize hand-written numbers written on
a check. Since then, there have been many successful applications of sophisticated CNN architectures
to medicine, engineering, astronomy and the sciences for supervised pattern classification

3The small filters in Figure 9.3 appear to be two dimensional with small open rectangles in one feature
map that telescope down to a point in the neighboring layer. However, the filter is actually three dimensional,
where the small rectangular area is shifted laterally to occupy a 3D portion of each feature map in that
layer. See the 3× 3× 8 filter in Figure 9.5 for a more accurate rendering of a 3D filter.
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LeNet-5

Figure 9.3: LeNet-5 CNN architecture (LeCun et al. 1998). Each plane is a feature map.
This work was preceded by that of Zhang et al. (1988) who developed convolutional net-
works for image character recognition. Each filter symbol with the small rectangle appears
to be 2D, but this filter is actually 3D where the rectangle of weights extends (perpendicular
to the plane of the feature maps) to all the feature maps in a layer (see bright-yellow 3D
filter in 1st layer of Figure 9.5). Figure from Golovko et al. (2017).

Oh and Jung (2004) achieved a computational breakthrough in the practical use of CNNs when
they showed that a large number of GPUs could achieve more than a 10-fold speedup of CNN
calculations compared to traditional CPU chips. This was followed by many demonstrations of
the significant speedups offered by GPUs in solving for the weights in a CNN. Between 2011 and
2012, GPU codes won at least four image recognition contests (https : //en.wikipedia.org/wiki/
Convolutional neural/network#cite note− : 0−2). A deep CNN with more than 100 layers won the
ImageNet 2015 contest (He et al., 2016), and a history of some competitions is shown in Figure 9.4.

CNN and its variants have become the most popular form of supervised learning since the
early 2015’s. It efficiently takes advantage of the hierarchical patterns in data and assembles
more complex patterns from smaller and simpler patterns (https : //en.wikipedia.org/ wiki/
Convolutional neural network).

9.2 Building Blocks of CNN

The workflow in section 4.1.5 for estimating the weights in a neural network is also valid for
a CNN. However, there are some new additions to form the building blocks of the CNN workflow.
We will now describe these new additions using a Keras code4 that implements the five-layer CNN
architecture in Figure 9.5a. Figure 9.5b depicts the forward modeling Keras code in b), and a
summary of the parameters is in c). The Keras code for the AlexNet architecture is in https : //
engmrk.com/alexnet− implementation− using − keras/.

4https : //colab.research. google.com/drive/1ZZmY iFuSnV IlczmJRa3ncaer2sSu1GQA?usp =
sharing#scrollT o = Lo3S63zGQ6Y
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Training Error vs CNN Depth

Figure 9.4: Training error vs calendar years for different CNN architectures
developed over the last decade. Figure adapted from Youtube video (http-
s://www.youtube.com/watch?v=u6aEYuemt0M accessed 11/03/2021) of Deep Learning for
Computer Vision by Andrej Karpathy.

9.2.1 CNN Forward Modeling

The CNN forward modeling Keras code in Figure 9.5b is listed in Code 9.2.1.

Code 9.2.1. Keras Code for CNN Forward Modeling in Figure 9.5.

model = Sequential()

Line 1....model.add(Input(shape=(X_train.shape[1], X_train.shape[2], 1)))

Line 2....model.add(layers.Conv2D(filters=8, kernel_size=3, strides=(2, 2),

padding=’same’, activation="relu"))

Line 3....model.add(layers.Conv2D(filters=16, kernel_size=3, strides=(2, 2),

padding=’same’, activation="relu"))

Line 4....model.add(layers.Flatten())

Line 5....model.add(layers.Dense(128, activation=’relu’))

Line 6....model.add(layers.Dense(10, activation=’softmax’))

Line 7....model.summary()
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a) Five Layer CNN Architecture for Classifying MNIST Number Images

b) Keras Code

c) Summary
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Figure 9.5: a) Forward modeling architecture for a five-layer CNN, b) Keras code for forward
modeling with this architecture, c) summary of the filter characteristics and parameters.
The input is a black-white image of a single-digit hand-written number and the goal of the
CNN is to classify it as one of the numbers between 0 and 9.

Each operation in the CNN model is defined with the function call model.add(·), where (·) represents
another function along with its specified hyperparameters. The functions in Code 9.2.1 are explained
below.

1. Convolution Layer: layers2D(filters=8,kernel size=3, strides=(2,2), padding=’same’,
activation=’relu’). The input image in Figure 9.5a consists of a 28 × 28 grid of intensity
values that depicts a hand-written number. For the first convolution layer, the filter size

3× 3× 1 is specified with kernel size=3 for the coefficients w
[1]
i in equation 9.1. In this case

there is only one channel for the input image, but with a color picture there would be the red,
green and blue channels so the Keras code would automatically provide a 3 × 3 × 3 filter in
the first layer. The 2D portion of this 3D filter is denoted as the kernel, which in this case is
3× 3.

Taking the dot product of the 3 × 3 × 1 filter with different patches of the input image gives
rise to the specified, i.e. filters=8, eight feature maps (FMs) in the leftmost orange block in
Figure 9.5a. Each FM has the dimensions of 14× 14 because the convolution has a stride of 2
by the command strides=(2,2). A stride skip = 2 convolution only centers the correlation
filter at every skip=2 gridpoints along the horizontal and vertical coordinates. Therefore,
the 14× 14 FM is half the size of the 28× 28 input image. An example of size reduction with
strides=(2,2) is depicted in Figure 9.6a.

Zero-padding5 is specified by the command padding=’same’ so that the filter can be centered

5If no zero-padding was specified by the command padding = valid, then the FMs would be slightly
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all the way to the edge of the computational grid to give the same size output if skip=1. In
general, the dimensions of the FM are determined by the size of the filter kernel, the FM size
of the previous layer, and the stride6.

2

2

Figure 9.6: Examples of reduction in size of FMs by a) stride=2 convolution and b) sequen-
tial convolutions with 5 × 5 × nch filters with stride ns = 1 and nch = 3, 6. The stride 2
convolution filter centers the 2×2 filter (red square with red dots) at every other gridpoint.
In b), the first layer has three FMs, the second one has 6 and the third one has 9 FMs.
The width and height of the blue blocks have decreased by 4 gridpoints because the 5 × 5
kernel cannot be centered at two or fewer gridpoints from an edge, otherwise the arms of
the filter stencil fall off the computational grid. This problem can be remedied by zero
padding around the boundaries of the blocks prior to convolution.

The convolution operations in the second layer in Figure 9.5a are specified to output the
7 × 7 × 16 block of FMs. This block consists of 16 feature maps specified by the Line 3
command filters=16 in Figure 9.5b. As before a 3× 3 kernel is specified except now the 3D
filter automatically has dimension 3× 3× 8 because the input is the 14× 14× 8 block with 8
FMs7. See Figure 8.5 for an example of a 3D filter.

2. Activation Function. Activation functions are used to eliminate noisy or unnecessary parts
of the result after matched filtering. This concept is illustrated in Figure 8.8 and discussed in

less than half the size of the 28× 28 input image. This is because the filter cannot be centered at the edges
of the input image, otherwise part of the 3×3 filter stencil will fall of the grid. The closest a 3×3 kernel can
be centered next to the edge is just one gridpoint. If the filter size is 5 × 5 then 3 gridpoints is the closest
a filter center can be to the edge. In this case the output FM will be 4 points shorter and 4 points thinner
than the original image. See Figure 9.6b.

6In general, if the input image has size n× n × nch then the filter size is nf × nf × nch and the output
feature map dimension is nc × nc. Here,

nc =

⌈
n− nf + 1

ns

⌉

+ np, (9.3)

and np is the width and height of the zero-padding added to the feature map. Here, nch is the number of
channels, n× n is the dimension of the input image, and ns is the stride of the filter which is equal to the
number of pixels the filter is shifted between each dot product of the dot-product operation. In Figure 9.6b,
ns = 1, n = 32, np = 0 and nf = 5 to give nc = 28.

7A general 3D convolution operation will have shifting along all three coordinate axes. However, the 3D
filter applied to the 2D FMs will not have a shift along the FM axis.
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section 4.2.

For the first layer, the ReLU (see equation 4.31) activation function is specified with the Line 2
command activation=relu in Figure 9.5b and Code 9.2.1. To change the activation function
to a sigmoid simply replace relu by sigmoid in the activation part so the Line 2 command
contains activation=sigmoid.

The ReLU function is often preferred over most other activation functions but can lead to
the exploding gradient problem discussed in section 4.2. This problem can be mitigated by
applying an ad hoc threshold to the output of the ReLU functions, as discussed in Chapter 12.
Another possibility is to use the Swish activation function in equation 4.36.

3. Feature Maps. There are eight feature maps (FMs) in the first layer of Figure 9.5a. These
FMs result from applying eight different 3 × 3 × 1 filters wi for i ∈ [1, 2, . . . , 8] to the input
image. The role of each filter is to, hopefully, decompose the original image into eight inde-
pendent images, each one associated with one of the eight local features associated with the
filters. For example, two of the filters might be w1 and w2:

w1 =




0 −1 1
0 −1 1
0 −1 1


 ; w2 =




0 0 0
−1 −1 −1
1 1 1


 , (9.4)

then the FM for w1 would be largely composed of the vertical features of the number image
3 while the FM for w2 would largely consist of the horizontal feature. These filters act as
matching filters and extract parts of the image that are similar to the patterns in the filters.

4. Subsampling Layer. Figure 9.5a depicts the blocks of FMs that are subsampled by 1/2.
This is accomplished by using a stride of 2 in the filtering operation, which is specified in Line
2 of the Figure 9.5b Keras code. One benefit of this operation is that it reduces computational
and storage costs. See section 9.2.2 for an example.

In practice, the number of filters is typically doubled after 1/2 subsampling, which nullifies the
potential benefit of reduced computations. However, reducing the size of the image provides
some resilience to different scales, rotations and translations of an object, as illustrated in
Figure 9.7. This is similar to the multiscale approach used in seismic inversion, where model
parameters associated with large-scale features in the data are computed separately from the
parameters associated with finer-scale features (Bunks et al., 1995). The separation between
different scales can be accomplished by appropriate transforms such as the Fourier or Wavelet
transforms (Yilmaz, 2001; Chanerley and Alexander, 2002).

Subsampling also doubles the spacing between neighboring gridpoints. This in turn allows
a 3 × 3 filter to be twice as tall and wide as in the previous FM. For example, the cat in
Figure 9.6a is the same height before and after stride=2 convolution. Larger filters can be
tuned to larger patterns in the image, which characterizes filters that are deeper in a network
with sequences of convolution, activation and subsampling operations.

An older subsampling strategy is to replace the intensity value at a pixel by the, for example,
average value of its nearest neighbors. A related strategy is known as max pooling and is
illustrated in Figure 9.8. Here, the maximum value of the four pixels in the 2 × 2 patch
replaces the intensity value of the central point. The 2× 2 patch is slid over by two pixels, i.e.
a stride of 2, and the max-pool process is repeated. In this example, the 4× 4 patch of pixels
is reduced to a 2× 2 patch. Typically, a pooling filter is no larger than about 2× 2, otherwise
high-wavenumber information gets lost.

The combination of the operations convolution, activation and subsampling is considered
one layer. A sequence of such layers is repeated with different hyperparameters for each layer
until we get to the last few layers. The last few layers are often, not always, FCNNs in order
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a) Rotation Invariance b) Translation Invariance c) Scale Invariance

Figure 9.7: Subsampling the input image provides some resilience to changes in the image
a) rotation, b) translation, and scale. Notice that the red and green patterns are the same
after several subsampling operations.

to combine information form all the FMs. The hyperparameters are the design parameters,
such as the number of filters, filter size, number of layers, and other parameters that don’t get

updated in the iterative backprojection operations. In contrast, the weights w
[n]
i−j get updated

every iteration and are denoted as model parameters.

x
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½ Subsampling S and its Approximate Inverse ST
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Figure 9.8: Grid of numbers x subsampled by Sx = x′ to get the 2× 2 grid in the middle.
The subsampled 4 × 1 vector x′ is upsampled by applying the 16 × 4 subsampling matrix
ST in equation to x′ to get the 4× 4 grid of numbers on the right.

5. Fully-Connected Layer. The last few layers combine all the local FMs into a fully −
connected image by concatenating all of the vectors associated with each FM into one tall
vector. This flattening is carried out by the Line 4 command model.add(layers.Flatten())
in Figure 9.5b. This flattened vector is now the 784× 1 input into the fully-connected layer
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(FCL) with 128 nodes. The command for the FCL is model.add(layers.Dense(128, ac-
tivation=’relu’)). The fully-connected layer uses the input as the 784× 1 flattened vector
from the previous layer’s FMs to form the W matrix with dimension 128 × 784. It brings
together many localized features from different FMs to form the 128× 1 vector Wa = z. Now
the network consists of both the sparse convolutional matrices and the dense matrices for
FCNN operations. This hybrid network is still considered as a CNN.

6. Softmax Layer In image classification there might there might be dozens of classes, not
just two as in binary classification. In this case the softmax activation function g(z) in
equation 4.55 is used to classify the input image. Since there are ten possible single-digit
numbers the softmax function is designed to output a 10× 1 vector, as specified by the Line
6 command layers.Dense(10, activation=’softmax’).

7. Parameter Count. Line 1 in Figure 9.5c lists 80 unknown filter coefficients w
[1]
ij for the first

layer. In this case the number of unknown filter coefficients for the eight 3 × 3 filters is only
3 · 3 · 8 = 72. However, there are 8 filters so there are an additional 8 bias terms b, one for
each filter, that must be computed. Therefore, the total number of unknown parameters is
72 + 8 = 80.

The back-propagation algorithm determines the patterns that will be extracted, i.e. the weights

for these filters w
[n]
ij , so it is a mystery as to what types of filters will emerge. This mystery is

partially solved by the recognition that the CNN problem can be recast as an optimization problem
that minimizes the misfit objective function subject to the L1 norm of the weights. This subject is
discussed in Chapter 24.

What is not mysterious is that these patterns are for small features in the first layer because
the filters are specified to be small and localized compared to the size of the input image. They are
somewhat equivalent to high-wavenumber pass filters.

9.2.2 Model Update by Back-propagation

The coefficients in the filters specified for the Figure 9.5a model and the forward modeling code
in Figure 9.5b are updated using a stochastic gradient descent procedure. The formulas for the CNN
gradient are the same as for the NN gradient described in Chapters 4 and 6. However, the inverse to
the subsampling operation does not exist. That is, it is straightforward to transform a 4× 4 grid of
numbers into a 2× 2 grid of numbers, but there is no unique mapping from a 2× 2 grid of numbers
to a 4 × 4 grid of numbers. Thus the inverse does not exist. Instead, various approximations are
made to the transpose of the sub-sampling operator. This lacks a rigorous mathematical foundation
but it seems to work for CNN.

Transpose of the Subsampling Operator

Why are we interested in the transpose of the sub-sampling (or pooling operator)? Recall that the
L2 minimization problem demands the gradient of the misfit ǫ = 1/2||Lm−d||2: ∇ǫ = LT (Lm−d).
This means that if the forward modeling operator is represented by the rectangular matrix L then the
gradient takes the transpose of the forward modeling matrix and applies it to the residual vector. In
a deep neural network there is a long chain of matrix-matrix operations and squashing functions, so
the transpose will be a long chain of multiplicative matrix transposes interspersed with the transpose
of squashing functions. Some of the matrix transposes will be those for the pooling operators. Thus
the transpose of that operator needs to be constructed.

An example of a pooling operator that sub-samples the 4× 4 grid of numbers in Figure 9.8 into
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a 2× 2 grid is the matrix-vector operation Sx

S︷ ︸︸ ︷


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0







x1
x2
x3
...
x15
x16



=




x1
x3
x9
x11


 , (9.5)

where x = {x1, x2, · · · , x16} is the 16 × 1 vector after flattening the 4 × 4 grid of numbers. The
rightmost image in Figure 9.8 depicts the result after applying the transpose matrix ST to the 4× 1
vector {x1, x3, x9, x11}:

ST

︷ ︸︸ ︷


1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







x1
x3
x9
x11


 =




x1
0
x3
0
0
0
0
0
x9
0
x11
0
0
0
0
0




, (9.6)

where the values of x1, x3, x9 and x11 are repositioned to their original locations in the 4× 4 grid
in Figure 9.8. The values at the other gridpoints are zero, which is sometimes known as bed-of-nails
upsampling (Mishra, 2020).

If the maximum values in each 2 × 2 grid of numbers on the left of Figure 9.8, for example
the green square, is used to fill up the corresponding colored squares in the 2 × 2 grid of Sx = x′,
then this subsample procedure is known as max pooling (Goodfellow et al., 2016). The unpooling
operation is the same as seen on the rightside of Figure 9.8, except the squares with non-zero values
are the same as the ones with maximum values on the left side. For example, if x1, x3, x9, and
x11 happen to be the maximum values in their 2× 2 neighborhoods then Figure 9.8 describes max
pooling and max unpooling. Here, the maximum positions in the pooling layer determine where the
non-zero values are in the max unpooling layer.

The average values in each 2 × 2 colored square in x on the leftside of Figure 9.8 can be used
to give the values in the corresponding colored squares in Sx. This procedure is known as average-
pooling.

Two other unpooling operations are nearest neighbor interpolation in Figure 9.9a and bi-linear
interpolation in Figure 9.9b. In bi-linear interpolation, the 4 nearest pixel values of the input pixel
are used to perform a weighted average based on the distance of the four nearest cells from the
input pixel. Both operations are used in upsampling networks such as an autoencoder discussed in
Chapter 14.

If the stride of the muting filter is equal to 1, then the transpose matrix approximates the inverse
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a) Nearest Neighbor Upsampling
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10 12 17 20
Sx=x’

STx’~x’

b) Bi linear Interpolation

STx’ 15 17 22 25

25 27 32 35

30 32 37 40

Figure 9.9: Upsampling from a smaller grid to a larger grid by a) nearest neighbor interpo-
lation and b) bi-linear interpolation. In nearest neighbor interpolation, the input value x1
is copied to its nearest K-neighbors.

operation8. As noted in Chapter 8, the transpose to a convolution matrix is a correlation matrix,
and vice versa.

9.2.3 Keras Code

Figure 9.5 defines the multiclass classification problem discussed in section 4.4 where each input
image is labeled with just one of the 10 single-digit labels. The true labels of the output 10 × 1
vector are all zero, except for the element position that defines the class type. The Keras code in
Code 9.2.2 updates the CNN weights by SGD.

8If Sx = x′, then the inverse operation in the least squares sense is x = [STS]−1STx′ ≈ STx′. Of
course [STS]−1 does not exist for a subsampling operation so it must be heavily regularized to give the
mathematical approximation by x ≈ STx′.
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Code 9.2.2. Keras Code for Updating CNN Weights by SGD

Line 1....opt = tf.keras.optimizers.SGD(learning_rate=0.001)

Line 2....model.compile(optimizer=opt, loss=’sparse_categorical_crossentropy’,

metrics=[’accuracy’])

Line 3....history = model.fit(x=X_train, y=y_train, validation_data=

(X_val, y_val), shuffle=True, epochs=10, batch_size=128)

Reported Results

Epoch 1/10

329/329 [==============================] - 5s 16ms/step - loss: 1.5448 -

accuracy: 0.7469 - val_loss: 0.6181 - val_accuracy: 0.8374

Epoch 2/10

329/329 [==============================] - 5s 16ms/step - loss: 0.4603 -

accuracy: 0.8697 - val_loss: 0.4556 - val_accuracy: 0.8683

Epoch 3/10

329/329 [==============================] - 5s 16ms/step - loss: 0.3433 -

accuracy: 0.8992 - val_loss: 0.3528 - val_accuracy: 0.8977

Epoch 4/10

For the number-classification problem in Figure 9.5, the multiclass cross-entropy objective function

ǫ =
K∑

k=1

9∑

i=0

ȳ
(k)
i ln y

(k)
i , (9.7)

is used for training (see section 4.4). Here, ȳ
(k)
i for i ∈ {0, 1, . . . , 9} is the true label for the kth

example image and yi is the one predicted by the softmax function at the ith output node for i ∈
{0, 1, . . . , 9}. This loss function is specified by the Line 2 command loss=’sparse categorical crossentropy’.
The step length, aka the learning rate, for the stochastic gradient descent method is specified to be
equal to 0.001 in Line 1 as
refopt = tf.keras.optimizers.SGD(learning rate=0.001). The batch size of 128 and the num-
ber of epochs is 10 as specified by the Line 3 commands epochs=10 and batch size=128. Each
batch of 128 images is randomly reshuffled as specified by the Line 3 command shuffle=True.

After 10 epochs, the training is finished with the training images in the training set, which is 80%
of the total images in the labeled data. The remaining 20% comprises the images in the validation
set.

The trained CNN model is then validated on the unused validation images. The commands for
plotting cross-entropy and accuracy as a function of epoch number for both the training data and
the validation data are shown in Figure 9.10. The Keras commands for plotting these figures is in
Code 9.2.3.
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Code 9.2.3. Keras Codes for Plotting Cross-entropy and Accuracy vs Iteration Number

# summarize history for accuracy

plt.plot(history.history[’loss’])

plt.plot(history.history[’val_loss’])

plt.title(’Loss’)

plt.ylabel(’Binary Crossentropy’)

plt.xlabel(’epoch’)

plt.legend([’train’, ’val’], loc=’upper left’)

plt.show()

# summarize history for accuracy

plt.plot(history.history[’loss’])

plt.plot(history.history[’val_loss’])

plt.title(’Loss’)

plt.ylabel(’Binary Cross-entropy’)

plt.xlabel(’epoch’)

plt.legend([’train’, ’val’], loc=’upper left’)

plt.show()

a) Cross entropy versus Epoch Number b) Accuracy versus Epoch Number

Figure 9.10: Plots of a) cross-entropy and b) accuracy versus epoch number for the five-layer
CNN model in Figure 9.5.

The input images and the predicted labels are in Figure 9.11 and the Keras script is in Code 9.2.4.
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Code 9.2.4. Keras Code for Plotting Images and Labels

To view the labels next to the input images

plt.figure(figsize=[6,6])

pred=model.predict(’X_test’)

for i in range(4):

k = np.random.randint(X_test.shape[0])

plt.subplot(2,2,i+1)

plt.title("Predicted Label: %i"%np.argmax(pred[k]))

plt.imshow(X_test[k].reshape([28,28]),cmap=’gray’);

Figure 9.11: Images of hand-written numbers and the labels predicted from the trained
CNN.

9.2.4 Visualizing the Filters as Correlation Functions

We now demonstrate that the CNN filters act as matching filters that tune themselves to the
dominant features of the input images. There will be two classification examples, the first will be
for images of sticks oriented at different angles (see Figure 9.12a) and the other will be for MNIST
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images (see Figure 9.13a). The CNN will consist of two layers, a hidden layer with large filters
and the last layer consists of a softmax function. The output vector has the same dimension as the
number of classes. These networks are considered to be extreme because their filter size is the same
as the input image. There will be no zero-padding so there exists only one lag value, which is zero
lag, that produces the 1× 1 feature map.

The first test is for classifying 40× 40 images of sticks oriented at 25 different angles, as shown
in Figure 9.12a. The CNN architecture is shown at the top of Figure 9.12, and consists of 25 40× 40
filters that are the same size as the input pictures. In this case, the filters act as a dictionary
with the same sized grids as the input image and the same number of words as the vocabulary of
the input pictures. The input training set consists of 25 images, each with a unique orientation
as shown in Figure 9.12a. After training with 20 epochs and batch sizes of 5 with an Adam step
length, the results are shown in Figure 9.12b. The learned filters strongly resemble the actual input
images, partly because they are of the same size and same number as the input images. This is
a severely undetermined problem because there are 25 filters with 40 × 40 = 1600 unknowns per
filter, so the total number of unknowns is 25 × 1600 = 40, 000. However, there are only 25 input
images, which is the same as saying that there are only 25 equations of constraint, more than three
orders-of-magnitude fewer equations than the number of unknowns.

In practice, the filters should be much smaller than the input images in order to avoid creating
a huge dictionary of filter words. Instead we want the CNN to create a smaller number of alphabet
filters that recognize letters in the first layer, recognize words in the second layer and so on. When
smaller-sized filters were tested, say 5×5 leading to fewer unknowns, the accuracy in identifying the
orientation of the sticks was more than 95%. Unlike Figure 9.12b, the filter shapes were not easily
identifiable with different stick orientations.

Figure 9.12b shows that each image is surrounded by ghost-like images of the other sticks. This
is denoted as cross-talk noise because the there is some correlation of the filter with sticks of different
orientations.

The feature maps (FMs) are of size 1× 1 because only the zero-lag correlation is allowed in the
filter. An example of the numbers in the 25 1× 1 FMs for an input stick with an orientation of 60o

is given below. Here, the red number is the one for the FM associated with the filter orientation of
600. Underneath these 25 numbers are the 25 numbers for the 25× 1 softmax output. As expected,
the softmax output is highest at the 9th element position, which indicates the class of sticks with
600 orientation.

Feature map for the filter at 60 degrees:(correlation result)

[-3.9313195 -3.8512936 -3.882589 -3.7395825 -3.694348 -3.5521138

-3.3681073 -0.96085596 2.8906903 -1.1699747 -3.167439 -3.5620592

-3.7346756 -3.8448954 -3.9283197 -3.952573 -3.9429069 -3.968153

-4.0101204 -3.9551105 -3.974689 -3.955679 -3.9627805 -3.9612474

-3.9414587 ]

25x1 Softmax Output Vector

[0.00102189 0.00110703 0.00107292 0.00123787 0.00129515 0.00149311

0.00179475 0.01992785 0.93791986 0.01616744 0.00219358 0.00147833

0.00124396 0.00111414 0.00102496 0.0010004 0.00101012 0.00098494

0.00094446 0.00099787 0.00097852 0.0009973 0.00099024 0.00099176

0.00101158]

The second example is for 60,000 images from the MNIST data. Here, a two-layer CNN with
10 filters is used for training, where the input pictures are grayscale images on a 28× 28 grid, and
the size of each filter is 28× 28 gridpoints. A softmax function is applied to the 10× 1 output from
the first hidden layer to give the 10 × 1 output vector that classifies the label for the input image.
The total number of unknown filter coefficients is 28× 28× 10 = 7, 840 The goal is to create filters
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a)      25 Input Stick Images                        b)               25 CNN Filters                             

40

40

25 40x40 filters
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25x1
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25 1x1 FMs

Figure 9.12: Images of a) sticks with different orientations and b) CNN filters learned by
back-propagation with the architecture at the top.

that, hopefully, can be interpreted as matching filters. See the top of Figure 9.13 for the network
diagram.

The results after 20 epochs, with a batch size of 100, provides an accuracy of about 91%, which
is less than that for the deeper network used in the previous MNIST example. Figure 9.13b shows
nine of the learned filters, some of which roughly resemble the numbers of interest. These results are
consistent with the claim that the CNN filters can act as matching filters tuned to different features
in the input data.

9.2.5 Visualizing the Images Associated with Feature Maps

Which portion of a feature map is related to which object in the input image? To answer this
question (Zeiler and Fergus, 2013; Simonyan and Zisserman, 2014; Simonyan et al., 2014), assumed

a well-trained network so that the kth FM in the nth layer is given by a
[n]
k = f

[n]
n (x), where f

[n]
n (x)

represents the forward modeling operations in the CNN that compute this feature map from the

input image. The goal is to find x ≈ x
[n]
k = [f(x)

[n]
n ]−1(a

[n]
k ), where x

[n]
k is the portion of the input

image which is largely responsible for the feature-map values a
[n]
k , and [f(x)

[n]
n ]−1(·) represents the

approximation to the inverse of the forward modeling operator f(x)
[n]
n (·). In practice, the inverse is

approximated by the adjoint operations used in back-propagation of residuals, except only the values
of the selected FM are back-propagated. No batch normalization is used in the adjoint operations
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a) Input Number Images b) 9 CNN Filters
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Figure 9.13: Images of a) hand-written numbers and b) CNN filters. The architecture of
the network is at the top.

(Zeiler and Fergus, 2013).

As an example, Figure 9.14 depicts the CNN architecture and the input image of a Pomeranian
dog. The CNN is well trained with many different animal pictures and the FM with the strongest
weights is extracted from the 5th layer for the Pomeranian image. All the other FMs in this layer
are muted except for this FM, which is back-propagated to the input layer to give the grayscale
rendering at the top left. This image resembles an upside-down rendering of the dog-face, which is
important for classification. Different portions of the input image can be masked to determine how
they affect this FM. Systematically occluding portions of the input and forward propagating the
input to the specified FM will reveal its influence there. This back-propagation procedure is used
to answer the question about which portion of a feature map is related to which object in the input
image.

The back-propagation procedure can be used to show that low-wavenumber portions of the input
image are represented at the deeper portions of the network. It can also show that smaller details
of the input image are captured by the shallower layers. This is not surprising: repetitive use of the
pooling operations force the filters to be lower wavenumber filters.
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A Strong FM from Layer 5
Pixel representation

of Strong FM

Backpropagation

Figure 9.14: The dog image is forward modeled and the FM at the 5th layer is extracted to
give the colorful image at the top right. This FM is backprojected back to the input space
location to give the grayscale image at the top left. Figure adapted from Zeiler and Fergus
(2013).

9.2.6 Regularization

Too many fully-connected layers and model parameters compared to the number of constraint
equations can lead to overfitting , examples of which are shown in Figures 4.27-4.28. Thus, regular-
ization methods such as damping are needed to stabilize the solution.

There are many regularization methods, some of them are listed below and many details for
regularizing autoencoders are discussed in Chapter 14.

1. More data. Increase the number and variety of examples in the training data.

2. Early stopping. Stopping the iterations early so the solution does not fit noise or include
superfluous basis functions. This type of regularization is also used for conjugate gradients
(Nocedal and Wright, 1999).

3. Marquardt damping. A penalty function is added to the objective function so that too
many activated neurons (Ng, 2013; Zhou, 2018), non-smoothly varying weights or large weights
are penalized. Figure 2.5 illustrates its effect on the search direction.

4. Dropout. A successful way to prevent overfitting is to perform dropout on the network’s
nodes (Nitish et al., 2014) at each iteration. Units are randomly removed at every hidden
layer from the network at each iteration, which can be seen as a form of adding noise.

An example might be to randomly remove half the number of nodes in the hidden layers and
1/5 in the input layer; it is not used in the output layer (Brownlee, 2018). Removing nodes
in the hidden layers suppresses the activity of some nodes that tend to overfit the input data.
Wager et al. (2013) and Srivastava et. al. (2014) mathematically showed that randomly
eliminating nodes in a layer is equivalent to regularizing the objective function. This is proven
for the linear case in section 14.8.1.

Srivastava et. al. (2014) suggest that if a unit is retained with probability p during training,
the outgoing weights of that unit are multiplied by p at test time. A typical probability
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of p = 0.5 approximates the optimal value for a wide range of networks (Brownlee, 2018).
Brownlee (2018) summarizes many practical tips for implementing dropout, including the use
of weight constraints if the weights after dropout become too large.

A plausible explanation for the success of dropout regularization is that at each iteration a
new network is used to find the next update direction, similar to the red arrows in Figure 4.24.
This update direction is likely to explore a much different area of model space compared to the
model which is stuck with the same nodes that are memorizing the data, aka as co-adaption
(Brownlee, 2018). The narrow area explored by co-adaption might be similar to the narrow
region associated with the highest long black arrow in Figure 4.24.

The final weights at the last epoch can be considered as the average model for many network
models which have explored a wide area in model space. At the final epoch, the last weights
used for every node are the final weights for the test model.

Dropout can significantly improve training speed, even for deep neural nets. The technique
seems to reduce node interactions, leading them to learn more robust features that better
generalize to new data. Almost all deep networks use dropout.

A better strategy than randomly dropping more than half the nodes during training is to
selectively eliminate the parts of the feature map that have a value less than some specified
threshold value (Han et al., 2015). In this way the relatively inactive parts of the network are
eliminated and mitigates the tendency for overfitting .

Finally, a recent study (Frankel and Carbin, 2019) shows with empirical examples that many
nodes with small weights can be eliminated, aka pruned, from the original dense network. The
pruned network with up to 90% fewer nodes than the original network can be retrained to give
better accuracy and is more generalizable than the original network. The initial weights for
the original network are the starting weights for the original dense network. Apparently, the
location of the active nodes in the trained dense network are sensitive to the initial random
weights. The pruned network is much less likely to overfit than the dense network.

5. Image normalization. Assume that a CNN classifier is only trained on darkened black-
white pictures of apples and bright pictures of pears, where the apple’s intensity values are
between 15 and 30 and those of the pears are between 30 and 255. Now assume that the CNN
is only trained on these pictures. For inference, insert into this trained network a new picture
of an apple taken in bright daylight. The apple might be misclassified as a pear because the
intensity values range between 0 and 255 and provide details never before seen in an apple.

To overcome this problem, the input pictures in the network are demeaned and normalized by
the variance at every iteration of a mini-batch update. For example, the mean x̄ and standard
deviation σ of the apple picture are given by

x̄ =
1

I

I∑

i=1

xi; σ =

√√√√ 1

I − 1

I∑

i=1

(xi − x̄)2, (9.8)

and the demeaned and normalized pixel values are given by

x̃i =
xi − x̄
σ

, (9.9)

where I is the number of pixels in the input picture. Now, the statistical distributions of the
pears and apples will be roughly similar to one another and so the network will tune itself to
the geometrical and textural features that distinguish one from the other. More simply, if the
sum of the squared residuals in the loss function can be divided between the large residuals
of well-lit pears and the small residuals of dark apples, then it will devote its gradient values
to reducing the pear-related residuals.
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6. Batch normalization. A similar procedure is used to normalize the distributions of weights
in a layer. This is because as the iterations proceed, the statistical distributions of the weights
can dramatically vary from the starting weights of a uniform distribution of a zero-mean
Gaussian noise with a standard deviation of 1. Such a large range of weight values at later
iterations can slow down convergence and shut down the activation of certain nodes.

Batch Normalization

Input: Values of a over a mini-batch: B={a(1),a(2),…,a(64)}

Parameters to be learned , 

Output: ai ai }

j

 
: mini-batch mean

j : mini-batch variance

^

j  

- j

^

: normalize

: scale and shift

.

.

.

( j

ith example

Figure 9.15: Workflow for batch normalization. https : //www.youtube.com/watch?v =
nUUqwaxLnWs.

Figure 9.15 illustrates the strategy of batch normalization, where the input values a
(i)
j into a

layer’s node from a previous node can have a wide distribution of values. These inputs can
all have different means and variances, so they will be demeaned and normalized by averaging

over the mini-batch of examples. In this case, the i(i) example is given by a
(i)
j and there are 64

examples in the mini-batch. To insure all the examples are ideally demeaned and normalized,
the parameters γ and β are learned. The normalization scalars are applied to the model
weights, which is the same as using a diagonal preconditioner as discussed in section 2.1.5. It
is also similar to the illumination compensation procedure to correct for loss of amplitudes
due to defocusing and geometric spreading (Rickett, 2003).

Batch normalization (Ioffe and Szegedy, 2015) is regularly used to speedup convergence, in-
cluding the labeling of cracks in Chapter 11. This speedup can sometimes be more than
order-of-magnitude.

The regularizationmethods of batch normalization and dropout can be added to the Keras code by
the commandsmodel.add(layers.BatchNormalization()) andmodel.add(layers.Dropout(0.2)).
in Code 9.2.5.
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Code 9.2.5. Keras Code with Dropout and Batch Normalization

model = Sequential()

model.add(Input(shape=(X_train.shape[1], X_train.shape[2],

1)))

model.add(layers.Conv2D(filters=8, kernel_size=3,

strides=(2,2), padding=’same’, activation="relu"))

model.add(layers.BatchNormalization())

model.add(layers.Dropout(0.2))

model.add(layers.Conv2D(filters=16, kernel_size=3,

strides=(2, 2), padding=’same’, activation="relu"))

model.add(layers.BatchNormalization())

model.add(layers.Dropout(0.2))

model.add(layers.Flatten())

model.add(layers.Dense(128, activation=’relu’))

model.add(layers.BatchNormalization())

model.add(layers.Dropout(0.2))

model.add(layers.Dense(10, activation=’softmax’))

model.summary()

The summary of the parameter values for Code 9.2.5 is in Code 9.2.6.
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Code 9.2.6. Keras Summary of Code 9.2.5

Model: "sequential_1"

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

conv2d_3 (Conv2D) (None, 14, 14, 8) 80

batch_normalization (BatchNo (None, 14, 14, 8) 32

_________________________________________________________________

dropout_5 (Dropout) (None, 14, 14, 8) 0

_________________________________________________________________

conv2d_4 (Conv2D) (None, 7, 7, 16) 1168

batch_normalization_1 (Batch (None, 7, 7, 16) 64

_________________________________________________________________

dropout_6 (Dropout) (None, 7, 7, 16) 0

_________________________________________________________________

flatten_1 (Flatten) (None, 784) 0

_________________________________________________________________

dense_3 (Dense) (None, 128) 100480

batch_normalization_2 (Batch (None, 128) 512

_________________________________________________________________

dropout_7 (Dropout) (None, 128) 0

_________________________________________________________________

dense_4 (Dense) (None, 10) 1290

=================================================================

Total params: 103,018

Trainable params: 103,018

Non-trainable params: 0

___________________________________________

9.2.7 Mini-Batch, Step Length, Training and Data Augmentation

The best practices for using mini-batches, training and step lengths are discussed in section 4.5
and Chapter 4. Typically, mini-batch sizes of 64 or 128 are used, but this will vary from problem to
problem.

The training strategy is summarized in Figure 4.10. We first randomly select about 80% of the
labeled data for training, and the remaining 20% should be used for validation. Using a gradient
descent code, the network trains on the training data and then tests its inference accuracy on the
validation set. The training data should encompass all of the characteristics associated with any
future data that will be input into the network.

For a classification problem, the number of examples for each class of data in the training set
should be about the same. This results in a balanced training set. For example, if dog pictures must
be distinguished from cat pictures then the sum of the squared residuals from the dog pictures should
roughly be about the same as that from the cat pictures. If there are many more dog pictures then
the gradient method will devise update directions that mainly reduce the residuals associated with
dogs and largely ignore reducing the cat residuals. Chapter 11 addresses this issue with labeling
cracks in sandstones. One possible remedy is to augment the training data. The training set of
a few cat pictures can be augmented by applying rotations, scaling, stretching and displacement
operations to the existing cat pictures to create new ones. Other procedures such as interpolating
the latent space variables in autoencoders is discussed in Chapter 14.
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9.3 Architectures of CNN

There are many CNN architectures and their performances for some of them are graphed in
Figure 9.4. These different architectures appear to have evolved by trial and error, where some
intuition is used to help improve the design. Undoubtedly, new architectures and paradigms will
emerge to replace the most popular ones today (Roman, 2020).

9.3.1 AlexNet

The AlexNet architecture has eight layers, 5 convolutional and 3 fully connected, and is shown
in Figure 9.16. It was introduced by Krizhevsky et al. (2012) and won an ImageNet Classification
Challenge (ILSVRC) in 2012 by a large margin because the competing algorithms were not based
on deep learning. The AlexNet Keras code is in https : //engmrk.com/alexnet− implementation−
using − keras/ and has a few more layers than the pioneering LeCun architecture (LeCun et al.,
1998). AlexNet is one of the first Deep Neural Networks (DNNs) which classify large numbers of
images. It consists of over 60106 parameters, and is the first to implement the ReLU activation
function. At that time the other competing algorithms were not based on Deep Learning. This
architecture has had a significant impact on the domain and many practical networks still use this
architecture.

The intuition behind this network is that each 2D convolutional layer learns a more detailed
representation of the images than the previous one. For example the first layer is able to recognize
very simple forms or colors, and the last one more complex forms.

AlexNet

yi = g(zi) = 

j=1
j

= ½ j i yi
(j) ln yi

(j)^

Loss function

1000

Softmax

Figure 9.16: AlexNet architecture with a softmax function at the output and the cross-
entropy loss function for a 1-out-of-1000 classifier. Figure adapted from https : //
www.saagie.com/blog/object − detection − part1.
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9.3.2 VGGNet

The VGGNet architecture (Simonyan and Zisserman, 2014) is depicted in Figure 9.17 where the
filter size is simplified to be (3× 3× nc and the downsampling fraction (by pooling) stays the same
for every layer. Figure 9.4 shows that it also outperforms earlier architectures such as the LeCUN
one shown in Figure 9.3.

VGG Net

224x224  112x112         56x56                                28x28                         14x14                     FC     FC FC+Softmax

D=64D=64

D=128

D=256

D=512

D=512

D=4096       D=4096        D=4096

3x3xnc filters  
D = # channels

Figure 9.17: Architecture of VGGnet where D is the number of channels and the x− z size
of each feature map decreases with increasing layer depth of the CNN.

VGG is a very deep and simple net. Its most common version has 16 layers, aka VGG16, and its
global architecture is very similar to the AlexNet one. Each convolutional layer has a 3 × 3 kernel
unlike many other nets that have different sized kernels for each layer. The VGG19 network in
Figure 9.18a has 19 rather 16 weighted layers (Ramon, 2020).

9.3.3 ResNet

ResNet is the 2016 ILSVRC contest winner with an error rate of less than 5%. Its architecture
(He et al., 2016) is shown in Figure 9.18b. The innovation is that the output of a layer is directly
fed into the output of one or more layers deeper into the network. The main benefit is that this skip
connection tends to avoid the vanishing gradient problem with deeper networks (He et al., 2016).

The simplest way to describe the skip connection is to assume that the output H(x,W) of a
conv-net layer has the same dimension as the input x. In this case, the skip connection can be
described by

y = H(x,W) + Ix, (9.10)

where I is an identity matrix (see Figure 9.18c). If the dimension of x is greater than that of y
then I will be replaced by a suitable matrix9. This matrix I can also have weights associated with

9Assume that the output from a shallower layer is the N × 1 vector a[n−k] for the integer k > 1. In this
case, the output to the nth layer with a skip connection from the n− k layer would be the M × 1 activation
vector a[n] = g(z[n] + W̃a[n−k]). Here, z[n] is the M × 1 input vector into the activation function of the nth

layer. The W̃ is a M × N weighting (or convolution) matrix where a[n−k] is the N × 1 activation vector
(https : //en.wikipedia.org/wiki/Residual neural network).
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a linear mapping according to He et al. (2016). He et al. (2016) shows skip layers every two layers
of a standard conv-net network.

ResNet-152 introduced the concept of residual learning in which the subtraction of features is
learned from the input of that layer by using shortcut connections (directly connecting input of nth

layer to some (n+x)th layer, which is shown as curved arrow). It has proven that the residual learning
can improve the performance of model training, especially when the model has deep network with
more than 20 layers, and also resolve the problem of degrading accuracy in deep networks. There are
variations of ResNet with a different number of layers, but the most used is ResNet50, which consists
of 50 layers with weights. The ResNet also contains up to 5 times fewer parameters than a VGG of
equivalent depth because it replaces the last few layers with layers denoted as GlobalAveragingLayers
(Ramon, 2020).

a[i]

a[i+1]

Batch

Normalization

ReLU

Conv

Batch

Normalization

ReLU

Conv

a) VGG-19                   b) ResNet 152                      c)         Skip Connection

Figure 9.18: Architectures for a) VGG-19, b) ResNet and a c) skip connection. Figure
adapted from He et al. (2016).

A dramatic demonstration of how the skip connection smooths the loss function around the
minimizer is illustrated by Li et al. (2018a) in Figure 9.19. The loss function is plotted in two
dimensions near the minimizer point for two types of deep networks: a 110-layer network without
skip connections in Figure 9.19a and the 121-layer network with skip connections in Figure 9.19b.
It is obvious that the skip connections lead to a smoother loss landscape in Figure 9.19b so that the
convergence rate will be faster than the one without skip connections. This is similar to the effect
of regularization on an ill-conditioned system of equations: the long-narrow valleys of the misfit
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function tend to become more round and lead to faster convergence (see Chapter 2) and there is less
of a tendency for overfitting (see Figure 4.27).

a) ResNet-110: No Skip Connections b) Dense-Net: 121 Layers with Skip Connections)

Figure 9.19: 2D Loss functions for a) ResNet-110 without skip connections and , b) Dense-
Net-121 with skip connections. Figure adapted from Li et al. (2018a). The origin of the
coordinate system is defined as the model weight vector w0 that minimizes the loss function,
and the two coordinate axis are obtained by choosing two random directions w1 and w2

from the origin in the higher dimensional space of weights. The points along the plane
defined by w1 −w0 and w1 −w0 are used to evaluate the loss function as plotted above.
Image adapted from Li et al. (2018a).

Other networks that are popular are Xception (Chollet, 2016) and Inception (Szegedy et al.,
2014). The Xception breaks up the 2D convolutions into concatenations of 1D convolutions, which
reduces computation time. The Inception strategy is to use concatenated filters of different sizes to
extract features with different scales.

Which CNN architecture should one use and should one try to innovate with new ones? The
answer according to Hinton, Karpathy and Ng is to ”not be a hero”. Use one of the latest ones that
work best with the ILSVRC contest, perhaps delete some parts. Karpathy says to play with the
regularization strength and dropout rates.

9.4 Deep Learning Software

Karpathy, former Stanford Professor and currently AI manager at Tesla, is reported to have a
high regard for Pytorch (https : //pytorch.org/tutorials/), which powers the self-driving capabilities
of the Tesla vehicles. To quote an article from analyticsindiamag.com10 : When it comes to machine
learning frameworks, TensorFlow and PyTorch are widely popular with the practitioners. No other
framework comes even remotely close to what these two products of Google and Facebook respectively,
have in store. These frameworks have slowly found their niche within the AI community. PyTorch,
especially has become the go-to framework for machine learning researchers..

10https : //analyticsindiamag.com/ tesla− pytorch− self − driving −computer− vision− karpathy−
elon−musk − ai/
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There are a number of CNN software packages, and Keras (https : //keras.io/ or https : //
www.datacamp.com/ community/tutorials/deep− learning − python) is one of the easiest to use,
similar to Python. It is a high level language based on the software Torch/Tensorflow and Pytorch.
Once you master Torch, you can develop your own special functions. For some reason Karpathy
doesn’t list Cafe as one of his top three favorites, but he notes its nice features. An overview of Cafe
is at https://caffe.berkeleyvision.org/tutorial/. He doesn’t list Theano or Lasagne as his favorites.

What about MATLAB? A free 30-day license is at https : //www.mathworks.com/products/
get−matlab.html.

A systematic search for the optimal hyperparameters is always recommended. This goal can be
achieved more easily using the software at github11 and the keras site12.

I also recommend Andrew Ng’s excellent Youtube videos on Deep Learning, too many to list.
Andrew is a master of ML and its exposition, who deeply understands the benefits of sipping water,
rather than guzzling it.

9.5 Seismic Fault Detection by CNN

Araya-Polo et al. (2017), Huang et al. (2017), Guitton (2018), Xiong et al. (2018), Shi et al.
(2019), Wu et al. (2019a, 2019b), Wu et al. (2020a, 2020b), Qi et al. (2020), Gao et al. (2021), Li
et al. (2021), Shi et al. (2021b), Wrona et al. (2021) and many others used CNN architectures to
detect different geologic signatures in seismic sections, such as faults, seismic horizons, salt flanks,
river channels and other geologic bodies. Instead of training on field data, Shi et al. (2019, 2021b),
Gao et al. (2021), Wu et al. (2019a, 2019b), Wu et al. (2020a, 2020b), Li et al. (2021) and
others trained the CNN on synthetic data. This has the benefit of not having to label the faults
since the fault locations are already known by defining the synthetic fault model. However, the
potential drawback is that synthetics sometimes do not provide a fully realistic rendering of a fault
seen in seismic sections, especially if the training synthetics do not undergo a realistic 3D prestack
migration. Thus, some subtle fault signals might be missed by the CNN detector. However, efficient
transfer training on the real data set such as that employed in Shi et al. (2021a) can be used to
smarten advanced versions of the CNN model.

As an example of CNN fault detection, Xiong et al. (2018) used a CNN system to identify
faults in seismic data. Unlike some of the previous attempts that used features manually labeled or
extracted from the seismic data as input (Zhang et al., 2014), Xiong et al. (2018) used three slices
from the migration image as the input (see Figure 9.20) and used an automatically labeled attribute
image as the output image (see Figure 9.20). In the attribute image the faults were automatically
labeled by a coherency method.

Xiong et al.’s (2018) schematic for the CNN architecture is shown in the middle of Figure 9.20
and some examples from the training set are given in Figure 9.21. The target output values in
the training set at each point O can be interpreted as faults or not by interpreters or auto-picking
algorithms. In their paper, they classified eight different 3D seismic image cubes of real data using
a coherence-based method where faults are roughly delineated (Qi et al., 2017). After annotation,
every point in the training cubes is labeled as either a fault or non-fault using a threshold strategy:
the points with coherence values larger than a predefined threshold are classified as faults, otherwise
they are labeled as non-faults.

Before the three slices are fed into the network, they are normalized by subtracting the mean
and dividing by the standard deviation. Similar to the classical CIFAR-10 classification problem
(Krizhevsky and Hinton, 2009; Google, 2017), the network consists of two convolutional (Conv)
layers and two fully-connected (FC) layers followed by a softmax classifier, which gives the predicted
labels as the output (Bishop, 2006). The Conv layers both have 64 filters with sizes of 5× 5. There

11github.com/keras-team/keras-tuner Documentation
12https://keras-team.github.io/keras-tuner/
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are 384 and 192 nodes in the two FC layers, respectively. After every Conv layer and FC layer,
they applied the ReLU activation function. A 2 × 2 max-pooling with a stride of 2 and batch
normalization are used after both Conv layers. The final softmax classifier produces a probability
indicating the likelihood of a fault being present in the center point of the input. The prediction
of the label is then generated by applying a threshold (0.5) to the output likelihood values, such
that any probability value greater than the threshold value is labeled as a fault, otherwise it is not
a fault.

The network is trained from scratch by initializing the weights of all the layers as in the CIFAR-10
tutorial of Tensorflow (Google, 2017; Abadi et al., 2016). A gradient descent optimizer is imple-
mented in Tensorflow with the default parameters and the initial learning rate, i.e. step length,
being 0.1. The training samples are randomly shuffled before they are fed into the network for every
epoch, which is a critical step in order to obtain good network performance. The model is saved
when the loss function

ǫ =
1

n

n∑

i=1

ỹi ln yi, (9.11)

reaches a plateau during the optimization process, and it is then validated with the validation
dataset. Here, yi is the ith predicted output from the softmax function and ỹi is the actual label
for the ith example. The saved model achieved classification accuracies of about 73% on both the
training and validation datasets.

The weights for the trained model are applied to the testing cube comprising a 3D seismic
image volume of real data. The cube size in gridpoints is 1000 × 655 × 1083. The top, front and
side panels show, respectively, the time section (T = 312), inline section (Y = 423) and cross-line
section (X = 417). The locations of the sections are marked by the black lines in the figure. One of
the eight cubes is randomly selected for validation and will not be seen by the network during the
training process, while the other seven cubes are used to generate the training dataset. The training
dataset is constructed by randomly selecting 50000 points from each cube labeled as faults (which
is approximately 0.2% of all fault points in the cubes), and another 50000 points labeled non-fault.
The number of non-fault points is much larger than fault points in the cubes. For this real data
cube, the CNN obtains about 74% classification accuracy, which is close to that obtained for the
training and validation datasets.

Figure 9.21 shows some representative fault and non-fault samples randomly selected from the
training dataset. There appears to be a systematic difference between the two classes. Non-fault
samples show more continuous seismic events. A validation dataset of the same size is constructed
in the same way as the training dataset, which is used to monitor the training process and determine
the termination of training.

The trained CNN model applied to the test cube consists of a 3D seismic image volume of real
data as shown in Figure 9.22. The cube size is 1000× 655 × 1083. The top, front and side panels
show the time (T=312), inline (Y=423) and cross-line (X=417) sections, respectively. Locations of
the sections are marked by the black lines in the figure. For this real data cube, the CNN obtains
about 74% classification accuracy; close to that obtained for training and validation datasets.

The fault probability cube output by the CNN is shown in Figure 9.22a along with results
from a seismic coherence cube (Figure 9.22b). Seismic coherence is a well-known and widely used
attribute to highlight discontinuities in seismic image (Bahorich and Farmer, 1995). As we can be
seen in Figures 9.22 and 9.23, the CNN results show a higher resolution compared to the coherence
volume. The seismic faults as well as channels are clearer in the CNN results. Recalling that the
fault probability calculation is made independently for different points, the clear continuous outlines
of discontinuities in the fault probability images show that the trained network performs robustly
in the presence of noise.

For the test with the 3D image cube of size 1000× 655× 1083, it took about 2.5 hours to obtain
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Figure 9.20: Three slices on the left are taken from a 3D migration cube and used as the
input data to the CNN. The output is the point yi at o on the right which is taken to be
either a fault (yi = 1) or not (yi = 0). The 24×24×3 filter is shifted over to a new position
o′, and the dot product of the filter with the image points is computed again. Repeating
this for all input points gives the first feature map. Note, the filter is not shifted up or
down and only shifted along the lateral directions for this training example. A new training
example will have the center point of the filter shifted up or down. Figure adapted from
Xiong et al. (2018).

the fault probability result using a computer cluster with 20 nodes (40 CPU cores in each node). So
this method is still practical even without possible improvements by reducing duplicate calculations
in adjacent locations.

9.6 Summary

The characteristics of a CNN and its associated Keras code are described. A key advantage of
CNN over classical neural networks is that its convolutional nature leads to a significant increase
in computational efficiency by more than several orders of magnitude. Empirical evidence suggests
that it is more efficient at detecting localized patterns in input data because it roughly emulates
processing procedures employed by a brain’s neurons. The CNN uses a weighted sum of local pixel
values to give the input to the jth node of the next layer. The set of N weights wi for i ∈ [1, 2 ∈ N ]
are shared for computing the input into any node of the next layer.

Another advantage of CNN is that it tends to be resilient to translations of the object of interest
in the input image. This is not surprising because each row of the convolution matrix is a shifted
copy of a neighboring row. In addition, CNNs tend to be more resilient to object rotations and
object scaling as networks become deeper with more subsampling operations such as pooling.

An example is presented for CNN identification of faults from a migration image. The predicted
faults appear to be more accurate than those interpreted from a coherency cube. This is a promising
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Training samples labeled as fault Training samples labeled as nonfaulta) b)

Figure 9.21: Samples labeled as (a) fault and (b) non-fault. All samples are randomly
selected from the training dataset, except the first row showing synthetic samples. Each
sample is composed of front, side and top panels which are inline, cross-line and time slices,
respectively. The size of each slice is 24 × 24. The spatial grid size is 25 meters while the
vertical time sampling interval is either 0.002 or 0.004 seconds for different cubes. Figure
adapted from Y. Xiong et al. (2018).

result and gives hope that CNN’s will be a useful tool for many aspects of exploration geophysics.
However, the next chapter shows that U-Net architecture is the preferred semantic-segmentation
CNN for salt-boundary picking and for fault identification. U-Net is the gold standard for precise
semantic segmentation of an input image.

9.7 Exercises

1. Go to https : //colab.research.google.com/drive/ 1ZZmY iFuSnV IlczmJRa3ncaer2sSu1GQA?usp=
sharing #scrollT o = Lo3S63zGQ6Y 7. Compare the convergence rate for a two-layer CNN
with batch normalization to one with batch normalization. Which one is faster? Explain.

2. Same as Exercise 1, except deepen the network to 6 convolution layers.

3. Same as Exercise 1, except compare effects of dropout on convergence rate for a 6-layer
network.
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Figure 9.22: Real data example showing the fault probability cube from the CNN prediction,
compared with the corresponding coherence cube. The cube size is 1000× 655× 1083. The
spatial grid size is 25 meters while the vertical time sampling interval is 0.002 seconds.
Figure adapted from Xiong et al. (2018).

4. The first layer of a CNN supposedly decomposes an image into smaller components associated
with edges oriented at certain angles. How can one use local damped regularization and local
slant stacking to encourage the filters in the first layer to output FMs with edges oriented in
different directions?

5. Adjust the code in Exercise 9.7.1 so that it uses the smart dropout procedure described in
Frankel and Carbin (2019). Compare the accuracy of the CNN with smart dropout to the one
without dropout. In this case, eliminate around 90% of the nodes.

6. Use the codes at https://github.com/keras-team/keras-tuner and https://keras-team.github.io/
keras-tuner/ to find the optimal hyperparameters for the previous problem.
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CNN vs Coherency
Y Coherency

Training (73% accuracy)

Testing (73% accuracy)

Actual (74% accuracy)

Figure 9.23: Time slices of fault probability [(a) and (c)] from CNN prediction, compared
with seismic coherence [(b) and (d)], at two different time slices, T = 312 (top row) and
T = 387 (bottom row), respectively. The section size is 655× 1083. The spatial grid size is
25 meters. Figure adapted from Xiong et al. (2018).



Chapter 10

Object Identification by CNN

We now describe several tasks of computer vision for identifying objects in images: image classi-
fication, classification+localization, object detection, semantic segmentation, and instance segmen-
tation. Of these categories, semantic segmentation, which classifies each pixel in an image, is one
of the most important tools for classifying images in biomedicine. Examples are presented for C-
NN classification in seismic, optical and ground penetrating radar images. The CNN architectures
of AlexNet, U-Net and Region-based CNN (R-CNN) are employed for processing images in this
chapter.

10.1 Introduction

Interpreting huge volumes of images obtained by remote sensing devices can be time consuming,
error prone and expensive. An example is medical diagnosis (Biswas et al., 2019) of images obtained
by X-ray machines, CT scans, MRIs, PET scans or microscopes. Instead of a time-consuming and
error-prone analysis of these images, CNN can quickly reach reliable conclusions that can be vetted
by the expert. For example, CNN can be used to characterize plaques in arteries from CT scans,
automatically segment ventricles from MRI images, detect breast cancer tumors in mammography
images, detect cancerous cells in blood samples, and characterize lung disease in X-rays images
(Biswas et al., 2019). Neural network methods have also been used for computer vision in many
industries (Kivinenet et al., 2014) including automatic detection of cracks in roads (Zhang et al.,
2016), fault detection in seismic data (Zhang et al., 2014), and analysis of well log data (Zhang et
al., 2018). Their impressive performances highlight the effectiveness of deep neural networks, which
are likely to replace or complement the conventional manual interpretation of features (LeCun et
al., 2015)

For exploration geophysics, seismic imaging of the subsurface often requires the recording of
hundreds of terra bytes of digital data and its processing into huge 3D volumes. Each pixel in
the volume can have many attributes (Chopra and Marfurt, 2006) such as local dip, intensity,
instantaneous phase and other features that might indicate faults, the type of lithology or the
presence of oil. Successful interpretation sometimes requires combining attributes decided by cross
plotting and the input from the experienced interpreter (Taner, 2001). Fortunately, neural networks
can be used to assist the interpreter in analyzing large groups of attributes (AlRegib et al., 2018)
and large volumes of seismic data.

Figure 10.1 illustrates six types of computer vision tasks for analyzing images based on increasing
complexity in the image (cs231n.stanford.edu/slides/2017/cs231n 2017 lecture11.pdf).

1. Image classification: Given an image, the computer outputs a discrete class, which is the main
object in the image. For example, the image in Figure 10.1a is classified as a Karst image.

257
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2. Classification+Localization: Identify an object, classify it and localize it. Typically the local-
ization is accomplished by defining the smallest bounding box around it as in Figure 10.1b.
This procedure assumes images with just one object.

3. Object Detection: For images with multiple objects of different types, classify and localize all
objects in the image. Assign a class to each object and draw a bounding box around it as in
Figure 10.1c.

4. Semantic Segmentation: Classify every pixel in the image. We do not know how many objects
there are in the image, we only know the class of each pixel.

5. Instance Segmentation: Classify every pixel in the image; different objects of the same class
will be assigned as a unique instance of the object. The number of instances with the same
class will be equal to the number of objects in that same class.

This chapter now describes the methods for accomplishing the above computer vision tasks.
The pixel-based classification scheme, also called semantic segmentation, will be used to interpret
three types of geoscience images: seismic images, ground penetrating radar (GPR) data and camera
photos of rock slices. For the rock photos and GPR data we use the simple AlexNet architecture
(Long et al., 2015), and use the U-Net architecture for the seismic data. The U-Net is used because it
is one of the most successful networks for identification of medical images (Biswas et al., 2019). The
region-based CNN, that is R-CNN, will be used to localize, window and classify objects in different
regions of the photo. The actual algorithm we use for an example is known as Faster R-CNN.

10.2 Image Classification

The three size scales for classifying the contents of an image are global, object-sized localization,
and pixel-based.

10.2.1 Global Picture-size Classification

Classifying a picture as to whether it contains, e.g. a karst1 in the photo of Figure 10.1a, is
an example of global classification that can be accomplished by a properly trained neural network.
Each picture of a, say, geological outcrop gives rise to equations of the form

σ(W[N ]σ(W[N−1](...(W[1]z[0])...)) = y, (10.1)

where σ denotes an activation function, z[0] is the input image, andW[n] represents the convolutional
matrix of filter coefficients in the nth CNN layer as well as any max-pooling and batch normalization
operations. Here, y = 1 for the presence of a, say karst, and y = 0 otherwise. Typically, there are
many thousands of unknown matrix coefficients so we need many more thousands of pictures in the
training set to properly train the CNN network.

10.2.2 Object Detection: Localize and Classify a Single Object in an
Image

We assume a single dominant object in an image. Localizing an object with a bounding box, e.g.
the green box in Figure 10.1b, and identifying the class of the bounded object is denoted as localized

1Karst is a topography formed from the dissolution of soluble rocks such as limestone, dolomite,
or gypsum. It is characterized by underground drainage systems with sinkholes and caves (https://
en.wikipedia.org/wiki/Karst).
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a) Classification 1 Object b) Classify+Localize: 1 Object

e) Object Detection: Classify+Detect many Objs.

d) Instance Segmentation

Car 
Car, 

c) Semantic Segmentation
Karst

Karst

Karst

Karst2Karst1,Karsts

Summary: Object, Instance and Sematic Segmentations

Figure 10.1: Six types of computer vision tasks (cs231n.stanford.edu/slides/2017/
cs231n 2017 lecture11.pdf). Photo courtesy of Sherif Hanafy.
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Figure 10.2: Photo of the road cut as the input image and the desired output is the 8 × 1
target vector y = (pc, bx, by, bheight, bwidth, c1, c2, c3). For a sufficient number of training
examples the CNN should learn how to enclose objects of interest with boxes. Photo
courtesy of Sherif Hanafy.
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windowing and classification. For training, the define the coordinates of the smallest bounding box2

which enclose the object as shown by the green box in Figure 10.2. The scale of the input photo is
normalized so that the upper left corner is at the origin (0, 0) while the lower right corner is at (1, 1).
The center-point coordinates (bx, by) and the width and height of the red box are given, respectively,
by the terms3 in

(bx, by, bwidth, bheight). (10.2)

The optimal values of these coordinates define the bounding box with the smallest area, which is a
regression problem.

This is also a classification problem if the object inside the box is to be classified. For this
example, if the object is either a karst (c1 = 1), a shale (c2 = 1) or limestone (c3 = 1) in the bounding
box (BB) then pc = 1, otherwise pc = 0. The rock class ci is a one-out-of-three classification scheme
so that there is, in the groundtruth labeling, only a single element equal to one for one of the three
elements (c1, c2, c3) in the classification part of the target vector y, and the remaining elements are
zero. Predicting this rock classification vector demands a softmax activation function at the output
of the last layer. The pc is a metric which is used to eliminate a proposed bounding box if pc ≈ 0.

Therefore, the output of the CNN model is the 8 × 1 target vector shown on the right of
Figure 10.2. This is a pixel-based classification-regression problem so that there will be an equation
of constraint for each pixel in the input image:

σ(W[N ]σ(W[N−1](...(W[1]z[0])...))k = yk, (10.3)

where yk is the target vector for the kth pixel and the convolution filter in the first layer is centered
at the kth pixel of the input image. This is a mixed regression-classification problem because half
the 8 × 1 target vector is for classification and the other half is for the coordinate values of the
BB. Each input picture might contain more than a million pixels, so there are an equal number of
equations of constraint for each picture.

The four coordinates in equation 10.2 and the classification vector are collected into one target
vector y as shown in Figure 10.2. The training set consists of N pictures, each with a target vector
y(i) for i = [1, 2, ..., N ], and the objective function ǫ for one bounding box can be the following:

ǫ =
1

2

N∑

i=1

[(b(i)x − b̃(i)x )2 + (b(i)y − b̃(i)y )2 + (b
(i)
height − b̃

(i)
height)

2 + (b
(i)
width − b̃

(i)
width)

2] +

−λ
N∑

i=1

ln(p(ỹ(i))), (10.4)

where the tilde indicates the predicted data and λ is a term that balances the regression and clas-
sification parts of the objective function. If there is more than one proposed BB then there is a
summation over the different bounding boxes. In practice for R-CNN, the coordinate residuals can
be defined by defining a learnable (Girshick et al., 2016) transformation that maps a proposed BB
to a ground-truth BB.

The probability p(fk) is computed by the softmax operation p(fk) = efk/
∑C

k′=1 e
fk′ , where fk

is the network’s input into the softmax function at the correct rock class channel denoted as k. To
reduce the sensitivity to outliers and exploding gradients, the L2 loss for the coordinates (Girschick
et al., 2016) is replaced by an L1 loss function for the Fast RNN (Girshick, 2015). The number of
classes is equal to C.

2Labeling in this example means both assigning a class and defining the coordinates of the smallest
bounding box (BB) for the object in image.

3Alternatively, the coordinates of the upper-left and lower-right corners of the ROI can be specified.
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Figure 10.3: Proposed and actual BBs in red and green, respectively. The intersection area
between A and B is given by the cross-hatched area, and the IOU is given by equation 10.5.

10.2.3 Judging the Accuracy of the Predicted BB: IOU

Training a network to find the bounding boxes of objects suggests a need for quantitatively

judging the accuracy of the coordinates (b̃
(i)
x , b̃

(i)
y , b̃

(i)
width, b̃

(i)
height) for our proposed bounding box

(BB). This accuracy score is the sum of squared coordinate residuals in equation 10.4, which is
not very effective when the starting BB has a much different size or aspect ratio compared to the
actual BB. A better BB metric that tells us how close the initial BB is to the actual one is the
intersection-of-union (IOU) defined below.

Assume that your starting BB is the red one in Figure 10.3 with area A, and the groundtruth
BB is the green one with area B. The IOU formula is defined as

IOU =
A ∩B
A ∪B , (10.5)

where IOU measures the similarity of two boxes, or the overlap of the two boxes. If IOU = 1
then the boxes perfectly coincide with each other so that the starting BB is perfect. Smaller IOUs
indicate less accuracy in the proposed BB. The IOU can be used as a more effective loss function
for training the classifier, and typically an IOU > 0.7 is considered to be an effective BB (https://
www.youtube.com/watch?v=ANIzQ5G-XPE). The IOU is especially effective in estimating starting
BBs for the selective search strategy discussed in Appendix 10.17.

10.2.4 Object Detection: Localize and Classify Multiple Objects in an
Image

If an image contains many objects then finding the coordinates of the smallest bounding box
for each instance of an object and classifying it is a much more difficult task than the detec-
tion+localization of a single dominant object. Without knowing the number of objects, how do
we define the number of BB coordinates per image in equation 10.4? For example, Figure 10.1e has
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Figure 10.4: Comparison of run times (right column) and accuracy (left column) for R-CNN
and YOLO methods. Table from Redmon and Farhadi (2016).

three objects (two karsts and a car) and each requires finding a minimally sized bounding box and a
class type. This task is even more challenging if the objects are located in shadows or are occluded
by other objects. There are two types of CNN solutions to this problem: region-based CNN (R-
CNN) and you-only-look-once (Redmon et al., 2015). Compared to R-CNN which analyzes distant
regions separately from one another at each iteration, you-only-look-once (YOLO) simultaneously
analyzes all parts of the image for objects at each iteration. According to https://cv-tricks.com/
object-detection/faster-r-cnn-yolo-ssd/, YOLO is very fast and accurate, and some tests show that
YOLO2 is almost an order-of-magnitude faster than Faster R-CNN (see Figure 10.4 and Ren et al.
(2016)). YOLO.v4 (Bochkovskiy et al., 2020; Anka, 2020) is optimized to efficiently train and run
on a single GPU using small mini-batch sizes.

R-CNN. Region-based CNN methods are denoted as R-CNN (Girshick et al., 2015), Fast R-CNN
(Girshick, 2015; Girschick et al., 2016) and Faster R-CNN (Ren et al., 2016). They were developed
to localize with BBs and classify multiple objects in a single image. The R-CNN algorithm relies on
the strategy illustrated in Figure 10.5.

• Create a set of rectangular windows that approximately locate all possible objects in the
input image; these windows are known as region proposals or regions of interest (ROIs).
These ROIs can be determined by a classic computer vision algorithm, such as an edge de-
tector, a shape detector or selective search (see Appendix 10.17). A few thousand ROI’s can
sometimes be generated for an input image (https://deepsense.ai/region-of-interest-pooling-
explained/), and the selective search strategy of Uijlings et al. (2013) is the one described in
Appendix 10.17.

• The intersection of the input image with the proposed ROI is defined as an ROI’s sub-image.
Each sub-image is warped into a J × J image, where J is an integer smaller than the smallest
width or height of an ROI. For example, J = 7 but the object in this coarsened representation
should still be recognizable. These sub-images lead to more efficient computations by the
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Figure 10.5: R-CNN workflow, where regions of interest (ROIs) in the input image are
selected by some classical computer vision method.
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Figure 10.6: Fast R-CNN workflow. Illustration adapted from http://deepsense.ai/region-
of-interest-pooling-explained/ and Girschick (2015).

CNN.

• Each warped image is input into a separate SVM to classify the objects and the background
in the associated ROI.

• Once the objects are classified in each ROI, then a linear regression model is used to estimate
the coordinates of the bounding box for each object in a ROI.

The problem with R-CNN is that it can be very time consuming because each CNN and SVM is
used to detect, find the bounding box coordinates and classify objects in the corresponding ROI.
The inefficiency arises because of these many multiple steps and ”...from the fact that each ROI may
have a very large receptive field, often spanning the entire input image. Since the forward pass must
process the entire receptive field, the training inputs are large (often the entire image).” (Girschick,
2015).

Fast R-CNN. To speed up R-CNN, the Fast R-CNN algorithm (Girschick, 2015; Girschick et al.,
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2015; Girshick et al., 2016) passes the entire image into a single CNN which generates regions of
interest. At the same time it extracts feature maps from the ROIs, pools them into smaller images,
and then classifies objects and estimates the coordinates of their bounding boxes. The Fast R-CNN
workflow is illustrated in Figure 10.6, and consists of the following steps.

1. Assume there are N specified rectangular ROIs. The coordinates of these ROIs can be
determined by a selective search procedure. The key properties of the ROIs are described by
a N×5 matrix. The first column of the N×5 matrix represents the index numbers associated
with each ROI and the remaining four columns contain the coordinates of the upper-left corner
and the height and width of the ROI.

2. Feature Map Generation. The image is input into the deep ConvNet, and the output
consists of the ROIs and the feature maps illustrated by the gray ”Feature Map” rectangle
in Figure 10.6. Each specified ROI region in a feature map is saved and denoted as a ROI
feature map, as illustrated by the 5× 7 black rectangle on the right of Figure 10.6.

3. Pooled Feature Maps. The ROI feature maps are then reduced in size by pooling, as
denoted by the 2 × 2 pooled feature map in Figure 10.6. These reduced-size maps will be
denoted as pooled feature maps.

4. Fully-Connected Neural Network Layer. The pooled feature maps are then flattened
into a tall vector, which is then input into a sequence of FCLs.

5. Output. There are two types of outputs from the FCLs: one is a regression output that
refines the 4 bounding box coordinates of each bounding box and the other produces softmax
probability estimates of the K classes of objects, as well as a catch-all ”background” class
denoted by the element pc in Figure 10.2.

6. Faster R-CNN. Faster R-CNN (Ren et al., 2016) separately finds the ROIs with a Region
Proposal Network (RPN).The feature maps are first extracted from the input image using CNN
and then these feature maps are inserted into the RPN, which returns object proposals or ROIs.
The feature maps in each ROI are reduced to the same small size by pooling. These pooled
feature maps are then passed to a sequence of FCLs to classify the objects and estimate the
coordinates of the bounding boxes. A good tutorial on Faster RNN is at https://tryolabs.com/
blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/.

Training the Fast R-CNN can be much faster than the more conventional R-CNN, and Faster R-CNN
is faster than any of them.

You-Only-Look-Once (YOLO)

A very fast and popular object detection method is YOLO, or you-only-look-once. As indicated
in Figure 10.4, YOLO can be both faster and more accurate than the R-CNN methods. YOLO
partly avoids false positives because it sees the complete image at once as opposed to R-CNN
methods which only analyze the generated region proposals. However, a YOLO limitation is that it
typically only predicts one type of class in one grid, so it struggles with very small objects (https:/
/cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/). A partial remedy for this is to divide the
input picture into smaller cells, but a longer runtime is the price you pay.

There are four main steps for training and prediction of a YOLO network.

1. Divide the image into 2×3 cells, assign an anchor box to each cell and compute the class of an
object (ci for i ∈ {1, 2, 3}) in each cell, as depicted in Figure 10.7a. Here, the groundtruth is
that there are two types of objects, i.e. soccer players and open grass areas, each surrounded
by the dashed bounding boxes with the appropriate color. For labeling, assign the coordinates
of a dashed BB around each object and also assign the center-point coordinates to each BB



10.2. IMAGE CLASSIFICATION 267

as well as the object’s class. For Figure 10.7a, the colored disks denote the center points of
the objects, and a cell cannot contain the center point of more than one object.

2. Define the target tensor with dimension 2 × 3 × 8 as depicted in Figure 10.7b. Each cell
proposes Na possible anchor boxes, aka proposed BBs, so there are a total of S ×Na possible
BBs (see Figure 10.7b) where S is the number of cells. At most, only one of these BBs per
cell is selected at the end of training, and only if it contains an object’s center point4.

3. Specify Na anchor boxes/cell. Two or more anchor boxes/cell are typically assigned in order to
possibly achieve faster convergence. It is hoped that the shape of one of the proposed anchor
boxes is nearly the same shape as the groundtruth BB for that cell, which will promote fast
convergence.

For the Figure 10.7c example, two anchor boxes per cell are proposed so each cell has a 16× 1
predicted target vector y. The elements in y consist of the six predicted class labels, the
predicted anchor box coordinates and a confidence factor pc for each anchor box; the first 8
elements (pc, bx, by, bwidth, bheight, c1, c2, c3} in the 16 × 1 vector y are for the first proposed
anchor box. The remaining 15 elements are for the second anchor box in that cell. The
confidence factor pc

pc = Pr(Object)× IOU, (10.6)

for each anchor box indicates the confidence value 0 ≤ pc ≤ 1 we have of an object in that
BB and its overlap, if any, with the groundtruth BB. According to Dharmi (2019), only one
anchor box associated with a cell having a center point is retained: the one with the highest
IOU, while the other anchor boxes for that center point cell are discarded. This is known as
non-max suppression where the IOU can only be used during training, not prediction of an
unlabeled input picture. Non-max suppression ensures that the YOLO algorithm detects each
object only once in the training phase.

The term Pr(Object) is the softmax output in the classifier portion of the predicted target
vector y. If there is no groundtruth object in the parent cell of the anchor box then the
groundtruth Pr(Object) = 0 and the coordinates for this anchor box are ignored during
training. Eliminating anchor boxes with a predicted pc below a threshold value is how we
reduce the number of anchor boxes.

4. Training the CNN with a large labeled data set finds the weights that can localize (i.e., predict
the BB coordinates of the actual objects) and classify objects in each BB. The input pictures
are labeled with the BB coordinates of the objects, their class values, and the confidence
values of an object’s center point in the cell. The detection network has 24 convolutional
layers followed by two FC layers as illustrated in Redmon (2015). The CNN weights are found
by a gradient descent method with the YOLO loss function given by the summation over S=6

4In Redmon’s original paper, each of the anchor boxes for one cell shared the same set of class variables
ci for i ∈ {1, 2, . . . , Nc} where Nc is the number of class variables.
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Figure 10.7: a) Image divided into 6 cells, with one anchor box/cell, and the colored disks
are the center points of different objects. The red disks are the center points for the soccer-
player object while the green disks are the center points for open-grass areas. The bounding
boxes surrounding the soccer players (open grass) are denoted by dashed red (green) lines.
There is an 8× 1 target vector/cell. The cell size is usually selected to be small enough so
that there is only one type of object in the cell. b) The 2×3×8 target tensor is depicted as
the multi-colored cube, where there is an 8×1 target vector/cell; one for each of the 6 cells.
c) If two anchor boxes/cell are proposed then the target tensor will have the dimensions
2× 3 × 16. The elements of a cell’s 16× 1 target vector consist of three possible classes, 2
confidence factors pc and two sets of anchor box coordinates for the two proposed anchor
boxes/cell. The confidence values pc for many of the proposed BBs will be low so all but two
of the final anchor boxes for soccer players will be used and will coincide with the dashed
groundtruth BBs denoted by dashed red rectangles in a).
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cells for the Figure 10.7 example:

λcoord
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(p(i)c − p̃(i)c )2, (10.8)

where tilde symbol denotes the predicted target variables, and L
obj
ij takes the value of 1 if

there is an object’s center point in the ith cell that is also contained by the jth anchor box for
that cell. Otherwise L

obj
ij = 0.

If there is no object’s center point in a cell then the proposed anchor-box coordinates for that
cell are not computed during training, but the c̃′is for that anchor box will still be computed
because the term multiplying λnoobj in equation 10.8 will be non-zero.

The term p
(i)
c is the groundtruth confidence factor in equation 10.6 for the ith cell. Here,

L
obj
i = 1 denotes if an object’s center point is in the ith cell, otherwise L

obj
i = 0. At the end

of training, hopefully the predicted c̃i’s and p̃
(i)
c will match the actual ones.

As Redmon (2015) states: Note that the loss function only penalizes classification error if an
object is present in that grid cell.... It also only penalizes bounding box coordinate error if that
predictor is ”responsible” for the ground truth box (i.e. has the highest IOU of any predictor in
that grid cell). He also states that the absence of objects in cells can lead to model instability.
To remedy this, we increase the loss from bounding box coordinate predictions and decrease the
loss from confidence predictions for boxes that don’t contain objects. We use two parameters,
λcoord and λnoobj to accomplish this. We set λcoord = 5 and λnoobj =: 5..

The details for localization and classification are explained in https://www.analyticsvidhya.com/
blog/2018/12/practical-guide-object-detection-yolo-framewor-python/. Excellent tutorial videos
by Andrew Ng are at https://www.youtube.com/watch?v=9s FpMpdYW8 and https : //
www.youtube.com/ watch?v = 9s FpMpdYW8 &list = PLkDaE6sCZn6Gl29AoE3 1iwdV wSG−
KnDzF&index = 30.

Andrew Ng’s tutorials note that Redmon’s (2015) paper is very difficult to understand, partly
because the terms in equation 10.8 are not clearly or completely defined. For example, the
coordinates of the anchor boxes should be indexed not only by the parent cell index i but
also by the anchor box index j for that cell. Apparently, the bounding box index is silent
in the formulas and only one anchor box is used at the final iteration. The concept of each
groundtruth object having a center point (CP) is not clearly explained, but later publications
describe the use of the CP coordinates as an indicator of whether the coordinates of an anchor
box are computed during training.

5. Prediction. The trained model is applied to unlabeled data and the relevant anchor boxes and
classifications are computed. IOUs are not available because the groundtruth is not known,
so p̃c and c̃i are computed by the network for all the anchor boxes. If two anchor boxes
originate from the same cell, then non-max suppression is used to choose the anchor box with
the highest value of pc. Anchor boxes with pc below a certain threshold are eliminated. This
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highlights a limitation of the original YOLO algorithm: there can only be one center point of
an actual object for any one cell.

10.2.5 Pixel-size Classification: Semantic Segmentation

If each pixel in a photo is classified then this is denoted as semantic segmentation (https :
//www.topbots.com/semantic− segmentation− guide/). This type of classification scheme uses a
sliding window approach where the receptive field (see red-dashed box in Figure 10.2) of the 1st-
layer’s convolution operator is centered at the ith pixel. The ith lag value of the convolution operator
give rise to the ith equation of constraint denoted as

σ(W[N ]σ(W[N−1](...(W[1]z[0])...))i = yi for i ∈ {1, 2, ...N2}, (10.9)

for an N × N input image. Here, yi is the multinomial classification vector for the ith lag value
associated with the ith receptive field. Therefore, an N ×N image can theoretically give rise to as
many as N2 equations of constraint. This can be computationally burdensome so a stride of more
than one can be used to reduce computational expense at the expense of less spatial resolution in
the classification image.

Semantic segmentation has a wide variety of uses, including interpretation of x-rays or MRI scans
for anomalies, self-driving cars that require knowledge of where every object of interest is located
in real time, and geological interpretation of seismic images or optical photos such as Figure 10.1.
Figure 10.1d is an example of instance segmentation which treats multiple objects of the same
class as distinct individual objects (or instances). This compares to semantic segmentation which
treats multiple objects of the same class as a single entity. Typically, instance segmentation is
more difficult to accurately achieve than semantic segmentation. Chapter 11 presents an example
of detecting cracks in photos of a rock face by semantic segmentation.

10.3 Labeling Tools

Labeling photos is the most time-consuming part of preparing the supervised data for training.
If a GAN (Generative Adversarial Network) described in Chapter 18 is insufficient then efficient
labeling software is needed. Photoshop can click on a few points of an object and fill in the object with
a uniform color. It can also connect points with an irregular line that follows a contour of intensity,
or values of maximum pixel intensity. MATLAB has a labeling tool called Imagelabeler at https://
www.mathworks.com/help/vision /ug/label-pixels-for-semantic-segmentation.html. In Figure 10.8, a
few mouse clicks on the border of a rock formation fills in the rock formation with a uniform color.

GIMP (https://www.gimp.org/downloads/) and Inkscape are both useful as imaging tools not
to be confused with data analysis tools that have strong imaging components. GIMP is primarily
useful for raster images, Inkscape SVG (Scalable Vector Graphics) is primarily useful for vectors
such as polygonal outlines and undulating text strings although the path function in GIMP is also
vector based. GIMP vectors are useful for identifying components to operate on just like selection
by color or color threshold.

Figure 10.9 shows a screen dump of the GIMP interface displaying a picture of cracks on a dry
lake bed and after labeling of the cracks with a color of orange, otherwise the color is black. When
saving paths in either program, the transform from SVG format and Bézier-curves to some other
program input is not as easy as using simple raster I/O. In GIMP, selection and save as raster is
useful if the control points are not needed. Note that Photoshop, like GIMP, also has path selection
tools but taking data in/out of Adobe products might not be as useful as using common tools like
GIMP. GIMP is open source software and your own labeling software can be imported into it. It
is the favorite labeling program for some professional labelers and we used it for labeling the drone
photos shown in Chapter 11.
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Figure 10.8: Screen dump of MATLAB Imagelabeler tool.
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Figure 10.9: Screen dump of GIMP GUI used for labeling images of cracks in a dried-out
lake bed. Image courtesy of Yunsong Huang.
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Table 10.1: CNN Parameters for Salt Body Classification

Image Image Patch Number of Conv. Patch Number of Size of Number of
Size Size Channels Size Conv. Layers Max Pool Iterations

586×740 39×39 6 2×2 3 2×2 50

Another labeling tool is SymFD v1.1 which uses a wavelet transform to efficiently detect edges,
ridges, and cracks in an image. It consists of a GUI with tunable parameters that can be interactively
set to detect cracks with a specified range of crack widths, lengths, and intensity values. The
download instructions are below.

1. Download SymFD.zip from http://www.math.uni-bremen.de/cda/software.html

2. Extract the folders.

3. Open MATLAB→Home→Set Path.

4. Add with subfolders→Load all v1.1 folders.

5. Save.

and the execution steps are

1. Load image.

2. Pick any generator, adjust values of the parameter alpha, orientation operator, and minimal
contrast. The shear features include ridges and lines. Only display negative values in the
edge-detected image.

3. Detect features and export them.

In the next sections we demonstrate the use of semantic segmentation in seismic migration
images, GPR data and optical photos.

10.4 Salt Body Detection by AlexNet

A 2D seismic migration image (Yilmaz, 2001) is shown in Figure 10.10a. In seismic imaging of
salt basins, identifying and picking salt boundaries is the first step for velocity model building for oil
exploration (Yilmaz, 2001). Therefore, the goal is to use the CNN with the AlexNet architecture in
Figure 10.11 to automatically identify the boundary of the salt body without using time-intensive
manual picking.

We will first use a monoparameter CNN method to pick the salt boundary, and then use a
multiparameter CNN method where important salt features at each pixel are also used as input
data. The multiparameter features will be the local dip angle in Figure 10.10b and the instantaneous
frequency in Figure 10.10c (Yilmaz, 2001) at each pixel. These parameters are selected because they
appear to uniquely distinguish the seismic properties in the salt from those outside. Approximately
700 39 × 39 positive patches (i.e. y = 1) and 700 negative patches (i.e. y = 0) of the same size are
picked manually in the images. These input patches are interpolated to be 32× 32 patches. Around
80% of the patches are used as the training set and the others are used as the validation set. The
CNN parameters for salt body classification are listed in Table 10.1.
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Figure 10.10: a) Seismic migration, b) local-dip angle and c) instantaneous frequency im-
ages. Scales are normalized.

10.4.1 AlexNet CNN Architecture

Figure 10.11 depicts the AlexNet architecture, where semantic segmentation is used to predict
the label of each pixel. The network is composed of three convolution (Conv) layers and two FC
layers followed by a softmax classifier. There are 6 convolution filters with size 2 × 2 in the first
Conv layer. The number of channels is doubled in the deeper convolution layers. Rectified linear
activation (ReLU) and a 2× 2 max-pooling are applied after each Conv layer. There are 128 nodes
in the first FC layer and we dropout 50% of them in the second FC layer. The softmax classifier
gives the probability of the center point being a reflection event or not. The probability of two
classifiers are compared and the one with the higher probability is selected as the prediction label.
All convolutional filter kernel elements are trained from the data in a supervised fashion by learning
from the labeled set of training examples. A training set S = (x(i), y(i)) is given which contains n
32× 32 image patches, where x(i) represents the ith image patch and y(i) is the class label of either
y(i) = 1 or y(i) = 0. The cross-entropy cost function is given by

L = − 1

N

N∑

i=1

ln p(Y = y(i)|x(i)), (10.10)

where p(Y = y(i)|x(i)) is the probability that the label of x(i) is y(i).

10.4.2 Numerical Results

The results of monoparameter and multiparameter CNN applied to the seismic data are now
presented.

10.4.3 Monoparameter CNN

The architecture of the monoparameter CNN is illustrated in Figure 10.11a and only the mi-
gration image is used as the input data. The inference accuracies of the training and the validation
data sets are 96.5% and 95.0%, respectively. The predicted CNN labels in the migration image
are shown in Figure 10.12a. The points in yellow and blue denote the predicted salt body and the
non-salt sediments, respectively. The salt classification has been mostly accurate, except around the
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Figure 10.11: Illustration of a) the monoparameter CNN architecture and b) the multipa-
rameter CNN architecture.

boundary between the salt and sediments.

10.4.4 Multiparameter CNN

To improve the prediction accuracy around the salt-sediment boundary we now use a multipa-
rameter CNN. The input data for the CNN architecture in Figure 10.11b consist of the migration
image as well as the images with dip angle and instantaneous frequency. After training and testing,
the accuracy for both the training and validation data sets is over 98%.

Figure 10.12b shows class predictions from the multiparameter CNN. The misclassifications
around the salt body have been greatly reduced and the salt boundary is acceptably accurate in many
locations. This suggests that adding more physical features such as dip and instantaneous frequency
in the input might noticeably improve the performance of CNN. However, there is still a blurry
resolution of the salt body boundary. This problem will be mitigated by the U-Net architecture that
will be introduced in sections 10.8 and 10.9.

10.5 Detection of Rock Cracks by AlexNet

Detecting the density and orientation of rock cracks in boreholes is an important means for
identifying breakout zones, permeable zones and lithology. For example, a borehole televiewer tool
(see Figure 10.13a) can be used to produce panoramic images of the borehole wall, where the cracks
correspond to the dark horizontal features in Figure 10.13b.

However, the problem with determining crack orientations and density is that, for large data
sets, it often involves labor-intensive detection efforts that can take days to complete. In this case
it is important to automate the crack-detection process. As an example, Figure 10.14a-10.14b show
the photos of a cracked rock in grayscale and RGB, respectively. Either the gray scale or RGB
images can be used as input to classify each pixel as either a crack (y=1) or not a crack (y=0).
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Figure 10.12: The labeled images obtained from the a) monoparameter CNN and b) mul-
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Figure 10.13: a) Ultrasonic borehole imager (UBI). The UBI measures reflection amplitudes
of acoustic waves and estimates the radial distance by using traveltimes and a direct mea-
surement of mud velocity. b) Example of breakout detection using an ultrasonic borehole
televiewer. Breakouts are indicated by the low acoustic amplitude of the reflected signal,
shown here as darker areas. The breakouts are rotated because of a drilling-induced slippage
of localized faults. Image and caption from www.petrowiki.org/Borehole imaging.
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Figure 10.14: a) Grayscale and b) RGB images of the rock cracks. c) and d) are the CNN
labeled images where yellow is the color of a crack.

10.5.1 Unbalanced Crack Data

In many cases, cracks represent a small fraction of the occupied space in a photo. This means that
for any photo the number of semantic segmentation equations with y = 1 is small compared to the
number of equations for y = 0. This will give rise to a severely unbalanced set of equations that can
lead to slow convergence in training and limitations in accurately labeling cracks. To overcome this
problem, the density of cracks can be increased by extracting cracks from the images and artificially
inserting them into crack images. This can produce an augmented data set that is well balanced with
a nearly equal number of training equations for both cracks and background. Alternatively, a GAN
method can be used to generate cracks (Hu, 2019) and can also generate both artificial pictures with
both cracks and labels (https://www.frontiersin.org/articles/10.3389/frobt.2018.00066/full), or each
equation with a crack can be heavily weighted while the background equations are downweighted
(Lin et al., 2018 and https://www.topbots.com/semanticsegmentationguide/). This last approach is
used for detecting cracks in Chapter 11.

10.5.2 Numerical Results

The AlexNet architecture in Figure 10.15 will be used for rock crack identification and its
parameters are listed in Table 10.2. For training, 400 17 × 17 positive patches (y = 1) and 400
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Figure 10.15: CNN architecture for detecting rock cracks.

17 × 17 negative patches (y = −1) are randomly selected from the image. More than 80% of the
patches are used as the training set and the others are used as the validation set.

The MATLAB code for the AlexNet CNN code is given in Appendix 10.18, and a slice of the
code is in Code 10.5.1. Note how the size of the 17× 17 input images are defined at the beginning,
and are interpolated to be 32× 32 images with an even number of pixels along each side of the im-
age. This is necessary because, unlike the Python-based pooling subroutines, there is no automatic
padding for pooling in MATLAB code. Pooling for MATLAB requires an even number of input
pixels along each side of the input feature map. After pooling the size of the image shrinks by 1/2,
so with a 32× 32 input we can have about 5 layers before the output becomes too small.

Code 10.5.1. MATLAB Code for AlexNet.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Inputs %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ntrain=200; % The number of training set

wdx=8;

wdz=8;

image_x=wdx*2+1; % Original Image Patch Size X

image_z=wdz*2+1; % Original Image Patch Size Z

% Interpolate image to make sure size before pooling is even

image_x_new=32; % Interpolated Image Patch Size X

image_z_new=32; % Interpolated Image Patch Size Z

opts.alpha = 1; % Learning Rate

opts.batchsize = 20; % Minibatch Size

opts.numepochs = 10; % Iteration Number

%%%% AlexNet CNN structure %%%%%%%

cnn.layers = {

struct(’type’, ’i’) %input layer

struct(’type’, ’c’, ’outputmaps’, 6, ’kernelsize’, 5) %convolution layer

struct(’type’, ’s’, ’scale’, 2) %sub sampling layer

struct(’type’, ’c’, ’outputmaps’, 12, ’kernelsize’, 5) %convolution layer

struct(’type’, ’s’, ’scale’, 2) %sub sampling layer

};

In Figure 10.16a, 400 17 × 17 positive patches and 400 17 × 17 negative patches are randomly
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Table 10.2: CNN Parameters for Rock Crack Classification

Image Image Patch Number of Conv. Patch Number of Size of Number of
Size Size Channels Size Conv. Layers Max Pool Iterations

457×977 17×17 8 4×4 5 2×2 250

selected to give a well-balanced date set. The training set consisted of 80% of the patches and the
other patches are used for the validation set. In the first test, only the big cracks are picked in the
training set. Figure 10.16b shows the crack detection results with big cracks only, where the pixels
in yellow and blue denote the cracks and the non-cracks. The big rock cracks are identified correctly
from the background. The cracks in the left side of the image are not included in the training set, so
they cannot be recognized in the testing set. To identify all the cracks in the image, both the small
and big cracks are included in the training set. Figure 10.16c shows the crack detection results with
all the cracks.

To improve the classification results, the RGB image is used as the input image instead of the
grayscale image. The input of the network for the RGB image has three RGB channels, then the
convolution filters in the first Conv layer also have three channels.

Figures 10.14c and 10.14d compare the crack detection results for the grayscale and RGB images.
Since the rock cracks in the images are mostly white, both the RGB and grayscale values are high
for the rock cracks. The identification of the rock cracks for both cases show acceptable accuracy.
The RGB image contains more information than the grayscale image, so the CNN result for the
RGB image is slightly better than for the grayscale image, such as in the red boxes of Figure 10.14c-
10.14d. If the targets are colored, the RGB value of the target could be high but the grayscale value
is an average value. In this case, the RGB image should be more easily classified than the grayscale
image.

10.6 Detection of Basalt in GPR Images

A GPR dataset was collected in the Republic of Georgia in 2018 to detect the topography of the
shallow basalt-sediment boundary. This boundary is at the Dmanisi archaeological site (https : /
/en.wikipedia.org/wiki/Dmanisi), which is important because in 2010 hominid fossils were dis-
covered at this boundary about 100 meters from the GPR survey. The white lines in Figure 10.17
correspond to the survey lines.

The GPR data sets were recorded with center frequencies of 500 MHz and each trace is effectively
a zero-offset trace even though the source and receiver are separated by 4 cm. A vertical seismic
profile (VSP) transmission survey was carried out over one of the holes in Figure 10.17, and the
resulting GPR velocity model is shown in Figure 10.18a where the blue color corresponds to the
velocity of 7.2 cm/ns and the other color is 7.8 cm/ns. There are 15 survey lines along the x
direction, each with a crossline spacing of about 0.5 meter. The data were migrated using least
squares migration (Schuster, 2017) and the resulting image is shown in Figure 10.18b. The goal is
to train an AlexNet CNN to identify the basalt boundary so that it can be automatically detected
for use by the paleoanthropologists. Low spots in the basalt boundary might act as fossil collection
points and therefore be the target for future excavations.

The architecture of our CNN is illustrated in Figure 10.19. The network takes 32×32 patches
from the migration image as input and the label at the center point is the label at the binary output.
There are two convolution (Conv) layers and two FC layers followed by a softmax classifier to output
a 2 × 1 vector of label information. There are 8 convolution filters with size 2×2 in the first Conv
layer and 16 convolution filters in the second layer. The operations of rectified linear activation
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Figure 10.16: a) Grayscale image of the rock cracks. The CNN labels for the b) big cracks
only and c) all the cracks.
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4 meters

Figure 10.17: GPR lines at Dmanisi survey site in the Republic of Georgia. Photo courtesy
of Sherif Hanafy.
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Figure 10.18: a) Migration velocity model (red-blue pattern on the surface are the survey
lines) and b) 3D Kirchhoff least squares migration image.

Figure 10.19: The CNN architecture used for labeling the GPR image.

(ReLU) and Max-pooling with size 2×2 are applied after each Conv layer. There are 32×32=1024
nodes in the first FC layer and we dropout 50% of them in the second FC layer. The softmax
classifier gives the probability of the center point being a reflection event or not. The probability of
two classifiers are compared with one another and the one with higher probability is selected as the
prediction label.

All convolutional filter kernel elements are trained from the data in a supervised fashion by
learning from the labeled set of training examples. A training set S = {xi, yi} is given which
contains N image patches, where xi is the ith image patch and yi ∈ {0, 1} is the corresponding class
label. Then the corresponding cross-entropy cost function is given in equation 10.10.

10.6.1 Numerical Results

The image slice at 0.5 m shown in Figure 10.20a is used for training. 500 positive patches are
picked manually as shown in Figure 10.20b and 500 negative patches are selected randomly from
this image slice. 80% of the patches are used for the training dataset and the others are used as the
validation dataset.
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Table 10.3: CNN Parameters for Basalt Boundary Detection

Image Image Patch Number of Conv. Patch Number of Size of Number of
Size Size Channels Size Conv. Layers Max Pool Iterations

500×1600 9×9 8 2×2 2 2×2 100

The CNN parameters for identifying the top basalt boundary are listed in Table 10.3. The
accuracy of the training set and the validation set is 95.9% and 95.0%, respectively. The trained
CNN structure is applied to the migration image and the CNN labels are shown in Figure 10.20.
The points in yellow and in blue denote the reflection events and the non-reflection events.

Figure 10.21 shows the slices of the migration image and their CNN labels from 0 to 0.87 m.
The CNN labels show that the depth of the basalt is around 1.2 m and suggests a fault around
X = 7 m. Figure 10.22 shows the slices of the migration image and their CNN labels from 1 m to
5 m, where the signal-to-noise ratio (SNR) in these migration slices is higher than the SNR in the
training set. The CNN labels are affected by the noise and the reflection events are not continuous.
However, we still notice that the reflection events are flat, the depth of the basalt is still around
1.2 m and there are no faults in these images.

10.7 Fault Detection by a Fully Convolutional Neural Net-
work and Deconvnet

The problem with the previous example is that there is a poor resolution of the salt boundary
picked by the trained ML. This problem is largely a result of the maxpool downsampling in the
architecture: maxpool operations halve the the resolution of a layer’s output image. Maxpool
operations remove precise where information in the migration image. This problem is illustrated
with the FMs shown in Figure 10.23b-10.23d. Many of the FMs in the deeper layers are almost
blank, or only show low-wavenumber features associated with the input seismic section shown in
a). In this case, the objective is to pick the faults shown in a) where much of the high-waveumber
information is lost after the downsampling operations.

To overcome this downsampling problem, Long et al. (2015) used communication between the
CNN layers and the final output layer. They accomplished this with upsampling operations that
recovered the high-frequency detail of FMs in the shallower layers. The architecture of their network
resembles that of Figure 10.24, where the upsampling operations are carried out by the transpose
operation, such as that shown in Figure 10.28. However, the upsampling operation is followed by a
weighted convolution operation where the weights are learned during the training as illustrated in
Figure 10.25.

A more interpretable image associated with each feature map can be constructed by upsampling
the FM at each layer to the original size of the image. This can be done by inserting a transpose
convolutional operator after the last convolution of each convolutional block. This is known as a
deconv layer that recovers the downsampled feature maps to the original size, where an example of
a deconv architecture is shown in Figure 10.24. For example, assume that the 32 × 32 FM image
after downsampling becomes a 4 × 4 FM after maxpooling by a factor of 8. The deconv layer is
denoted as ”deconv×8”. The filter size of this transposed convolutional layer is 16× 16. The filter
sizes of other convolutional layers are shown in Figure 10.24, where the fuse layer (see Figure 10.24b)
consists of a 1 × 1 filter that fuses the four feature maps from different deconv layers into the final
result where the final FM is now the same size as the input image. Figure 10.26 shows the FMs
after the deconvolution operations.

The FMs from a layer are upsampled, deconvolved and combined into just one FM at the
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Figure 10.21: Migration images at a) Y=0.15 m, c) Y=0.51 m and e) Y=0.87 m. The CNN
labels at b) Y=0.15 m, d) Y=0.51 m and f) Y=0.87 m . The red zones indicate the location
of the faults.
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Features Maps of a Fault Model

c) Feature Maps of 4th Conv. Layer

d) Feature Maps of 7th Conv. Layer

b) Feature Maps of 2nd Conv. Layer

a) Architecture

Figure 10.23: a) CNN architecture and FMs from the a) first b) fourth, and c) seventh
convolutional layers. The image is significantly downsampled after four max-pooling layers.
Figure from Shi et al. (2018).

final deconvolved image in Figure 10.26. This final FM is added to other final deconvolved images
from deeper blocks. For example, the FM4 image in Figure 10.26 is quite coarse compared to the
input seismic image because it is not combined with the higher-resolution images deconvolved from
shallower layers. In comparison, FM1 has very high resolution because it has not undergone more
than one maxpooling operation and is combined with the deconvolved FMs from deeper blocks to
give an accurate fault prediction.

The FCN in Figure 10.24 appears to be an earlier version of the more advanced U-Net. To
preserve image resolution, the U-Net architecture in Figure 10.27 has communication bridges between
each layer on the left of the U and its equivalent deconvolved layer on the right of the U. In this
way, the where information is preserved in the input image. The left-side of the U is an encoder
that compresses information while the right side is a decoder that brings back both high- and low-
resolution information into the final output image. As will be seen in the next sections, the U-Net
is the gold standard when it comes to precise semantic segmentation and classification of images.

10.8 Salt Boundary Detection by U-Net

The problem with the AlexNet CNN is that the resolution of the predicted salt-sediment bound-
ary is blurred. This is due to an inherent loss of resolution in a contracting network such as the
AlexNet. AlexNet is a contracting network where max-pooling reduces the size of the feature maps
by more than a factor of 4 until the last two layers, which are fully-connected layers (FCLs). While
max-pooling operations increase the size of the receptive field (which enables the recognition of re-
gional features), they can lead to the loss of highly detailed features such as the pixel-sized resolution
of the salt boundary (Kang and Lee, 2020).

As mentioned in Chapter 9, max pooling (or down-sampling) is somewhat insensitive to the
location of the object of interest, so some spatial resolution is lost as to where the object is. In other
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Figure 10.26: Block diagram of the convolutional neural network (CNN) architecture that
decomposes the input picture of a seismic section into fine-scale features feature maps (FM1
and FM2) and coarser-scale feature maps (FM3 and FM4). The pixels in the far-right image
are labeled 0 < y < 1, where y = 1 indicates that the pixel is a fault and 0 ≤ y ≤ 1 indicate
the probability of being a fault. The FMs shown above are the same size as the input image
because they have been deconvolved. Figure inspired partly from Dertat (2017) and Shi et
al. (2018).
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Figure 10.27: U-Net architecture. Figure from Ronneberger et al. (2015).

words, AlexNet knows what the object is but not precisely where it is after several max pooling
operations. Therefore, it is not easy to transform a tall vector at the end of the network into a
picture the same size as the input image with the pixels precisely classified.

To mitigate this precision problem, the U-Net architecture in Figure 10.27 was proposed by
Ronneberger et al. (2015) that connects a contracting network to a symmetric expanding network
to give a precise classification of each pixel. The U-Net CNN has proven to be very popular in
biomedical applications such as precise detection of anomalies in microscope images of blood cells,
CT scans of internal organs or MRI images. Precision is extremely important for cancer detection.

The U-Net architecture is in the form of the letter U, and some of its salient characteristics are
the following.

• The up-sampling operator of the U-Net is selected to be the transpose of the convolution
operation where, for example, the transpose of the 4× 16 convolution matrix in Figure 10.28b
is the 16×4 matrix in Figure10.28. Applying the 16×4 matrix to a 4×1 input vector transforms
it into a longer 16×1 vector. The weights in the transposed convolution are learnable, so there
is no need to use an interpolation method to inflate the size of a feature map. See https:/
/github.com/vdumoulin/conv arithmetic for many different animated examples of transpose
operations.

• The expanding part of the U-Net is sometimes known as the decoding or deconvolution set of
operations, while the contracting part is known as an encoder5. As we know, the least squares

5The autoencoder discussed in Chapter 14 consists of a symmetrical arrangement of a contracting encoder
and an expanding decoder.
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deconvolution operator is in the form of [WTW]−1WT , and WT is only an approximation if
[WTW] is diagonally dominant.

• The horizontal gray arrows in Figure 10.27 connect the leftside blocks of layers to those on the
right. Appending, or concatenating, the output from the encoder’s layers to the inputs of their
opposite facing decoders is claimed to allow for, after training, precise prediction of the to-
be-labeled pixels. This is done at every sub-block before the locations become further blurred
before another round of max pooling in the contracting blocks. Empirical results suggest
that this concatenation of information from the encoding block can increase the resolution of
semantic segmentation.

• There are no fully-connected layers and the network is a fully-convolutional neural network
(FCN). This avoids the possible difficulty of transforming a vector to an image with precise
locations of the correctly labeled pixels.

• A transposed convolution with stride 2 or more can generate checkerboard artifacts in the
up-sampled image. The article by Odena et al. (2016) recommends an up-sampling operation
(i.e., an interpolation method) followed by a convolution operation to reduce such issues.
Figures 10.29 and 10.30 show examples of 1-stride of an input 2 × 2 grid of numbers and
2-stride upsampling of an input 3× 3 grid of numbers to get the larger shaded green grids on
the top. This is the upsampling procedure for correlation of the filter (gray grids) with the
blue grid numbers (see Figure 10.28).

10.8.1 Keras U-Net Code

The Keras U-Net code and salt classification lab are at LAB1/Chapter.CNN.Unet/U Net Lab.html
and in Exercise 4. The subroutine in the Keras code for defining a layer’s convolution, batch
normalization, and activation functions is given at Code 10.8.1 (https://towardsdatascience.com/
understanding-semantic-segmentation-with-unet-6be4f42d4b47).

Layer Subroutine

Code 10.8.1. Keras Code for ”conv2d block” in U-Net.

#define the convolution layer

def conv2d_block(input_tensor, n_filters, kernel_size = 3, batchnorm = True):

"""Function to add 2 convolutional layers with the parameters passed to it"""

# first convolution layer

x = Conv2D(filters = n_filters, kernel_size = (kernel_size, kernel_size),\

kernel_initializer = initializers.he_normal(seed=1), padding = ’same’)(input_tensor)

if batchnorm:

x = BatchNormalization()(x)

x = Activation(’relu’)(x)

# second convolution layer

x = Conv2D(filters = n_filters, kernel_size = (kernel_size, kernel_size),\

kernel_initializer = initializers.he_normal(seed=1), padding = ’same’)(x)

if batchnorm:

x = BatchNormalization()(x)

x = Activation(’relu’)(x)

return x
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Figure 10.28: a) 2D filter and input image, b) corresponding matrix-vector operation, and
the c) transpose of the convolution matrix in b). The only permissible lags in a) are the four
lag values denoted by circles where the yellow circle corresponds to the zero-lag position of
the convolution operator. Here, the convolution coefficients in the orange filter have already
been mirrored across the horizontal and vertical axes with the origin at the yellow circle. In
b), the output of the matrix-vector multiplication at 0 lag position is computed by taking
the dot product of the top row vector with the blue column vector. The dot product for
lag=1 is computed by shifting the orange box in a) so that its yellow circle coincides with the
red circle in the blue box, and then taking the dot product of the coincident numbers. This
is equal to the dot product of the second row vector in b) with the blue column vector to
the right. The transpose of the contracting 4×16 convolution matrix in b) is the expanding
16× 4 matrix in c). Partly adapted from Shibuya (2016).
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lag 6 on the right. The input 2 × 2 grid of blue squares is at the bottom. The red dots
correspond to the center point of the gray filter and the numbers in the leftside image are
the lag numbers of the filter. Image adapted from http://datascience.stackexchange.com/
questions/6107/what-are-deconvolutional-layers and Dumoulin and Francesco (2016).
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Figure 10.30: Similar to the previous figure except the filter stride is 2, there is padding,
and the filter and input dimensions are 3 × 3. The lag associated with b) is 13 and the
output grid is 5×5 rather than the 3×3 input grid. The 3×3 input grid of blue blocks has
been inflated to a padded 7×7 grid to accommodate the stride of 2 in the filter; the number
in any white block is zero. See http:https://github.com/vdumoulin/conv arithmetic for
animations of stride 2 upsampling operation.
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This subroutine can now be used to define the U-Net architecture in Code 10.8.2.

Code 10.8.2. Keras Code for U-Net CNN.

# define U_net architecture

def get_unet(input_img, n_filters = 16, dropout = 0.1, batchnorm = True):

"""Function to define the UNET Model"""

# Contracting Path

c1 = conv2d_block(input_img, n_filters * 1, kernel_size = 3, batchnorm = batchnorm)

p1 = MaxPooling2D((2, 2))(c1)

p1 = Dropout(dropout)(p1)

c2 = conv2d_block(p1, n_filters * 2, kernel_size = 3, batchnorm = batchnorm)

p2 = MaxPooling2D((2, 2))(c2)

p2 = Dropout(dropout)(p2)

c3 = conv2d_block(p2, n_filters * 4, kernel_size = 3, batchnorm = batchnorm)

p3 = MaxPooling2D((2, 2))(c3)

p3 = Dropout(dropout)(p3)

c4 = conv2d_block(p3, n_filters * 8, kernel_size = 3, batchnorm = batchnorm)

p4 = MaxPooling2D((2, 2))(c4)

p4 = Dropout(dropout)(p4)

c5 = conv2d_block(p4, n_filters = n_filters * 16, kernel_size = 3, batchnorm = batchnorm)

# Expansive Path

u6 = Conv2DTranspose(n_filters * 8, (3, 3), strides = (2, 2), padding = ’same’)(c5)

u6 = concatenate([u6, c4])

u6 = Dropout(dropout)(u6)

c6 = conv2d_block(u6, n_filters * 8, kernel_size = 3, batchnorm = batchnorm)

u7 = Conv2DTranspose(n_filters * 4, (3, 3), strides = (2, 2), padding = ’same’)(c6)

u7 = concatenate([u7, c3])

u7 = Dropout(dropout)(u7)

c7 = conv2d_block(u7, n_filters * 4, kernel_size = 3, batchnorm = batchnorm)

u8 = Conv2DTranspose(n_filters * 2, (3, 3), strides = (2, 2), padding = ’same’)(c7)

u8 = concatenate([u8, c2])

u8 = Dropout(dropout)(u8)

c8 = conv2d_block(u8, n_filters * 2, kernel_size = 3, batchnorm = batchnorm)

u9 = Conv2DTranspose(n_filters * 1, (3, 3), strides = (2, 2), padding = ’same’)(c8)

u9 = concatenate([u9, c1])

u9 = Dropout(dropout)(u9)

c9 = conv2d_block(u9, n_filters * 1, kernel_size = 3, batchnorm = batchnorm)

outputs = Conv2D(1, (1, 1), activation=’sigmoid’)(c9)

model = Model(inputs=[input_img], outputs=[outputs])

return model

Changes to the input arguments can be made to test the sensitivity of the architecture to changes
in the hyperparameters such as the filter sizes.

10.8.2 Numerical Results

The U-Net CNN is applied to a public-domain seismic data that is labeled and contains salt and
sedimentary features. The goal is to detect the salt in the images, which is similar to that in the
AlexNet salt detection example. However, U-Net has better spatial resolution than than AlexNet
so the predicted salt boundary should be more highly resolved.

Figure 10.31a depicts a typical 125 × 125 patch of seismic data and Figure 10.31b depicts the
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Figure 10.31: (a) Input seismic image and b) labeled image where white corresponds to salt
(y = 1) and black corresponds to non-salt (y = 0).

labeled image. Here, white corresponds to the salt and black is the non-salt background. After
training, a sample of the resulting prediction is shown in Figure 10.32. The input seismic image is
in a), the groundtruth is in b) and the predicted labels are in c). It is clear that the U-Net CNN has
achieved much better resolution of the salt boundary than given by the AlexNet from the previous
section. The learning rate curves are shown in Figure 10.33, where the accuracies for the U-Net
CNN training and validation data sets are close to one another. Better accuracy could have been
achieved if more training examples were used.

The training for 4000 examples takes about 5 hours on a conventional laptop computer. To
lessen the training time, the number of training examples is reduced to 400. Several examples of the
validation results are shown in Figure 10.34, which has reduced accuracy compared to Figure 10.32.
This is expected since the number of training examples has been reduced by an order-of-magnitude.
The corresponding learning rate and accuracy curves are in Figure 10.35.

Different step lengths and learning rate values were used to assess the rate of convergence in
Figure 10.36. The Adam method seemed to perform the best in Figure 10.36a, although this depends
on the value of the learning rate parameter as shown in Figure 10.36b.

As discussed in Chapter 9, batch normalization just before each activation function U-Net is an
effective means for speeding up the convergence rate and getting more accurate predictions. It has
been reported that some users employ batch normalization after the activation function, not before.
The effectiveness of using batch normalization after an activation function is now tested with the
400-example training set.

The accuracy curve for using batch normalization after the activation functions is shown in
Figure 10.37a, while the results that did not have batch normalization are shown in Figure 10.37b.
It is obvious that batch normalization leads to better convergence. Batch normalization was also
used just before the activation function, and the accuracy curve was similar to that in Figure 10.37a,
except it was moderately more well behaved.
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Figure 10.32: Validation examples. Top Row: a) Input seismic image, b) true salt labels,
c) predicted salt probabilities and (d) predicted salt labels. Bottom row is the same except
for another validation example. Figure courtesy of Abdullah Alali.

Epoch Number 17.5
Training

Validation

0.5

lo
g(

lo
ss

)

2.0

0 17.50 Epoch Number

2.0

Validation

0.5

lo
g(

lo
ss

)

a) 4000 Samples: Log-Loss vs Epoch # b) 4000 Samples: Accuracy

Training

Figure 10.33: a) Learning and b) accuracy curves for the 80% training (red) and 20%
validation (blue) examples, where there are 4000 examples in the training set. Figure
courtesy of Abdullah Alali.
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Figure 10.34: Similar in training strategy used for Figure 10.32 except there are only 400
training examples and different parts of the seismic sections are labeled. Figure courtesy of
Abdullah Alali.
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Figure 10.35: Similar to Figure 10.33 except a different part of the migration image is used
and there are only 400, rather than 4000, training examples. Figure courtesy of Abdullah
Alali.
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Figure 10.36: Convergence curves for a) different types of step length methods and for b)
the Adam step length method. Figure courtesy of Abdullah Alali.
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Figure 10.37: Accuracy curves for U-Net a) with batch normalization after each activation
and b) no batch normalization. Figure courtesy of Abdullah Alali.

Code 10.8.3. Keras Code for Activating BatchNormalization.

if batchnorm:

x = BatchNormalization()(x)

x = Activation(’relu’)(x)

to

if batchnorm:

x = Activation(’relu’)(x)

x = BatchNormalization()(x)
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10.9 Fault Detection by U-Net

Some of the previous examples trained the CNN on labeled field data, which requires a great
deal of manual labor if picked by humans. This is one of the main problems in applying CNN to
geoscience data (Bergen et al., 2019).

To avoid manual labeling of field data, Xi et al. (2020) constructed synthetic models of faulted
layers and trained a U-Net model to detect these faults. The synthetic faults were automatically
labeled by the algorithm so no manual picking was required.

The first two steps for training are depicted in Figure 10.38, where the synthetic sections are
similar to those computed by convolving seismic wavelets with reflectivity sections (see Appendix 27)
with curved boundaries and faults. The faults are automatically labeled by the computer program,
and the trained network is then applied to seismic sections migrated from field data. Figures 10.38-
10.39 compare the results for picking the faults by a standard image processing method based on
coherency and by the U-Net architecture. The green zones in Figure 10.38c highlight some areas
where the U-Net detector is more accurate while the red zones show where the image processing
method is more accurate. The widths of the dark lines are proportional to the thickness of the
probability values for the fault identifier.

Both the standard method and the U-Net did not accurately detect listric faults compared to
the human-interpreted section in Figure 10.38e. The failure of the CNN is an example of incomplete
training with synthetic data that fails to account for surprise features in the field data. Xiong et al.
(2020) conclude that The image processing fault probability exhibits a better performance in detecting
vertical normal faults in a higher signal-to-noise dataset. The CNN method performs better than the
image processing method in detecting high angle dipping faults. Both methods failed to completely
map listric faults. We anticipate that augmenting the training data with a suite of listric fault
training models will improve the CNN performance.

It is not surprising that the U-Net missed some faults that were detected by the coherency-based
method in Figure 10.38: if such faults are not present in the synthetic training data then the CNN
will be incompletely trained. The U-Net might have performed better if it employed transfer training
where a large portion of the CNN model from synthetic training is combined with training on a small
subset of labeled field data. Details for implementing transfer training are described in Chapter 11.

A more successful example of fault detection is shown in Figure 10.40 where the synthetic models
were tuned (Wu et al., 2020) to the type of faults expected in the data. Unlike the listric faults
in Figure 10.39c, this field area was dominated by the steeply dipping faults seen in the images.
Therefore, as long as the synthetic training faults are accurate renditions of the actual geology at
the field site, fault detection and geobody detection by CNN appears to greatly improve the efficiency
of interpreting large volumes of seismic images.

10.10 Blood Cell and Microfossil Windowing and Labeling
by Faster R-CNN

Blood samples are placed on microscope slides and analyzed for their content. In the case of
cancer patients, white and red blood cell counts are especially important in monitoring the current
health of the patient as well as determining the optimal dosage of medicine. Such measurements
should be both accurate and timely. As an example, Figure 10.41a depicts the windowed and
labeled blood cells computed by the Faster R-CNN algorithm in the Computational Labs section.
On the right are microscope images of rocks samples containing sandstone, granite and fossils.
Geologists often need to detect, label, and provide quantitative estimates of rock properties such
as size distribution and types of fossils, porosity, mineral content and distributions. Such tedious
tasks might be accomplished by an effective CNN method, such as the Faster R-CNN or YOLO2
algorithms for labeling the blood samples.
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Comparing convolutional neural networking and image processing seismic fault detection methods, 2020, Jie Qi*, Bin Lyu, Xinming Wu, and Kurt Marfurt

CNN Fault Detection: Synthetic Data

Step 1: U-Net Architecture
Synthetics

Labeled
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Raw Image Processing CNN
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Step 3: Testing
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Figure 10.38: The steps for training the U-Net detection of faults in seismic migration
sections. The first two steps are for training with synthetic data, and the third step is to
apply the trained CNN to field data. The green zones show where the CNN performed
more accurately and the red zones showed where the image processing method performed
better. Figure from Xi et al. (2020).
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CNN Fault Detection: Synthetic Data

Figure 10.39: Depth section of a 3D seismic image cube with faults interpreted by an a)
image processing method and b) by the CNN. The vertical section along the line AA’ is
displayed in c), where the human-labeled listric faults (dark lines with gray background)
on the far right showed the limitations of auto-picked faults by CNN and image processing.
This is a salient example of incomplete CNN training on synthetic data which fails to
identify the desired features in the field data. Figure from Xi et al. (2020).

a) Raw Image b) U-Net Image

Figure 10.40: Fault detection in a subset of the Opunake-3D seismic data using the CNN
trained by only synthetic data sets. Figure from Wu et al. (2020b).
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b) Microscope Images of Rocksa) Labeled Blood Cells with Bounding Boxes

Figure 10.41: a) Windowing and labeling of microscope images of a blood sample by Faster
R-CNN and b) image of a thin section from a rock. The white and red blood cells are
labeled in a) while the fossils should be labeled in b).

As an example, Figure 10.42a depicts an image of microfossils extracted from a well core. The
weights used to train a YOLO2 Keras code for detecting and labeling blood cell samples were used
to compute the bounding boxes of the microfossils to give the results shown in Figure 10.42b. The
bounding boxes for many of the microfossils are accurately computed, but no effort was made in
labeling the microfossils. The old blood cell labels were used. The detection accuracy can be
improved by labeling BBs and the class types in a new training set of microfossil images. Then the
weights from the blood cell example can be used with transfer learning to detect and label all of
the microfossils. This task is performed in the lab at /LAB1/Chapter.Yolo//LAB1/Chapter.Yolo/
Yolo.html.

10.11 Small Object Detection in Drone Photographs by Superpixel-
based CNN

It is often the case that a small object needs to be identified in a large digital photograph. The
size of the object might be around 10× 10 pixels, but it is buried in a sea of many other objects in
a large background. This presents two problems.

1. Imbalanced Training Data. Training a semantic-segmentation NN with photos containing
these sparsely located objects is imbalanced, where most of the pixels are labeled as no object
y = 0, and only a relatively much smaller number of pixels are labeled as the object y = 1.
Such training often leads to an inaccurate identification of the small object in test photos.

2. Data Augmentation. Data augmentation should be used to balance the data by increasing
the number of small objects in a photo, but this can be difficult by deliberate insertion of
stretched or rotated images of small objects into a typical photograph. This can often lead
to a marked intensity contrast between the pixels of the inserted small-object and their new
neighboring pixels, which can lead to a mistrained NN that only identifies such artifacts as
y = 1.

There are at least two categories of data augmentation, one augments training data in data space
and the other in feature space (Shorten and Khoshgoftaar, 2019). In the data space, new data can
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a) Raw Microfossil Image b) Yolo Localized Microfossil Image

Figure 10.42: a) Raw and b) YOLO localized images of microfossils. The YOLO weights
used for the blood labeling were also used for the localization of the microfossil image.

be generated by applying various transformation to the existing images, such as scaling, rotation,
flipping, adding salt and pepper noise, changing lighting conditions and perspective transforms
(Simard et al., 2003; Krizhevsky et al., 2012). In the feature-space methods, the synthetic minority
over-sampling technique (SMOTE) (Chawla et al., 2002) creates new data by interpolating new
points in the feature space. This neural style transfer generates new images by transferring the style
of one image to another while preserving its original content (Johnson et al., 2016). The generative
neural networks, such as generative adversarial networks (GANs) (Antoniou et al., 2017; Frid-Adar
et al., 2018), CycleGANs (Perez and Wang, 2017) and progressively-growing GANs (Karras et al.,
2017), can be trained to create artificial data from an existing dataset such that it retains similar
characteristics with the original set. See Chapter 18.

As an alternative, Feng et al. (2021a) proposed the superpixel-based CNN method to identify a
few small objects buried in a large photograph. In their example, the small object is denoted as the
Ground Control Point (GCP), which is a 0.5× 0.5 m2 marker with a hourglass shape. It is used for
GPS registration of benchmarks in a drone photograph. An example of the GCP on the ground in
an aerial photo is shown in Figure 10.43.

10.11.1 Superpixel Convolution Method

The GCP in Figure 10.43 is shaped as an hourglass and its color is black. To take advantage of
these features in the classification, a superpixel-based CNN method is proposed with the following
workflow.

1. Simple linear iterative clustering (SLIC) in Appendix 10.19 is used to partition the input
image into superpixels as shown in Figure 10.44. The initial size of the superpixel must be larger
than the GCP because the pixels of the GCP should belong to the same superpixel.

2. The superpixels are then interpolated to be the same size and placed on a homogeneous
background. The color of the background must be different from the color of the target, otherwise
the superpixel will merge into the background and the shape of the superpixel can’t be presented in
the patch. In this case, the color of the background is set to be white.

3. The patches with superpixels are used as the input to the CNN and the output is the label
of the superpixel.
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Figure 10.43: An example of the 0.5 × 0.5 m2 GCP on the ground, which has a unique
hourglass shape and its color is dark. Image adapted from Feng et al. (2021a).

10.11.2 Numerical Results

The superpixel-based CNN method is applied to the 2D aerial image shown in Figure 10.45,
where the full image consists of 3500 × 5000 pixels and the GCP has about 25×30 pixels. The
number of GCP patches is much less than the number of non-GCP image patches, and so these
input data are extremely unbalanced. SLIC segments all the objects into superpixels so that the
superpixels from the non-GCP objects have a similar shape and color while the GCP has a unique
hourglass shape and dark color. Then the samples for the non-GCPs and GCPs can be easily
balanced.

The aerial image is segmented into approximately 30000 superpixels using the SLIC algorithm
and superpixel-based CNN is then applied to the SLIC-processed data. Since the hourglass shape
and the dark color of the GCP are known, there is no need to extract positive patches from the aerial
images. 3000 synthetic positive training samples are easily constructed by rotating, shrinking and
expanding a dark-color hourglass shape superpixel as shown in Figure 10.46. 3000 negative samples
are picked randomly from the non-GCP superpixels in the image. Only 10 epochs are needed to
achieve an accuracy higher than 99% accuracy for both the training and validation examples. The
trained CNN is then applied to all of the other superpixels in the image. Only 5 superpixels are
classified as GCPs as shown in Figure 10.47 and all of them have similar hourglass shapes and dark
colors.

A pre-trained sliding-window CNN can then be applied to these 5 positive patches to remove
the false positives and the GCPs are correctly located. The same workflow is applied to the two new
images shown in Figure 10.47b and 10.47c. The GCPs in these two images can be easily located
from the final positive patches, respectively.
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Figure 10.44: The workflow for the superpixel-based CNN method.The superpixels are
extracted from the images using SLIC (see Appendix 10.19) and the superpixels are inter-
polated to be the same size for CNN classification. Then the superpixels are labeled by the
CNN (Feng et al., 2021a).

Figure 10.45: The input aerial photo. The red box indicates the location of the GCP. Image
adapted from (Feng et al., 2021a).
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Figure 10.46: The synthetic positive patches created for superpixel-based CNN by rotating,
shrinking and expanding a dark-color hourglass shape superpixel. Image adapted from Feng
et al. (2021a).
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Figure 10.47: Superpixel-based and sliding-window binary classifications for a) Figure 10.45,
b) test image 1 and c) test image 2. The positive superpixels are firstly found by superpixel-
based CNN classification and the false positives among the positive superpixels are then
removed by sliding-window CNN classification. Image adapted from (Feng et al., 2021a).



10.12. SUPER-RESOLUTION IMAGE ENHANCEMENT BY CNN 307

In the superpixel-based CNN, SLIC is applied to extract the unique shape and color of the GCP
as superpixels and CNN is used to classify them. For our data, this procedure can quickly narrow
the search to fewer than 10 superpixels labeled as GCPs. The false positives can be eliminated by
an additional sliding-window CNN. The numerical tests indicate that this method is very efficient
in locating the small GCP in a large drone image.

The success of the superpixel-based CNN depends on the efficacy of SLIC where all the pixels
in the GCP must be partitioned into the same superpixel. However, there are several factors which
can lead to an ineffective output from SLIC. The first factor is the presence of shadows in the drone
image, where the color contrast of the GCP is not obvious when the GCP is located in the shadow
shown in Figures 10.48a and 10.48b. In this case, the compactness variable in SLIC should be small
so that it can detect small color contrasts. The second factor is the number of superpixels in SLIC.
If the number is too small, the GCP may be partitioned into a large superpixel and the superpixel
doesn’t have a hourglass shape. If the number is too big, the GCP may be separated into several
small superpixels as shown in Figure 10.48c and 10.48d. DBSCAN can merge these superpixel into
a hourglass-shape superpixel. However, it will increase the diversity of the non-GCP superpixel and
decrease the accuracy of the CNN classification.

Another limitation of this method is the high computational cost of SLIC for large images. To
mitigate this problem, selective search (Uijlings et al., 2013) or a region proposal network (Ren et
al.,2015) can be used as alternative to SLIC.

GCP Segmentation

GCP Segmentation

b)a)

c) d)

Figure 10.48: a) A GCP in the shadow and b) its segmentation. c) A big GCP and d) its
segmentation. Image adapted from (Feng et al., 2021a).

10.12 Super-resolution Image Enhancement by CNN

Resolution improvement by CNN has led to an important class of enhancement techniques known
as super-resolution (SR) enhancement of images (Guo et al., 2020; Han and Wang, 2020; Wu et al.,
2021; Wurster et al., 2021). The goal of SR enhancement by CNN is to recover high-frequency details
from a low-resolution image. One of the benefits of a successful SR method is that smaller-sized
or low-wavenumber inputs can be computationally inexpensive to process or model, and the final
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output can then be upscaled by SR to get the high-wavenumber result. This is much less expensive
in terms of memory and computation costs compared to full processing of the high-wavenumber
image. As an example, CNN has been shown to be a more efficient data compression scheme than
JPG schemes (Wu et al., 2021).

Wang et al. (2021) provides a comprehensive survey of three categories of SR denoted as su-
pervised SR, unsupervised SR and domain-specific SR. Figure 10.49 gives an overview of 4 CNN
SR architectures. The iterative up-and-down sampling scheme (UDS) in d) resembles the encoder-
decoder architecture of a U-Net, except UDS is iteratively repeated to correct for upsampling arti-
facts and does not have communication bridges. The upsampling innovation with CNN is that the
transpose operations of a deconvolution (see Long et al., 2015) appear to be more accurate than
the traditional upsampling methods such as bi-cubic interpolation (Wang et al., 2021). One of the
benefits of this upsampling accuracy is that forward modeling simulations on coarse grids can be
inexpensively computed, and then the SR procedure can upsample them to much higher accuracy.
As an example, Li et al. (2021) and Ni et al. (2021) ...feed a machine learning algorithm with models
of a small region of space at both low and high super-resolutions. The algorithm learns how to upscale
the low-res models to match the detail found in the high-res versions of cosmological simulations.
((https://www.sciencedaily.com /releases/2021/05/210504191602.htm).

It is obvious that this kind of procedure can benefit many areas in geoscience imaging. One
possibility is to use full-waveform inversion (FWI) for inverting small areas of the subsurface at high
resolution, and larger areas at lower resolution. The ML algorithm can be trained to accurately
upsample these areas to a common finer grid. Even an accurate downsampling might be possible,
where the missing lower frequencies in the land seismic data prevents FWI from attaining good
imaging quality. The ML algorithm can be trained to downsample seismic data to low-frequency data
obtained from the well log. Then the recorded seismic data from a land survey can be downsampled
to include the missing low frequencies. Similarly, the cost of 3D fluid flow modeling can be decreased
by using this strategy of multiscale modeling and the training of a SR algorithm to upsample the
super-resolution of the fluid-flow simulations.

10.13 Identification of Bird Types by CNN

Identifying and counting the bird types from photos taken over a long period of time can be
beneficial for environmental studies of bird habitats. Long-term surveys by human observers are
impractical, but they are possible if machine learning methods are coupled to thousands of weekly
photos of bird environments (Mao et al., 2021). Such surveys can monitor, for example, how weather
influences the living patterns of birds their migration schedules. Monitoring wildlife patterns in this
way can be applied to any species of animals or insects.

To demonstrate the feasibility of using CNN to monitor the characteristics of birds, more than
280 photographs of birds were taken in the backyard of GTS (the primary author of this book).
Fatme Ramadan (MS student at KAUST) and Shi Yongxiang (intern at KAUST, PhD student at
Beijing University) devised a CNN model, described below, to detect the number and types of these
birds.

The CNN models AlexNet and VGG16 are used to identify different bird types contained in 280
backyard photos of birds, some of which are shown in Figure 10.50. The goals of the CNN and its
attendant lab in section 10 are the following.

• Employ AlexNet architecture for image identification.

• Apply the data augmentation technique to expand a dataset.

• Assess the effects of different hyperparameters on prediction accuracy.

• Employ transfer learning with the VGG16 network architecture.



10.13. IDENTIFICATION OF BIRD TYPES BY CNN 309

10.13.1 Data Description and AlexNet model

The original dataset consists of 280 bird images taken in the backyard of GTS. The images
belong to 6 different bird types, labeled Bird Type 1 to 6, described in the table below.





















































Bird Type Number of Images

Bird 0 16

Bird 1 16

Bird 2 143

Bird 3 39

Bird 4 45

Bird 5 12

Bird 6 20





















































Here, bird type 0 is that for an unknown bird type, which is typically the case when there is no
bird in the photograph. It is obvious that the input data are severely imbalanced in the number
of different types of birds. Therefore, the pictures were balanced by data augmentation (see the
right-side of Figure 10.50) where pictures were cropped, stretched, reflected or rotated to give a
total of 650 pictures. There were about 90 pictures per bird type. Sample images of two different
bird types and the corresponding labels are shown in the Figure 10.52. There are a total of 7 labels,
where one of the labels is for, typically, photos that do not contain a bird.

There are 650 bird pictures, of which 20% were used for testing (130 images) and the rest
were used for training (416 images) and validation (104 images). The following link: https://
colab.research.google.com/drive/1X7vRwDH6T-jN4BXFwXhtBxki0FWUQK-w?usp=sharing connect-
s to a Google Colab notebook that implements both the AlexNet (see the VGG16 architecture in
Figure 10.51 for bird identification. Transfer training was employed with the VGG16 architecture.

10.13.2 Numerical Results

The results of training the AlexNet weights on the input data set are shown in Figure 10.52.
Here, the accuracy of the training prediction at each epoch is in close agreement with the validation
predictions, where the validation accuracy is 92.3% and the test data accuracy is 93%. This suggests
that the model weights are not overfitted.

The top row of Figure 10.53 depicts the accuracy vs epoch plots using batch normalization (red)
and not using batch normalization (blue) in the AlexNet architecture. Clearly, batch normalization
is required for an acceptable convergence rate. The bottom row of plots depict the results using
stochastic gradient descent (SGD) and the Adam (blue) step lengths. In this case, SGD presents a
superior performance.

Different dropout rates were tested and the results in Figure 10.54a- 10.54b suggest that dropping
out 70% of the weights is the lower limit one can accept. In this case there should be more than a
50% increase in computational efficiency with such a dropout rate.

Finally, transfer training was used as described in Figure 10.51, and the results are shown in Fig-
ure 10.54c- 10.54d. They show accuracy and loss factors that are nearly the same as those displayed
for the AlexNet model in Figure 10.52. However, the transfer training model only had to train ap-
proximately 12× 106 weights associated with the green FCN’s in Figure 10.52 compared to 56× 106

weights for the AlexNet model. For this example, transfer training reduced the computational costs
by ≈ 1/5.
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10.14 Summary

Six types of computer vision tasks are defined: classification, semantic segmentation, classifica-
tion+localization, object detection, and instance segmentation. Of these tasks, semantic segmen-
tation seems to be one of the most important for seismic interpretation. However, this requires
extensive labeling of images for training, which is quite tedious for tens of thousands of input ex-
amples. Therefore we might consider using efficient semi-automated labeling tools or unsupervised
methods such as GANs.

Several examples were shown for labeling images with AlexNet, a simple and useful CNN method
that starts with large images and contracts the size down to much smaller feature maps. AlexNet
detects the class of the object but it can suffer from loss of spatial resolution because it’s architecture
is that of a contracting encoder with maxpooling operations. This resolution can be improved by a
U-Net architecture, which has both a contracting (encoding) part and an expanding (decoding part).
Also, there is a communication bridge between the decoder and encoder networks that preserves the
spatial information in the input image. This allows for precise location of the labels, compared
to, e.g., AlexNet that only consists of an encoder network which loses location information after
downsampling by maxpooling operations. The concatenation of feature maps from the contracting
part to the expanding part tends to give location information of the object so as to get a precise
location of the object. Results with U-Net detection of salt bodies and faults are consistent with
this claim. These results are similar to those in the next chapter which successfully label cracks in a
sandstone massif by the U-Net. U-Net is the current gold-standard for precise semantic segmentation
of input images.

An example was provided for Faster R-CNN windowing and labeling many objects in a blood
sample image. Such an algorithm can be used for object detection and labeling in many other
scientific fields such as analysis of rock samples and aerial photos. If a small object is to be found
in a large photo, then training can be successful by using the superpixel CNN described in the text.
This allows data augmentation to be implemented to balance the training data.

10.15 Exercises

1. The intermediate terms in the softmax function might be very large due to the exponentials.
This can lead to numerical instabilities, so it is important to use a normalization trick (http://
cs231n.github.io/linear-classify/# softmax). If we multiply the top and bottom of the softmax
fraction by a constant C and push it into the sum, we get the following (mathematically
equivalent) expression:

Cefi

C
∑

j e
fj

=
efi + logC

C
∑

j e
fj + logC

(10.11)

To improve stability a common choice for C is to set logC = −maxj fj . Perform a numerical
experiment to show that the softmax function can lead to numerical instabilities, and they
can be mitigated with a properly chosen value of C.

2. Using the U-Net code listed in the computational labs, perform the following sensitivity tests
for convergence rate and accuracy. Make sure the initialized weights are the same for all tests
and convergence curves and accuracy values should be plotted as well.

• Sensitivity of convergence rate to batch normalization. Run the U-Net code
with and without batch normalization.

• Sensitivity to type of loss function. Replace cross-entropy loss function with the
means square error (MSE).
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• Sensitivity to unbalanced data. Imbalance the data by using a preponderance of
training examples with sediment only.

• Sensitivity to dropout percentage. Try using 5%, 20% and 50% dropout rates.

3. Same tasks as the previous question except use AlexNet.

4. Unbalance the data by only using a training set with 5% salt and the rest having no salt. Show
how convergence rate slows down. Then read Lin et al. (2018) and https://www.topbots.com/
semanticsegmentationguide/ and attempt to balance the training data by overweighting the
salt examples. Show results.

5. Go to Salt Detection with U-net Lab in LAB1/Chapter.CNN.Unet/U Net Lab.html and run
the Keras code. Change the initial weights for the U-Net subroutine in section 10.8.1 so that
they are zero. This means that

# first convolution layer

x = Conv2D(filters = n_filters, kernel_size = (kernel_size, kernel_size),\

kernel_initializer = initializers.he_normal(seed=1), padding = ’same’)(input_tensor)

should be changed to

# first convolution layer

x = Conv2D(filters = n_filters, kernel_size = (kernel_size, kernel_size),\

kernel_initializer = ’zeros’, padding = ’same’)(input_tensor)

6. For the previous exercise, test the sensitivity of convergence to the learning rate by commenting
the ”ReduceLROnPlateau(...)” line in

# Set input layer size

input_img = Input((im_height, im_width, 1), name=’img’)

# Set the parameters for Unet

model = get_unet(input_img, n_filters=16, dropout=0.05, batchnorm=True)

# Set optimizer, loss function. Set accuracy as metric

model.compile(optimizer=Adam(), loss="binary_crossentropy", metrics=["accuracy"])

#Visualize the structure of Unet

model.summary()

# Set criterias for the inversion procedure

# Early Stopping: If the validation set loss function does not decrease in

# 10 iterations, then early stop.

# ReduceLROnPlateau: If the validation set loss function does not decrease in 5 iteration,

# then multiply learning rate with factor.

# ModelCheckpoint: save_weights_only=True--Save only the weight,

#save_best_only=True -- Only Save the best model with lowest validation loss

#’model-tgs-salt.h5’ -- file name

callbacks = [

EarlyStopping(monitor=’val_loss’,patience=10, verbose=1),

ReduceLROnPlateau(factor=0.1, patience=5, min_lr=0.00001, verbose=1),

ModelCheckpoint(’model-tgs-salt.h5’, verbose=1, save_best_only=True, save_weights_only=True)

]

to become

callbacks = [

EarlyStopping(monitor=’val_loss’,patience=10, verbose=1),

# ReduceLROnPlateau(factor=0.1, patience=5, min_lr=0.00001, verbose=1),

ModelCheckpoint(’model-tgs-salt.h5’, verbose=1, save_best_only=True, save_weights_only=True)

]
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10.16 Computational Labs

1. Gimp labeling lab. Install ¡a href=https://www.gimp.org/downloads/¿GIMP¡/a¿ and go to
LAB1/Chapter.Neural/GIMP/GIMPlab.html. Proceed to label photos per instructions.

2. Go to Letter Classification by Convolutional Neural Network lab in LAB1/Chapter.Book.CNN/
Chapter.CNNLetter/lab.html and run the MATLAB code. It uses AlexNet CNN to classify
the MNIST input images that are images of the digits 0-9. This is an example of a global clas-
sification of each picture, where each input picture represents an equation as in equation 10.1.

3. Go to Identifying Rock Crack by Convolutional Neural Network in LAB1/Chapter.CNNCrack/
CNN lab.html and run the MATLAB code. It uses AlexNet CNN to classify the cracks in a
photo of a rock. This is an example of pixel-sized classification of each pixel, where each pixel
in a picture represents an equation as in equation 10.9.

4. Go to Salt Body Identification by Convolutional Neural Network in LAB1/Chapter.Book.CNN/
Chapter.CNNSalt/lab.htm and run the MATLAB code. It uses AlexNet CNN to classify salt
in a seismic migration image. This is an example of pixel-sized classification of each pixel,
where each pixel in a picture represents an equation as in equation 10.9.

5. Go to Salt Detection with U-net Lab in LAB1/Chapter.CNN.Unet/U Net Lab.html and run
the Keras code. It uses U-Net CNN to classify salt in seismic migration images. This is an
example of pixel-sized classification of each pixel, where each pixel in a picture represents an
equation as in equation 10.9.

6. Go to https://colab.research.google.com/drive/1Ivil1U BC0InKURUEMQ4BUZUZ8Q71Qdk?usp
=sharing and run the Keras code to detect faults in synthetic sections. It uses the fully-
convolutional network described in Shi et al. (2018), and also employs upsampling deconvo-
lution

layers to assist in interpreting the feature maps.

7. Go to /LAB1/Chapter.CNN.RCNN/lab.html and run the Keras code for R-CNN identification
of cell types in blood samples. Plot out the training and validation accuracies as a function
of iteration number. How much more training data must you use before you increase the
accuracy by 10%. Read https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-
hole-of-modern-object-detection/ for a description of Faster R-CNN. What CNN architecture
does this code use?

8. Go to /LAB1/Chapter.Yolo/Yolo.html and run the Keras code for YOLO2 identification of
microfossils in microscope images. Plot out the training and validation accuracies as a function
of iteration number. How much more training data must you use before you increase the
accuracy by 10%.

9. Take Andrew Ng’s course (https://www.coursera.org/learn/convolutional-neural-networks) on
convolutional deep learning to better understand methods of object detection.

10. Go to https://colab.research.google.com/drive/1YS8U8r69T5ON7ggbMFExE6Bi8KPpVQ7t?usp
=sharing and run the Colab Keras code to identify types of birds from pictures.

10.17 Appendix: Selective Search

Selective search is a method that searches for different objects in a sub-image and proposes the
region of interest (ROI) for each object. For example, the karsts in Figure 10.1a are characterized
by dark shadows and a texture not seen in other parts of the image. These karsts can be detected
and classified by a sliding window approach
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(https://results?search query=sliding+ windows+andrew+ng and https://www.youtube.com/results?search query=

sliding+windows +andrew+ng).

For sliding windows, a window with different aspect-ratios and sizes is trained by a classifier to detect
an object in the window. These windows are then applied to the test image and the classifier tells
us if there is an object in the window. The problem with this approach is the huge computational
cost in training a classifier for sliding windows with many sizes and aspect ratios.

A more practical approach is to extract hints from the image about the best bounding boxes.
These hints can be found by looking for similarities in neighboring pixels, and grouping them as a
potential object. These potential objects can then be combined with similar neighbors to become
larger objects. This multiscale search is repeated until some similarity threshold can not be reached.
In this case the BB of the potential objects can easily be found6 and used as a proposed region of
interest (ROI) in a test image. The BB coordinates for this ROI can then be used as the unknowns
for training by a classifier; once trained, coordinates of a proposed ROI can be adjusted to agree
with the groundtruth BB of a test image. This strategy is much more cost efficient compared to
exhaustive search by the sliding window approach described in the previous paragraph.

An effective selective search strategy for object detection was proposed by van de Sande et al.
(2011) and Uijlings et al. (2013). Their strategy looked for hints of objects by finding patches of
pixels with strong similarities such as texture and color. They would then classify the similar pixels
as one type, each associated with a BB. They would then grow the size of these regions by blending
neighboring BBs with a similar similarity index. This repeated growth of BB size would stop once
the neighboring patches were insufficiently similar to the current region. Once stopped the bounding
boxes can easily be determined and used as the starting ROIs used for CNN training.

As an example, consider the picture in Figure 10.56f, where there are two green bounding boxes
that enclose the woman and the television. The goal is to propose many smaller ROIs, and then
gradually merge them to get a few that approximate the green boxes. Any extra that are left will
eventually be eliminated by training the network. There are three steps for proposing ROIs by
selective search (van de Sande et al., 2011; Uijlings et al., 2013).

1. Propose hundreds or thousands of starting ROIs by breaking up image into sub-
images. This can be done by, for example, a clustering procedure7 that proposes hundreds or
thousands of cluster centers (see Chapter 17). Each cluster of pixels will be given a different
color, as shown in 10.56a. A bounding box will be determined for each centroid, as illustrated
in Figure 10.56b.

2. Merge Clusters to Propose Larger Bounding Boxes. Merge bounding boxes of clusters
that are neighbors and have similar properties, such as texture, color, and size8. Figure 10.56c
depicts the merger of smaller clusters into larger clusters, and Figure 10.56d describes the
associated blue bounding boxes.

3. Repeat step 2 until the whole region becomes a single region. Figure 10.56e-10.56f depict
the merged regions and bounding boxes at a later iteration.

See Figure 10.55 for an illustration and Figure 10.56 for a description of the selective search algorithm.

6Search for the maximum and minimum x and y coordinates of the BB for the contiguous pixels with
the same similarity metrics.

7An alternative method is to use semantic segmentation.
8van de Sande et al. (2011) define the similarity of region a and b as S(a, b) = Ssize(a, b)+ Stexture(a, b),

where Ssize(a, b) encourages small regions to merge into larger ones. The texture metric is defined in van
de Sande (2010). Uijlings et al. (2013) incorporate the additional similarity metrics of color histograms and
how well two ROIs fit within one another.
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10.18 Appendix: MATLAB Code for AlexNet Crack Detec-
tion

The MATLAB code AlexNet detection is given below. This code is written by Shihang Feng
and is used in the computational exercises that is a companion to this book.

clear all,close all

addpath ./CNN

addpath ./util

addpath ./data/

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Inputs %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ntrain=200; % The number of training set

wdx=8;

wdz=8;

image_x=wdx*2+1; % Original Image Patch Size X

image_z=wdz*2+1; % Original Image Patch Size Z

% Interpolate image to make sure size before pooling is even

image_x_new=32; % Interpolated Image Patch Size X

image_z_new=32; % Interpolated Image Patch Size Z

opts.alpha = 1; % Learning Rate

opts.batchsize = 20; % Minibatch Size

opts.numepochs = 10; % Iteration Number

%%%% CNN structure %%%%%%%

cnn.layers = {

struct(’type’, ’i’) %input layer

struct(’type’, ’c’, ’outputmaps’, 6, ’kernelsize’, 5) %convolution layer

struct(’type’, ’s’, ’scale’, 2) %sub sampling layer

struct(’type’, ’c’, ’outputmaps’, 12, ’kernelsize’, 5) %convolution layer

struct(’type’, ’s’, ’scale’, 2) %sub sampling layer

};

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Step 1 Prepare test and training set %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

load image_input.mat

%%%%%%%%%%%% Load Prepared training set%%%%%%%%%%%%%

load train_new.mat

% %%%%%%%%%%% Load Prepared training set%%%%%%%%%%%%%

% % Pick Train Examples

% % Pick Crack points

% figure(1)

% imagesc(image_input);

% title(’Pick Crack Points’,’fontsize’,22);

% train.label(1:ntrain)=1;

% train.label(2,1:ntrain)=0;

% [train.trainx(1:ntrain),train.trainz(1:ntrain)]=ginput(ntrain);

% pause(1)

% figure(2)

% imagesc(image_input);

%

% % Pick No-crack points

% title(’Pick Non-Crack Points’,’fontsize’,22);

% train.label(ntrain+1:2*ntrain)=0;

% train.label(2,ntrain+1:2*ntrain)=1;

% [train.trainx(ntrain+1:2*ntrain),train.trainz(ntrain+1:2*ntrain)]=ginput(ntrain);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Step 2 Convert Image into Image patches %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[nz,nx]=size(image_input);

image_pad=padimage(image_input,wdz,wdx);

%%% Obtain image batches from full image

image_slice=zeros(image_z,image_x,nz*nx);

image_slice_new=zeros(image_z_new,image_x_new,nz*nx);

[Xq,Zq]=meshgrid(1:(image_x-1)/(image_x_new-1):image_x,1:(image_z-1)/(image_z_new-1):image_z);

ii=1;

for ix=1:nx

for iz=1:nz

image_slice(1:image_z,1:image_x,ii)=image_pad(iz:iz+image_z-1,ix:ix+image_x-1);

image_slice_new(:,:,ii)=interp2(image_slice(:,:,ii),Xq,Zq);

ii=ii+1;

end

end

%%% Obtain image batches from train set

train_slice=zeros(image_z,image_x,2*ntrain);

train_slice_new=zeros(image_z_new,image_x_new,2*ntrain);

[Xq,Zq]=meshgrid(1:(image_x-1)/(image_x_new-1):image_x,1:(image_z-1)/(image_z_new-1):image_z);

for in=1:2*ntrain

train_slice(1:image_z,1:image_x,in)=...

image_pad(train.trainz(in):train.trainz(in)+image_z-1,train.trainx(in):train.trainx(in)+image_x-1);

train_slice_new(:,:,in)=interp2(train_slice(:,:,in),Xq,Zq);

end

clear image_slice train_slice

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Step 3 Train CNN structure %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Input Training and Test set

train_x =train_slice_new; % Training set

train_y =train.label; % Training label

test_x =image_slice_new; % Test set

rand(’state’,0)

cnn = cnnsetup(cnn, train_x, train_y);

cnn = cnntrain(cnn, train_x, train_y, opts);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Step 4 Input full image for Classification %

% (Separate The Image into 10 parts In case of out of memory) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for ii=1:9

disp([’Part ’,num2str(ii),’ Start’]);

uu = cnnff(cnn, test_x(:,:,457*100*(ii-1)+1:457*100*ii));

[vv,ll]=max(uu.o);

ui=reshape(-ll+2,457,100); %Image-->457x100 patches

un(:,100*(ii-1)+1:100*ii)=ui(:,1:100);

end

disp([’Part 10 Start’]);

uu = cnnff(cnn, test_x(:,:,900*457+1:977*457));

[vv,ll2]=max(uu.o);

ui2=reshape(-ll2+2,457,77);
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un(:,901:977)=ui2(:,1:77);

disp([’Done...’]);

%%%%%%%%%% Display the result %%%%%%%%%%%%

figure(1)

subplot(1,2,1)

imagesc(image_input)

title({[’Input Image’]},’fontsize’,22,’color’,’black’)

set(gca,’fontsize’,22)

xlabel(’Pixels’,’fontsize’,22)

ylabel(’Pixels’,’fontsize’,22)

subplot(1,2,2)

imagesc(un)

title({[’CNN Labels’]},’fontsize’,22,’color’,’black’)

set(gca,’fontsize’,22)

xlabel(’Pixels’,’fontsize’,22)

ylabel(’Pixels’,’fontsize’,22)

set(gcf,’unit’,’centimeters’,’position’,[12 5 30 13])

colormap(parula)

% %%%%%%%%%Plot the error curve %%%%%%%%%%%

% figure(2)

% plot(cnn.rL);

% title({[’Misfit Curve’]},’fontsize’,22,’color’,’black’)

% set(gca,’fontsize’,22)

% xlabel(’Iteration’,’fontsize’,22)

% ylabel(’Misfit’,’fontsize’,22)

10.19 Appendix: Simple Linear Iterative Clustering (SLIC)

Simple linear iterative clustering (SLIC) algorithm is a k-means clustering approach to efficiently
generate superpixels from the image in the CIELAB color space (Achanta et al., 2012), where
a superpixel is defined as a group of connected pixels with similar colors. CIELAB is a three-
dimensional integer space (L⋆, a⋆, b⋆) for the digital representation of colors, where L⋆ represents
the lightness component. The lightness value L⋆ ranges from 0 to 100, where L⋆ = 0 denotes black
and L⋆ = 100 denotes white. The symbol a⋆ represents the green-red component, with green in the
negative direction and red in the positive direction. Similarly, b⋆ represents the blue-yellow color
component, with blue in the negative direction and yellow in the positive direction. The a⋆ and b⋆

axes both range from -128 to 127. The clustering workflow for SLIC requires the following steps
shown in Figure 10.57:

1. In the first step, the input image is partitioned intoK approximately equally-sized superpixels.
For an input image with N pixels, the size of each superpixel is about N/K. Hence, there is an initial
superpixel center at every grid interval S =

√
N/K as shown in Figure 10.57a. The coordinates for

the initial superpixel centers are [Lk, ak, bk, xk, yk]
T with k = {1, 2, ...,K} at regular grid interval S.

2. If the initial center of a superpixel is placed on an edge or a noisy pixel, there are no pixels
in the neighborhood belonging to the same cluster with the center. A noisy pixel is one in which
the amplitude value varies by more than twice or less than half of the average amplitudes of the
surrounding pixels. The magnitude of the image gradient is defined as:

Gx,y = ||Ix+1,y − Ix−1,y||2 + ||Ix,y+1 − Ix,y−1||2, (10.12)

where Ix,y is the CIELAB vector [Lx,y, ax,y, bx,y, x, y]
T corresponding to the pixel at position (x,y),

and ||.|| is the L2 norm. The calculation of the gradients takes into account both color and intensity
information. If the center is located on the edge or a noisy pixel, its magnitude of the image gradient
will be large. To prevent this situation, the magnitudes in the 3×3 neighborhood around the initial
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superpixel centers are calculated as shown in Figure 10.57b. Then the centers are moved to the
locations corresponding to the points with the lowest magnitude.

3. The area of the search region for each superpixel center is 2S× 2S as shown in Figure 10.57c,
where S is the grid interval. Each pixel i would be in the search regions of its surrounding superpixel
centers and it should be associated with the nearest one. The dark green area in Figure 10.57c is
composed of the pixels associated with the yellow superpixel center. Compared with the conventional
k-means clustering that compares each pixel with all the clustering centers, this method greatly
speeds up the algorithm by limiting the size of the search region.

The distance measure Ds between the pixel and superpixel center is defined as follows:

dlab =
√
(Lk − Li)2 + (ak − ai)2 + (bk − bi)2,

dxy =
√
(xk − xi)2 + (yk − yi)2,

Ds = dlab +
m

S
dxy, (10.13)

where Ds is the sum of the CIELAB distance dlab and the weighted xy plane distance, which is
normalized by the grid interval S. A variable m is introduced for controlling the compactness of a
superpixel.

4. After every pixel is associated with its nearest superpixel center, an update step adjusts new
superpixel centers to be the mean [L, a, b, x, y]T vector of all the pixels belonging to the superpixel
shown in Figure 10.57d. The L1 norm is used to compute a residual E corresponding to the new su-
perpixel center locations [Lknew

, aknew
, bknew

, xknew
, yknew

]T and previous superpixel center locations
[Lk, ak, bk, xk, yk]

T :

E =
∑

k

(|Lk − Lknew
|+ |ak − aknew

|+ |bk − bknew
|)

+
∑

k

(|xk − xknew
|+ |yk − yknew

|). (10.14)

5. Repeat steps 3 and 4 until the residual E is less than the specified threshold. This superpixel
process is a cluster-like method.
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a) Pre upsampling SR

b) Post upsampling SR

c) Progressive upsampling SR

d) Iterative up and down sampling SR
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Figure 10.49: Super-super-resolution model frameworks based on deep learning. The cube
size represents the output size. The gray ones denote predefined upsampling, while the
green, yellow and blue ones indicate learnable upsampling, downsampling and convolutional
layers, respectively. And the blocks enclosed by dashed boxes represent stackable modules.
Figure from Wang et al. (2021).
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Dataset Description 
Original Image Augmented Images

Figure 10.50: Two samples of the 280 bird pictures on the left, and some augmented
(stretched, rotated, cropped) pictures on the right. Figure from Fatme Ramadan.

Theory

• We use as our base model the VGG16 network and load the weights trained on ImageNet, a 
benchmark dataset for object recognition. 

Base Model

We load the 

weights onto 

the base 

model and 

freeze them.

Dense Layers with 

Trainable 

Parameters

Figure 10.51: VGG architecture used for transfer learning. The weights for the architecture
outlined by the black line were trained on a huge data set of images denoted as ImageNet.
These weights were frozen, and the weights denoted by the green fully connected weights
to the right of the black line were trained on the bird pictures. This is known as transfer
training. Figure courtesy of Fatme Ramadan.
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Figure 10.52: Loss and accuracy plotted against epoch number for the AlexNet prediction
of bird types. The lower row of pictures are labeled with the predicted bird type, where the
correct (incorrect) predictions are in green (red). Figure courtesy of Fatme Ramadan.

AlexNet

Without Batch Normalization 

Figure 10.53: Accuracy vs epoch plots except top row is for training with (red) and without
(blue) batch normalization (BN). The bottom row is for using an Adam (blue) and a
stochastic gradient descent (red) step length. The left column of images is for the training
data and the right column is for the validation data. Figure courtesy of Fatme Ramadan.
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a) Accuracy vs Dropout

Training Data            

b) Accuracy vs Dropout
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Figure 10.54: a) and b): Accuracy vs epoch plots for different dropout rates. c) and d)
Accuracy and loss plots for transfer training. Figure courtesy of Fatme Ramadan.

clusters
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d)
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f)

Larger Boxes
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b)

Figure 10.55: Photo in f) has two objects bounded by the green boxes (Felzenszwalb and
Huttenlocher, 2004). Images a-f are the images and bounding boxes obtained by the selective
search procedure described in Uijlings et al. (2013).
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Figure 10.56: Selective search algorithm described in Uijlings et al. (2013).

Figure 10.57: The workflow of SLIC. Step 1: initialize superpixel center with grid interval
S. Step 2: move the centers away from the edge and noisy pixels. Step 3: cluster the pixels
with a 2S × 2S search region. Step 4: Update the location of centers. Image adapted from
(Feng et al., 2021a).



Chapter 11

Semantic Segmentation of Cracks
in Photos

A modified version of the U-Net architecture for semantic segmentation is used to identify and
label cracks in photos of sandstone massifs in the Middle East. The cracks occupy less than 1% of
a photo, which leads to a huge number of CNN equations labeled as non-crack y = 0 compared to
the much smaller number of equations labeled as a crack y = 1. To avoid this unbalanced number
of equations, each photo was segmented into approximately 300 sub-photos of much smaller size.
These sub-photos concentrated the attention of the receptive fields around the large cracks and so
significantly increased the ratio of crack-area/no-crack-area. In addition, a special weighting formula
is used to overweight each equation associated with y = 1 in the training data. The results lead to
a more than 97% accuracy (by pixels number) in predicting cracks in the validation data.

11.1 Introduction

All solids weaken over time and develop a reduction in their mechanical strength. A sign of this
weakness is the development of cracks, a quasi-linear physical separation of material on the surface
and in the interior of a solid. For siting buildings on a rock foundation, assessing dam hazards,
avoiding drilling hazards or for mining excavation, it is critical to assess the density and distribution
of fractures in the rock mass. The weakening of the rock is due to many causes such as weathering,
cooling after a period of heating, mechanical deformation due to stresses from local or tectonic
stresses, and the weight of the overburden over time. Figure 11.1 shows overhead and side views of
several rock massifs that will undergo development for tourism.

To develop this site, engineers must drill into portions of the rock massif to give a safety assess-
ment of the rock’s integrity. This integrity is related to the density of large cracks. To quantita-
tively estimate the density of cracks, more than 23,000 drone photos were taken of the two areas.
Figure 11.2a shows a raw photo and Figure 11.2b depicts the cracks labeled in red by a human
interpreter. There are too many photos to manually delineate cracks in a reasonable amount of
time, and so a semantic segmentation algorithm is used to detect and label large cracks. Due to
its outstanding performance in labeling salt boundaries and medical images, we selected the U-Net
architecture shown in Figure 11.3 to detect the cracks.

11.2 Detection and Labeling of Cracks by U-Net

There are three phases to detecting the cracks in more than 23,000 photos (Shi et al., 2021):
labeling cracks in fewer than 0.5% of the 23,000 photos, training the network on the labeled photos
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Figure 11.1: Topographic map and photos taken of the sandstone massif: the two structures
of interest are referred to as the (bottom right) Peak (PE) and the (top right) Flat (FL).
The horizontal width of the topographic map is about 1.5 km.

and then applying the trained network to detect and label cracks in the rest of the photos.

11.2.1 Labeling Cracks

The public-domain GIMP program (https://en.wikipedia.org/wiki/GIMP) was used to label
cracks in 194 = 127 + 67 photos. We define a crack to be a separation between adjacent sides of a
rock that typically appear as a dark shadow in the photographs. Only cracks longer than a meter
were labeled, although this length estimate is a rough one because no absolute length scale is provided
in the photos. The GIMP software allows the user to click between two points and then it draws a
curve between the points. This was sufficient for a single user to label up to 10-20 photographs per
day. Several groups of 50 or more photos were labeled, and then tests were conducted for training
the U-Net. This experience suggested that we redo the labeling with thinner labels (about 6 pixels
or so wide) and also provide a more complete labeling of all cracks. We mitigated the unbalanced-
equation problem by replacing each photo with about 300 sub-photos dominated by cracks and by
applying a 9× weighting to the equations with a labeled crack. An example of a labeled data set is
shown in Figure 11.2.

Phase I and Phase II Labeling. There were two phases of labeling denoted as Phase I and Phase
II. Phases I and II consisted of labeling and training of 127 photos and 67 photos, respectively. The
Phase I labeling was primarily for the 57 photos of the open-side of the Flat facade and the peak
(PE) facade (see images in Figure 11.1), while Phase II was for labeling and training for 67 photos of
the top of the Flat. The other side of the Flat facade was not labeled because there was not enough
room to closely photograph the walls with the drone.

It was found that training the network primarily for the facade cracks was insufficient for accu-
rately labeling top-view cracks of the massifs. The top-view cracks were of a different nature than
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b) Photo of Massif with Crack Labelsa) Photo of Massif

Figure 11.2: Facade and top-view photos before and after labeling of the cracks. Assortment
of labels provided by Marco Ballesio, Yongxiang Shi and Dan Trentman.

those for the facade. This prompted the initiation of the labeling and training of 67 photos of the
top of The Flat.

11.2.2 Phase I Training and Validation

A random sampling of 118+9=127 training photos was drawn from 23,000 photos of the sand-
stone complex taken by a drone; 118 photos were used for training and 9 for validation. There were
two training sets, one set for side-views (aka facade-views) of the PE massif and the Flat (FL) facade,
and one set for the their top views. For PE massif, there were 45 training photos for the facade
pictures and 33 photos for the top-view photos. For the FL massive, we selected 9 facade photos
and 31 top-view photos. The number of photos for training was determined by trial-and-error until
our validation set achieved a prediction accuracy of more than 97%. Here, accuracy is defined as

Accuracy =
TP + TN

TP + TN + FP + FN
, (11.1)

where TP=# of True Positives, TN=# of True Negatives, FP=# of False Positives and FN=# of
False Negatives1. The training was processed separately for the side and top views.

The U-Net architecture in Figure 11.3 was selected for the CNN. The output is a binary label
per pixel for either a crack y = 1 or non-crack y = 0. The zoom-view of the architecture for the
individual convolutional blocks shown in Figure 11.3 is constructed for the following purposes:

• Additional convolutional branches: Most of the cracks in drone images are approximately
horizontal or vertical, which means they are very long in one dimension and short in the
other. Two additional convolutional branches with filter sizes 1 × 9 and 9 × 1 can help the
network extract crack features by focusing on a specified dimension, without increasing many
parameters compared to a square filter.

• Residual part: Our network depth is 40 layers, including 36 convolutional layers and 4 trans-
posed layers. The skip connections in each block can mitigate difficulties with a vanishing
gradient.

There were 54/64 photos used for the facade/top-view training sets. The area of the cracks in
the photos comprised less than 1% of the each photo, which leads to an unbalanced set of equations

1Most parts in a photo consist of non-cracks, so the number of pixels without a crack is much bigger than
the number of crack pixels. Therefore a high accuracy number is more indicative of accurately detecting
non-crack pixels.
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Figure 11.3: U-Net-like architecture of the CNN used for detecting cracks in photos of the
sandstone massif. The blue arrows point to a new convolutional layer, the gray arrows
indicate skip layers, and blue boxes denote feature maps. The height × width × channel
number of the feature maps are indicated below the blue boxes (Ronneberger et al., 2015).

where most of the pixels have a label of y = 0. This will lead to poor convergence and large errors
in inference labeling. There are many schemes for mitigating the problems of an imbalanced system
of multiclass equations where, in pixel-level classification, the number of equations for one or more
classes greatly exceed those for other classes. This is the case for cracks which occupy an area that
is less than a few percent of the background area. To mitigate the imbalance problem, schemes
such as the one proposed by Guerrero-Pena et al. (2018) who segmented the boundaries of cells by
the using weights associated with the location, length of touching borders, and the geometry of cell
contours. Another approach is to mask each object using R-CNN (He et al., 2017) and then apply
a FCNN or CNN to detect the localized objects of interest.

To mitigate the problem of an unbalanced system of equations we implemented two remedies.

• Each 3000× 4000 photo is segmented into approximately 300 sub-photos of much smaller size
of 256 × 256. These sub-photos concentrate the attention of the receptive fields around the
large cracks and so significantly increased the ratio of crack-area/no-crack-area.

• We overweighted the equations in favor of the crack y = 1 equations by a multiplicative
factor 0.9 and underweighted the no-crack y = 0 equations by 0.1. This also mitigated the
unbalanced-equation problem.

• The adjusted binary loss function used for training is

Loss(y, p) = −
∑

i

[0.9× y(i) ln(p(i)) + 0.1× (1 − y(i)) ln(1− p(i))], (11.2)

where the summation in i is over the indices of the examples.

Figure 11.4 depicts the loss versus iteration number for the facade and top-view images. Both
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Figure 11.4: Loss function versus iteration number for the training and validation data.
Here the training data are for the a) facade and b) top-view photos.

training and validation results show a crack prediction accuracy of 96% and 98%, respectfully. See
equation 11.2 for the definition of accuracy.

The confusion matrices associated with the training and validation data for massifs PE and FL
are shown in Table 11.2. The metric for estimating the error between a predicted and actual crack
is defined in Table 11.1.

100 pixels/m Actual
Crack Non-Crack

Prediction Crack TP FP
Non-Crack FN TN

Table 11.1: Confusion matrix: TP=True Positive, TN=True Negative, FP=False Positive,
and FN=False Negative. In Table 11.2, TN is removed and the human labels and machine
label predictions are skeletonized to have a width of one pixel using the morphological pro-
cessing program ”skimage.skeletonize” (https://scikit-image.org/docs/dev/auto examples/
edges/plot skeleton.html). In this way we discount the prediction of the crack thickness
and only examine its location accuracy. If the true and predicted labels are within 20 pixels
of one another, then we consider this to be a true prediction. We then display the total
length of the predicted cracks in units of meters. For example, the total length of correctly
predicted cracks in Table 11.2 is 250 m. In the drone photos, we assumed that the pixel
width is 1 cm.

11.2.3 Phase I Testing

After adequately training the two U-Nets, they were applied to the remaining photos to label
the cracks. The results show good qualitative agreement between the cracks detected by a human
observer and those delineated by the U-Net. As an example, Figure 11.5 shows the photos of massif
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100 pixels/m Top Top Facade Facade
Crack Non-Crack Crack Non-Crack

Prediction Crack 250 m 540 m 480 m 583 m
Non-Crack 53 m 75 m

Table 11.2: Confusion matrices of the facade (3 photos) and top-view (6 photos) validation
sets. In the above table, TP=250 m (480 m) of top-view (facade) cracks were correctly
predicted, and 53 m (75 m) of top-view (facade) cracks were incorrectly predicted. There-
fore, 250/303 100%=83% (86%) is the crack-prediction accuracy where the number for TN
is excluded to eliminate an overly optimistic number for accuracy. Here, the false-positive
number, i.e. the number of false positives, is also ignored.

PE before and after crack detection. Comparison between the left and right photos mostly show
good agreement between the inferred major cracks and the ones observed with the eye. These photos
could provide accurate information for engineers to accurately estimate rock integrity related to large
cracks.

11.2.4 Phase II Training and Validation

Examination of the predicted cracks for the top-view photos showed an unacceptable accuracy.
Therefore, 61+6=67 top-view photos of the the Flat facade were re-labeled with an aggressive
definition of a crack2; 61 photos were used for training and 6 for validation. To improve accuracy,
we used a more aggressive interpretation of what constitutes a crack, as can be seen in the original
labeling and new labeling of a top-view photo in Figure 11.6. In this example, the crack equations
were weighted, after empirical testing, by the multiplicative factor of 8.3 to account for the imbalance
of crack and non-crack equations.

A total of 90 epochs were used for the U-Net training from the Phase II data, and the loss
function for training and testing is plotted in Figure 11.7. To better compare the results from Phase
I and II training sets, we define the Precision and Recall values in Table 11.3. A higher Recall value
is desired because it means that there are more True Positives compared to the total number of
True Positives+False Negatives. It is more important to identify too many cracks than to miss some
important ones where FN is large.

Table 11.4 shows that the recall value of the Phase II data is R = 79% compared to R = 65%
for the Phase I top-view data. This suggests that the aggressive relabeling of the top-view photos
resulted in a more accurate prediction of top-view cracks. However, the Phase II retraining produced
a Precision value of P = 44%, which is lower than P = 55% for the Phase I data. This means that
the new network identifies more cracks in our new labeled photos, but it brings more noise (false
positive) into our results.

A similar improvement in accuracy prediction was obtained when applying the two U-nets to
61 top-view photos from the Phase II data. Here, the U-Net trained on the Phase II data achieved
R = 83% compared to R = 62% for the Phase I U-Net.

11.2.5 Phase II Testing

Figure 11.8 shows a few test photos where the predicted cracks from the Phase II data show a
higher density compared to those from the original Phase I data. These Phase II predictions mostly
appear to be a reasonable interpretation of the cracks.

2Dark skinny elongated shadows in a photo were labeled as cracks with the new interpretation of a labeled
crack. This resulted in a higher density of cracks in the photos.
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b) Massif A + Crack Labelsa) Massif A Facade

d) Massif A Top View + Crack Labelsc) Massif A Top View

Figure 11.5: Photos of massif PE before and after labeling of the cracks by U-Net.

a) Original Labeling b) New Labeling

Figure 11.6: a) Original and b) new labeled top-view photos of The Flat. The new labeled
photos were used for retraining the network to improve the crack prediction accuracy. The
new labeling more aggressively labels a crack as indicated by the greater number of crack
labels in b).
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Figure 11.7: Loss function vs epoch number for the Phase II training.
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a) Phase I Predictions b) Phase II Predictions

Figure 11.8: Photos of the top of The Flat predicted by the U-Net after being trained by
the a) Phase I and b) Phase II training data. The large red blob on the photo in the second
row is a correctable error introduced during training.
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Actual
Crack Background

Predict Positive TP FP P= TP
TP+FP

Negative FN TN

R= TP
TP+FN

Table 11.3: Confusion matrix and definitions of Recall= TP
TP+FN and Precision= TP

TP+FP .

Phase I Data Crack Background

Positive 51 627 40 565 P=55%
Negative 26 909

R=65%

Phase II Data Crack Background

Positive 62 708 76 575 P=44%
Negative 15 828

R=79%

Table 11.4: Confusion matrices for the validation set of 6 top-view photos. The U-Net
trained on the Phase I data was used to compute element values in the top confusion
matrix while the U-Net trained on the Phase II data was used to compute the element
values in the bottom confusion matrix.

Phase I Data Crack Background

Positive 436 440 429 439 P=50%
Negative 263 782

R=62%

Phase II Data Crack Background

Positive 583 447 786 560 P=42%
Negative 116 775

R=83%

Table 11.5: Same as previous table except the U-Nets were applied to the 61 photos relabeled
for the Phase II data.

11.3 Transfer Training

Transfer training is the reuse of the weights of a trained neural network model for labeling a
completely different data set. As an example, the sandstone U-Net weights for detecting cracks in
the sandstone massifs can be used to detect cracks in a volcanic section near a dam in Idaho, USA.
Applying the sandstone U-Net model to the Figure 11.9a picture gives the detected cracks in the
Figure 11.9b image.

For transfer training, we freeze the weights in blocks from 3 to 7 and allow four symmetric
blocks (block 1,2 and 8,9 in Figure 11.3) to be trained on the newly labeled photos. This decreases
the trainable parameters from 20, 000, 000 to 730, 000. An Adam optimizer is used and we set the
learning rate to be 10−4 in order to fine-tune the trainable layers. The batch size is 5 and the total
number of 256×256 sub-photos is 120. The transfer training is halted at epoch 30 when the accuracy
flattens out at 97%, which takes no more than 20 minutes of computation time on a workstation. We
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(a) (b)

Figure 11.9: Photos of Idaho volcanic rocks a) before and b) after application of the sand-
stone U-Net model. The red markings correspond to a probability between 0.7 and 1.0 in
the softmax output, while the white-bluish markings correspond to a probability between
0.3 and slightly less than 0.7.

denote this U-Net as the hybrid U-Net model because the original weights were trained on images
of sandstones and adjusted to those for volcanic rocks.

After transfer learning, the sandstone U-Net and hybrid U-Net were applied to the top row of raw
4000× 2000 images in Figure 11.10a to give the labeled cracks in Figure 11.10b and Figure 11.10c,
respectively. Figure 11.10c shows a much denser and more accurate collection of labeled cracks than
the ones in Figure 11.10b. The important accomplishment is that it required no more than an hour
of manual labeling to achieve this goal.

11.4 Summary

Semantic segmentation was used to detect and label large cracks in drone photos of rock massifs.
The U-Net CNN was selected because of its excellent accuracy in labeling medical images. Results
showed that the U-Net could be trained with the Phase I data of 127 photos so that it achieved an
accuracy of up to 97% in the validation data. Inspection of the results for the open-side of the PE
facade showed acceptable accuracy for engineering purposes.

However, the crack prediction of top-view photos in the Phase I data did not achieve an accept-
able accuracy. To improve these results, 67 top-view photos were obtained for the Phase II data.
These data were relabeled with an aggressive definition of a crack that resulted in relabeled photos
with a higher density of labeled cracks. For 6 validation photos, results showed a R = 79% Recall
value compared to the R = 65% for the Phase I data.

The one big improvement in detecting cracks is to increase the size and accuracy of the train-
ing data. Thus, we recommend that a Generative Adversarial Networks (GANs) or variational
autoencoder (VAE) be used to generate a much larger set of labeled data.

11.5 Computational Labs

1. Go to Crack Labeling lab in LAB1/Chapter.Book.GIMP/lab.html and run the GIMP and
MATLAB codes for labeling.

2. Go to Crack U-Net training lab in LAB1/Chapter.Book.GIMP/lab1.html and run the Keras
codes for training a U-Net CNN.
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a) Photos of the Dam Site

b) Processed with U-Net Trained with AlUla Weights

c) Processed with U-Net after Transfer Training with AlUla Weights

Figure 11.10: a) Raw photos from the Teton dam site, and crack labels computed by the
b) AlUla sandstone U-Net and the c) hybrid U-Net models. The red labels have a softmax
probability between 0.7 and 1.0.
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3. Go to https://colab.research.google.com/drive/1n7K1esyM FmWb-6ZwT8eGWxylOk4xoOp
This lab allows the user to train a U-Net Network for crack detection and transfer learning.
We provide 57 photos with their labels to generate a training set for crack detection by U-Net.
There are two more photos from the dam site for transfer learning. The default setting is to
perform transfer learning.
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Chapter 12

Recurrent Neural Networks

When we are talking to someone, the current word in our spoken sentence is strongly dependent
on many of the previous words or phrases. For example, the phrase ”Jill is ...” might be followed in
the next instance by the word ”healthy”. In this case, the object ”healthy” grammatically follows
the noun-verb structure of the sentence, so it is highly correlated to the previous two words. In
addition, Jill’s state of health might have been discussed in the previous sentence, which is a clue
for predicting the word ”healthy”. Therefore, writing or speech1 can be considered as a highly
correlated time series where each word at time t is correlated to a few or many of the previously
spoken words/phrases. This is unlike the typical neural network used for image classification where
the intensity values of pixels in an input image are not necessarily correlated to the next image in
the training set. In this case, each image is similar to a very long word that has little correlation
with the sequence of other input words, i.e., images.

To account for the correlation characteristics of, for example, speech, writing, film or music we
have the recurrent neural network (RNN) which assumes that the current input strongly depends
on some of the previous inputs. In practice, RNN has had tremendous success (Greff et al., 2015;
Karpathy, 2019) in natural language processing (NLP) for language translation, speech recogni-
tion, natural language understanding, and natural language generation. Other areas of success are
financial forecasting, and film and image captioning.

As an example, when we start typing words in an email the RNN often anticipates the next
few words and provides its best guess at the next words that complete a sentence. It also can read
someone’s email and give us the option of clicking on a few suggested replies. The RNN is still
considered as supervised learning in the sense that the training requires an output at each step -
even if it’s a label that you didn’t need to obtain using some form of manual labeling. RNN is
similar to that of image classification by CNN, where both are trained on thousands or millions of
examples. It differs in that each word (of about 10,000 commonly used words) is a separate class
compared to no more than a few hundred different classes that CNN assigns to objects in an image.

This chapter presents the theory of RNN, where the theory of easy-to-understand vanilla RNN
(VRNN) is first presented and then followed by the theories of the more practical long short-term
memory networks (LSTM) and gated recurrent units (GRUs). Practical examples of RNN applied
to geoscience problems are then presented in the last section.

1For example, if the input sequence is a speech signal that corresponds to a spoken digit,
then the final target output at the end of the sequence might be a label classifying the digit
(en.wikipedia.org/wiki/Recurrent neural network).
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12.1 Theory of Recurrent Neural Networks

One of the goals of RNN in natural language processing (NLP) is to complete a sentence when
only the first few words are known. An example is the auto-complete function when we type a
message in our email. For word prediction, RNNs use anywhere from a few to a several dozen words
of typed text to predict the next word or several words in the uncompleted sentence. For example,
I type the text ”Hope to see..” and the computer email program anticipates that the next word (or
phrase) is ”you”. How does it know that ”you” is the correct word, why not ”stars” or ”Bill”? It
chose ”you” because it might have taken into account the context of your previously typed sentence
and from what it learned in the huge training set; in our example I selected the most likely follow-on
word as ”you”. Is this prediction correct? Not necessarily so, but RNN selects the most likely next
word based on previously written sentences. How does the RNN work in detail? The next section
presents the workflow and explanation of Vanilla RNN (VRNN) whose architecture is illustrated in
Figure 12.1.

12.1.1 Vanilla RNN Workflow

The VRNN algorithm for natural language processing trains the network shown in Figure 12.1
in order to accurately predict the sequence of target words ŷt from the input words xt. The vector
xt is a unique D × 1 unit vector coded to a unique word in the D-word dictionary. The prediction
is a feed-forward process where thresholding and matrix multiplication operations are applied to
the word at xt to give the D × 1 output vector ot. The feed-forward process starts at an initial
time t = 0 and recursively applies the following equations in time to get the sequence of probability
vectors (y1,y2, . . . ,yT ) for the predicted words.

for t = 1 : T

H× 1 hidden state vector : ht = σ(Uxt +Wht−1 + bh),

D× 1 output vector : ot = Vht + bo,

D× 1 probability vector of predicted words at time t : yt = softmax(ot),

D× 1 unit vector of desired word at time t : d = ŷt,

probability for predicting correct word at time t : yt = yt · d,
cross− entropy loss at time t : ǫt = − ln yt,

end (12.1)

where the matrices U,V, and W and the bias vectors bh, bo are to be learned by training with a
huge number of sentences. Here, the components of the D×1 target vector ŷt are all zero, except for
the component associated with the correct word; this component takes on the value 1. The Greek
symbol σ denotes a thresholding operation, which is tanh for the above pseudo-code. The memory
of previously written words up to time t is contained in the H × 1 hidden-state vector ht. Since the
target word d = ŷt at time t is a unit vector then yt = ŷt · y is the probability that the network
predicted the correct output word. The ith element of the D × 1 vector yt = softmax(ot) is the
prediction probability for the word associated with the ith element position. For example, if the
unit-vector of the target word ŷt has a 1 in the third element then yt = ŷt ·y extracts the predicted
probability of this target word.

The details of the VRNN algorithm are given below.

1. Assignment of Input Words xt to One-hot Vectors. We first define a dictionary with
D of the most commonly used words. There might be D = 10, 000 commonly used words
so each unique word xt in a sentence is assigned to a unique 10, 000 × 1 unit vector2. For

2If the word is not in our vocabulary, we create an unknown UNK tag and assign it to a unique unit
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Figure 12.1: a) Unit neuron and b) series of three neurons that comprise the Vanil-
la RNN architecture. The total number of units is equal to the number of words in
the training set; thus, the RNN for language processing is a wide neural network. The
horizontal series of neurons constitutes one layer of the network. If a softmax func-
tion is applied to each output ot then the network in b) constitutes a 3-layer RNN
(en.wikipedia.org/wiki/Recurrent neura network).
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example, the words in the sentence ”Hope to see..” are assigned to the one− hot unit vectors

hope : x1 = (0, 0, 1, 0, 0, . . .0);

to : x2 = (1, 0, 0, 0, 0, . . .0);

see : x3 = (0, 0, 0, 1, 0, . . .0);

you : x4 = (0, 1, 0, 0, 0, . . .0);

.

.

.

UNK : xD = (0, 0, 0, 0, 0, . . . , 0, 1). (12.2)

The interpretation of each one-hot vector is that it assigns a unique class to each of the 10,000
words in our dictionary. For example, the word ”hope” is indicated by the number 1 in the
third element of the vector xt and zeros elsewhere. Any unknown words are replaced by
”UNK” and is assigned to be the last word in our dictionary above. Numbers are assigned
the word ”N” at the second-to-last word in the dictionary. Punctuation symbols can also be
assigned to unique elements of xt.

The subscript t in xt denotes the temporal ordering of the word in the sentence. For example,
xt occurs just before xt+1 in the sentence. The dimension of the dictionary is denoted as D
so xt ∈ RD×1.

2. Hidden-State Vector ht. At each neuron in Figure 12.1b, ht is the hidden-state vector
at time step t. Its role is to transmit information from previously used words that might
be important for predicting the current output at time t. It is calculated as the thresholded
weighted sum of the previous hidden-state vector ht−1 and the current input xt:

current hidden state︷︸︸︷
ht = σ(Uxt +W

previous hidden state︷︸︸︷
ht−1 +bh), (12.3)

where σ( ) is the activation function of choice, the tanh in this case, and the elements of the
initial state ht=0 can be zeroes. Here, ht,bt are H×1 vectors so W ∈ RH×H and U ∈ RH×D.
In practice, H can be chosen to be around 100.

3. Probability Vector of Predicted Word: yt. The D × 1 vector yt = softmax(ot) in
Figure 12.1 is the probability vector of predicted words at time t:

probability vector of predicted words︷︸︸︷
yt = softmax(

ot︷ ︸︸ ︷
Vht + bh). (12.4)

The ith element value in the D × 1 vector yt is the probability for predicting the ith word
class.

For example, a perfect prediction at t = 1 would be yt=1 = (0, 0, 1, 0, . . .0) according to the
dictionary of words in equation 12.2. But nothing is perfect so the actual output of ”Hope”
might be

yt=1 = softmax(Vht + bh)|t=1 = (0.5, 0.1, 0.4, 0, . . .0), (12.5)

compared to the desired word given by

ŷt=1 = (0, 0, 1, 0, . . .0). (12.6)

vector in our dictionary.
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Here, the desired word ”Hope” has the value 1 at the third element of ŷt=1 (see first row of
equation 12.2) while the vector yt=1 has the poor prediction probability of 0.4 at this third
element3. Better training might have avoided this error.

We can extract this poor prediction value from yt by taking the dot product of it with the
desired word vector ŷt to get

yt = ŷt · yt = 0.4, (12.7)

where 0 ≥ yt ≥ 1 is defined as the quality factor of our prediction. The highest quality
prediction is when yt = 1 and the lowest quality is yt = 0.

4. Loss Function: ǫ. The quality factor yt in equation 12.7 can be used to define the loss
function ǫt at time t as

ǫt = − ln yt, (12.8)

where ǫi ≥ 0. Therefore the average total loss function for all of the time steps is

ǫ = − 1

T

T∑

t=1

ln yt, (12.9)

which is similar to the cross-entropy function4. A perfect prediction, i.e. yt = 1 at all times,
yields the minimum value of ǫ = 0.

3The bottom image in Figure 12.2 shows an example of an output vector plotted as a histogram.
4The desired probability at t is ŷt = 1, so we can harmlessly multiply ln yt by ŷt to get ŷt ln yi, which is

the summand for the cross-entropy loss function.
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Figure 12.2: (top) Image classification by a standard neural network and (bottom) word
prediction by a RNN, which is a natural language processing (NLP) method. The RNN
feeds the words in a sentence one at a time into the neurons as they are written (or spoken)
and the goal, in this example, is to predict the next word from the current and previous
words. Illustration is a modification of a slide from Xavier Bresson’s AI lecture notes.
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Box 12.1.1. Probabilistic Model for RNN Loss Function

The RNN loss function in equation 12.9 was selected in an intuitive manner. However,
we can justify this selection by analyzing the probability for predicting the sequence of
words = (x1,x2, ...,xT ) by using the definition of the conditional probability p(x|y) =
p(x,y)/p(y), or equivalently p(x,y) = p(x|y)p(y). The joint probability distribution
p(x1,x2, . . . ,xT ) can be factorized as a concatenation of conditional probabilities:

p(x1,x2, ...,xT ) = p(x1)p(x2,x3, . . .xT |x1),

= p(x1)p(x2|x1)p(x3, . . . ,xT |x1,x2),

.

.

.

= ΠT
t=1p(xt|x1,x2, . . . ,xt−1),

= ΠT
t=1p(xt|x<t), (12.10)

where the notation for the matrix coefficients and bias factors is silent. Here, p(xt|x<t)
is the probability distribution conditioned on the sentence up to the t − 1 word. This
probability function implicitly depends on the matrix and bias coefficients, and the op-
timal coefficients are those that maximize equation 12.10. Equating the quality factor
Qt to p(xt|x<t) and employing equation 12.10 probabilistically justifies the rationale for
concatenating the quality factors in equation 12.8 and defining its negative logarithm as
the loss function (Cho, 2015). For computational efficiency the probability function is
approximated by the truncated Markov assumption

p(x1,x2, ...,xT ) ≈ ΠT
t=T−np(xt|xt−n,xt−n+1, . . . ,xt−1), (12.11)

where we are only concerned about the previous n words that influence the current one.

5. Iterative Gradient Estimate of Optimal U,V,W,b. The iterative steepest descent
formula for updating the unknown coefficients in b and the U,V,W matrices symbolized by
Z is given by

Zij = Zij − α
∂ǫ

∂Zij
, (12.12)

where the gradient forWij is derived in Appendix 12.8 and the formulas for the other gradients
are requested in Exercises 2-3. In the training phase, thousands of sentences are used for the
training set and the RNN is trained until an acceptable prediction accuracy is achieved. Then
the network is used to complete incomplete sentences or phrases, or perhaps translate sentences
from one language to another. As will be noted later, a vanishing gradient limits the number
of input words for any one RNN prediction.

In summary, the VRNN architecture is depicted in Figure 12.1. For natural language processing,
its supervised training procedure is similar to that for classifying images by a standard neural network
except a large comprehensive set of sentences are used for training the network. Unlike the standard
neural network in Figure 12.2, the VRNN matrices U,V,W are shared by all the neurons. Also
the words in an input sentence are sequentially inserted into the network and a neuron is assigned
to each input word. This compares to the simultaneous insertion of an entire image into all of the
nodes in the first layer of a fully connected neural network. For VRNN, a vanishing gradient prevents
remembering no more than a small number of previously used words (see Appendix 12.8) and so
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ignores information that might be important for predicting the target words at time t. To remedy
this problem, the next section presents the RNN known as gated recurrent units (GRU) networks.
Its related predecessor, the long short-term memory (LSTM) network, is discussed in Appendix 12.9.
Both of these improved networks consist of gates that prevent vanishing gradients so that they enjoy
both long- and short-term memories.

Comments.

• Many-to-Many RNN: Translating from one language to another5, requires the many-to-many
RNN architecture illustrated in Figure 12.3a. However, current natural language translators
(NLTs) are more complex than the VRNN, and one of the popular NLTs architectures is the
RNN encoder-decoder structure (Silipo et al., 2019) consisting of two stacks of RNNs: one
stack for the encoder of words from one language and the other for the decoding of the latent
space code from the encoder. The practical RNN architecture also uses the long short-term
memory (LSTM) cells to overcome the vanishing gradient problem.

• Many-to-One RNN: Sometimes the task of RNN is to assess the overall message of a sentence
or a few sentences, e.g. the sentiment of a movie review (Maas et al., 2011). Is the movie
good or bad? In this case, there are many input words but there is only one output needed
at the end of review, as illustrated in Figure 12.3b.

• Many-to-Many RNN: In translating from written English to written French, there may be
more words in the French translation than in the English phrase (Sutskever et al., 2014).
Hence, this corresponds to an input with many words and an output with many more words,
as illustrated in Figure 12.3c. Other RNN applications include text-to-speech (Graves et al.,
2011).

• One-to-Many RNN: The input to the RNN consists of certain features obtained by applying
CNN to an image, as shown in Figure 12.4. The goal of the RNN is to produce a caption that
describes the image, so this is a one-to-many mapping as illustrated in Figures 12.3d and 12.4.

• RNN’s can be used to train character-level language models, as illustrated in Figure 12.5.
Similar to prediction of words by RNN, a character-based RNN can model the probability
distribution of the next character given the sequence of characters before it. This is relevant
to the application of RNN for predicting well logs from other well logs, where a log’s resis-
tivity, porosity and Vp values might be sequentially input with increasing depth to predict
the Vs velocity profile at the same depth. Musical scores can also be created by RNN after
being sufficiently trained (soundcloud.com/optometrist-prime/recurrence-music-written-by-a-
recurrent-neural-network). Time series can also be predicted by LSTMs, such as financial data
(//wiki.ubc.ca/Course : CPSC522/ F inancial Forecasting using/ LSTM Networks) or
well logs (Zhang et al., 2018; Guo et al., 2019; Pham and Naeini, 2019).

12.1.2 Vanishing Gradient of VRNN

The VRNN is not used in most applications because it suffers from the vanishing gradient6

problem (Bengio et al., 1994; Hochreiter et al., 2001). We can mathematically examine this problem

5RNN is also used for speech translation. Given an input sequence of acoustic signals, a RNN can predict
a sequence of phonetic segments together with their probabilities.

6A persuasive video that demonstrates the disappearance of the gradient is in https://www.youtube.com/
watch?v=yCC09vCHzF8.
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Figure 12.3: RNN architectures for a) many-to-many, b) many-to-one, c) many-to-many
mappings and d) one-to-many mappings. The many-to-many diagram in a) differs from
that in c) because it implicitly represents a combination of an encoder-decoder architecture
with latent space variables (Silipo et al., 2019).

by taking the gradient of the RNN loss function in equation 12.9 to get

∂ǫ

∂Wij
=

∂ǫ

∂ot

∂ot

∂ht−1

∂ht−1

∂ht−2
. . .

∂h2

∂h1

∂h1

∂Wij
. (12.13)

For simplicity of exposition, consider ht and W to be 1× 1 scalars for all values of t. In this case,
∂ht

∂ht−1
= Wσ′ resembles a band-limited delta function. Thus, equation 12.13 for large values of t

will be the product of many Wσ′s, which will be nearly zero everywhere except at the origin for
reasonable values of |W | < 1. For |Wσ′ < 1|, the gradient will practically vanish at several neurons
before the evaluation time t. Therefore, the residual at time t will be used to adjust the value of
W according to information only from the recent input words. It will forget about what was input
at earlier times. This prevents the ancient historical context of a sentence or paragraph to assist
in predicting the next word. Appendix 12.8 shows this statement to be true for higher dimensional
vectors ht and matrices W.

Therefore, the key to beating the vanishing gradient problem is to incorporate a skip-like connec-
tion into the VRNN architecture (see Figures 12.6a and 9.18) so one can remember words from the
distant past (Srivastava et al., 2015). Recall that the skip connection in the residual neural network
shown in Figure 12.6 takes a short-cut to jump over several layers (en.wikipedia.org/wiki/Residual neural network).
This short-cut unit in RNN that jumps over at least one unit is also known as a leaky unit (see Ali
Ghodsi lectures in https://www.youtube.com/watch?v=AvyhbrQptHk. For the VRNN case, the
skip connection can be incorporated by adding a weighted hidden-state vector to the output:

ht = (1− 1

τt
)ht−1 +

1

τt
σ(Wht−1 +Uxt + bh), (12.14)
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Figure 12.4: Image captioning by the combination of CNN and RNN. Here, the output
vector i from the last layer, without the softmax operation, of the CNN is used as part of
the memory state for the first hidden-state neuron of the RNN. The activation function that
gives h1 in the first layer takes the form h1 = tanh(Wxhx0+Whhh0+Wihi). Illustration in-
spired from the lecture by Fei−Fei Li, Justin Johnson, Serena Y eung lecture in CS231
in https://www.youtube.com/watch?v=yCC09vCHzF8.
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Figure 12.5: An example RNN with 4-dimensional input and output vectors, and 4 hidden
4 units (neurons). This diagram shows the activations in the forward pass when the RNN
is fed the characters ”hell” as input. The RNN computes the probability vector yt for
predicting the next character (vocabulary is ”h,e,l,o”); we want the green numbers to be
high and red numbers to be low. A softmax operation can be applied to the output values
to give a probability value to each element in the output vectors. Illustration and caption
from karpathy.github.io/2015/05/21/rnn-effectiveness/ and Karpathy (2019).
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where 1 ≤ τt ≤ ∞. If τt = 1 then this reduces to the VRNN. In this case, ∂ht

∂ht−1
∝ σ′, which

leads to a vanishing gradient according to equation 12.13. However, if τt →∞ we simply equate the
previous state ht−1 to the new state ht; in addition, the current input word xt is ignored. In this
case, ∂ht

∂ht−1
= 1 for all the gradients in equation 12.13, until we encounter the time step t = ti where

τt ≈ 1. At that time step ∂ht

∂ht−1
≈ σ′ so we can start using phrases or words around that time to

adjust W to reduce the residual.
In summary, we can choose the values of the leaky parameter τt so that we can remember words

input at much earlier times than the current time. This long-term memory is dictated by the choice
of τt. How are the values of τt selected? They are learned from the training, and give rise to the reset
gate in gated recurrent networks (GRUs) and the cell states in long short-term memory (LSTM)
networks.

To generalize this memory capability we can choose 1
τ
to be anM ×1 vector with either zeros or

ones. Taking the element-by-element Hadamard product 1
τ
⊙ht−1 forces us to either remember the

previous ith hidden state vector ht−1,i (1/τt = 1) or forget its squashed version σ(Wht−1+Uxt+b)
for 1/τt = 0. Thus the leaky unit in equation 12.14 allows one to overcome the vanishing gradient
problem of VRNN by allowing the skip connection controlled by the gatekeeper 1

τ t
to allow previous

words to enter the current memory. Rather than manually setting the 1/τt coefficients to be between
one and zero at each neuron, we will let the network learn the best values by adding a gatekeeper
in the network.

Gatekeepers

Incorporating a sigmoid σ(zt) to an input vector zt squashes large negative elements to zero, and
large positive elements to 1. In other words, it is a gatekeeper that only allows numbers larger than a
small negative value to pass. As we will shown in the next section, replacing 1/τt in equation 12.14
by a term similar to σ(zt) will be the gatekeeper for long-term memory in GRUs. The tanh(zt)
is not considered to be a gatekeeper because it allows for the passage of both large positive and
negative elements in zt.

12.2 Gated Recurrent Unit Network

We now discuss the gated recurrent unit (GRU) network that overcomes the vanishing gradient
problem. An alternative to GRUs is the more complicated and sometimes less effective long short-
term memory network discussed in Appendix 12.9.

The GRU was introduced by Cho et al. (2014), and its architecture is shown in Figure 12.7.
It is simpler than standard LSTM models, and has been growing increasingly popular. The GRU
equations are the following.

reset gate: gr
t = σ(Wr(xt,ht−1) + br), (12.15a)

update gate: gu
t = σ(Wu(xt,ht−1) + bu), (12.15b)

tanh fate: h̃t = tanh(Wh(xt,g
r
t ⊙ ht−1) + bh), (12.15c)

skip gate: gs
t = (1− gu

t )⊙ gs
t−1 + gu

t ⊙ h̃t. (12.15d)

There are many variations of LSTM and GRUs, too many to mention. Chung et al. (2014) performed
a performance comparison between LSTMs and GRUs and the results are mixed. A recent study
(Greff et al., 2017) compared the performance of eight LSTM variants and concluded that none
of the variants ”can improve upon the standard LSTM architecture significantly, and demonstrate
the forget gate and the output activation functions to be its most critical components. We further
observe that the studied hyperparameters are virtually independent and derive guidelines for their
efficient adjustment.”.
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Figure 12.9: Truncated back-propagation through time: Forward and backward modeling
should be run through chunks of data for updating the weights. Illustration adapted from
Fei− Fei Li, Justin Johnson, Serena Y eung lecture in CS231.

12.3 Training RNNs

Training a RNN is similar to training a traditional Neural Network. We also use the back-
propagation algorithm, but with a little twist. Because the parameters are shared by all time steps
in the network, the gradient at each output depends not only on the calculations of the current time
step, but also the previous time steps. For example, in order to calculate the gradient at t = 4 we
would need to back-propagate 3 steps and sum up the gradients. This is called Back-propagation
Through Time (BPTT). In BPTT, we forward model the inputs throughout the entire sequence to
compute loss, and then backward propagate the residual to compute the gradient.

12.3.1 Truncated Back-propagation

For a long sequence of input words, it is too expensive to back-propagate from the current time
all the way backwards. Instead the forward and backward propagation is run through chunks of the
data, as illustrated in Figure 12.9. In each case, the weights for the previous chunks are frozen while
the weights are only updated in the current chunk. The loss function is also computed just for the
current chunk (see equation 12.11). This is known as truncated back-propagation through time.

12.3.2 Bidirectional RNN

An extension of RNN is the bidirectional RNN (BRNN), which includes information from both
the past and future to predict the current word. With standard RNN, the prediction of the current
word uses the present and past input words, while the bidirectional RNN looks at both earlier and
future words to predict the present. See Figure 12.10 for the BRNN architecture. BRNNs gives
us a higher learning capacity (but we also need a lot of training data) compared to RNNs because
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Figure 12.10: Bidirectional RNN with LSTM units, also denoted as a bidirectional LSTM.
Figure taken from Cui et al. (2018).

more information is available for the current time prediction. Empirical studies show that bidirec-
tional networks can be substantially better than unidirectional ones in many fields, like phoneme
classification (Graves et al., 2005) and speech recognition (Graves et al., 2013).

To be more precise, the output state yt is given as a function of the hidden vectors
←−
ht and

−→
ht:

yt = η(
←−
ht,
−→
ht), (12.16)

where η( ) is a function that combines the two output sequences. It can be a concatenating function,
a summation function, an average function or a multiplication function (Cui et al., 2018), and it
might also include the softmax function.

12.3.3 Deep RNN

Deep learning assumes that a deep, hierarchical model can be exponentially more efficient at
representing some functions than a shallow one (Bengio, 2009). For example, Delalleau and Bengio
(2011) show that a deep sum-product network may require exponentially less units to represent the
same function compared to a shallow sum-product network. Pascanu et al. (2014) tested to see if
the same argument applies to recurrent neural networks. An example of a 4-layer RNN is shown in
Figure 12.11, where the top output layer denotes the target values. Their empirical results showed
that the proposed deep RNNs benefit from the depth and outperform the conventional, shallow
RNNs.
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4-Layer Recurrent RNN

Figure 12.11: Four-layer RNN. Illustration from Graves et al. (2013). Here h
(1)
t =

σ(U(1)xt + W(1)h
(1)
t−1 + b

(1)
h ) and h

(k)
t = σ(U(k)h

(k−1)
t + W(k)h

(k)
t−1 + b

(k)
h ), where the su-

perscript refers to the layer number and each layer is associated with the kth-layer matrices

W(k),U(k) and bias vectors b
(k)
h .
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12.4 RNN Applications in Geoscience

There are many applications of RNN to geoscience problems, especially to those where the input
is a correlated time series. We will present results from two such applications and for predicting well
logs from seismic data.

12.4.1 Predicting Missing Well Logs by BRNN

Well logs record geophysical parameters such as Vp, Vs, resistivity, rock density, saturation as
a function of depth. The measurements at one depth are correlated with those at nearby depths
because the geology is also correlated in depth. One of the problems with well logs is that they are
expensive to record, and so in many cases only a small suite of different measurements are recorded
per well. See Figure 12.12a for an example of five well logs from the same borehole.

Fortunately the measurements of several types of geophysical parameters are usually correlated
to other types. So the idea is to train a neural network on wells that have almost a full suite
of different types of measurements, and then use the learned weights to predict the logs that are
missing at other wells. This is very similar to the goal of a many-to-many RNN architecture where
one language is translated to another.

Phan and Naeini (2019) used a bidirectional RNN (BRNN) method to predict missing Vs well logs
in the North Sea; the RNN is that of LSTM, except it is bidirectional. The training data consisted
of 35 well logs from the North Sea, and these data each had 8 different types of logs. Three blind
wells were selected and used to test the efficacy of their method. They used a bidirectional LSTM
architecture for their training.

According to Pham and Naeini (2019), their architecture consist of ”..a BRNN followed by a
FCNN. The BRNN has three forward LSTM layers and three backward LSTM stacks with 200, 300
and 400 neurons respectively.

For the well log application, there are four FCNN layers with 2048, 1024, 512, and 1 neurons
respectively. The training dataset has 32 wells with gamma ray (GR), density (RHOB), Vp, resistivity
(RT), volume of shale (VSH), water saturation (Sw), neutron porosity (NPHI), depth (D), and the Vs
log.”. They calculate the minimum length of all wells in the training dataset and take samples from
the beginning of each well to the maximum multiple of the minimum length. They then concatenate
all types of logs except the Vs log along the last dimension. The training data is resampled as
batches with ”minimum-length” samples in each batch. This configuration avoids mixing samples
of different depths from different wells in a batch. They then pre-process the data by removing the
median and scaling according the interquartile range, which is robust to the outliers and removes
the effects of erroneous spikes in the training data.

After 100 epochs of training, the predictions of Vs at one of the blind wells is shown in Fig-
ure 12.12a and a zoom view of the predicted Vs is in Figure 12.12b. The predicted curves in red
closely match the actual Vs curves in black.

12.4.2 Predicting Well Logs from Seismic Reflection Data

Faraj and Regib (2018) used the 2-layer GRU architecture in Figure 12.13a to predict the density
log from seismic data recorded over wells in the North Sea. The 2-layer GRU in Figure 12.13c is
used to train on data, where the input consisted of a cube of 144 zero-offset reflection traces on the
left of Figure 12.13c and the output is the well log on the right. Both the seismic data and well
logs in the training were filtered with a low-pass filter to match the frequency content of training
pairs. Each trace is manipulated to have a zero mean and a unit standard deviation. The traces
are sequentially input at time t and the well log is predicted at time t as well. A mean square error
is used to measure the misfit between the predicted and actual well log, and a gradient descent is
used to update the parameters of the GRU. Early stopping is used to prevent overfitting, and there
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Petrophysical Property Estimation from Seismic Data using RNN
(Alfarraj and AlRegib, 2019)

7 7

a) Seismic Predicting Well Logs

c) 2-Layer GRU Prediction of Well Logs

b) CNN vs RNN

d) 2-Layer GRU Prediction Results

Figure 12.13: a) The GRU training pairs consist of the input cubes of seismic data and
the output data are the well logs represented by the skinny colored tubes. b) Comparison
between a simple NN architecture on the left and a RNN architecture on the right which
recurses the output back into the network. c) Workflow of 2-layer GRU prediction of well
log from seismic data and d) results from a test case for predicting density from seismic
traces. These data pairs were recorded in the North Sea.

were 32 unknown parameters in the GRU. Three wells and the accompanying seismic data were
used for training, and one well with seismic data were used for validation. The results are shown in
Figure 12.13d, where the GRU was able to the density log from seismic data much more accurately
than the feed-forward network. The feed-forward network was not able to properly train on such a
small data set.

12.5 Summary

In summary, the RNN is a type of neural network that efficiently accounts for sequences of
correlated atoms, where the atoms can be, for example, individual words, letters, pictures, well log
readings, or sounds. The sequence of input vectors xt can be processed by applying the recurrence
formula at every time step to get the new hidden-state vector ht:

ht = fW,bh
(ht−1,xt), (12.17)



12.5. SUMMARY 357

where fW,bh
( ) represents a function with the parameters W and bh. In general W might represent

the matrix coefficients for both the hidden-state, cell state, forget state, bias and input state tensors.
For VRNN, the W matrix is represented by [WhhWxh] and ht = tanh([WhhWxh](xt−1,xt)) and
the output is yt = Whyht. A softmax is usually applied to yt to get the component of the loss
function.

The problem with VRNN is that a vanishing (or exploding) gradient restricts it short-term
memory with no more than a few recently used input atoms. For sentence translation this means
not more than a few recently used words can be remembered well. To lengthen the memory time we
have the LSTM and GRU networks, and their variations. The key idea is to incorporate additive
thresholding functions that prevent a vanishing gradient deep into the network. For example, the
GRU derivative ∂ht/∂ht−1 in equation 12.15d gives the value 1 at zt = 1, which can be multiplied
many times over and not vanish like the concatenated derivatives of a sigmoid function. The van-
ishing gradient is also not a problem with LSTMs because the output cell state is a weighted sum of
the previous cell state that constructs a superhighway where information from the distant past can
flow unimpeded. If an exploding gradient is a problem then clipping the gradient above a specified
threshold is an ad hoc remedy (Goodfellow et al., 2016).

RNN can be used for many different types of mappings.

• One-to-many mapping of atoms to molecules, where the output molecule is the caption asso-
ciated with the input atom of a picture.

• Many-to-many mapping where the input sentence from one language is translated to the
output of another language. It could also be used for classifying videos, where the input is
a sequence of frames and the output is a written description of the video’s contents. In the
case of the well log example, the readings from several different well logs are the input and
the output is the well log of another type.

• Many-to-one mappings such as the input being a sequence of words in a movie or restaurant
review and the output is an estimation of the sentiment of the review: good or bad.

Finally, we quote from Greff et al. (2014): ”Neural networks can be tricky to use for many
practitioners compared to other methods whose properties are already well understood. This has
remained a hurdle for newcomers to the field since a lot of practical choices are based on the intuitions
of experts, as well as experiences gained over time.”.

Recent improvements of RNN include Adaptive Computation Time, Neural Programmers, At-
tentional Interfaces, and Neural Turing Machines (distill.pub/2016/augmented − rnns/). They
all rely on the same underlying trick known as attention. In attention, the RNNs focus on part-
s of the input that are most important for determining an accurate output. For example, in a
movie review attention is focused on a pre-defined library of phrases such as ”worst movie ever”
or ” a real snoozer” to decide if it’s a good or bad movie. There is evidence that a 2D con-
volutional based neural network with causal convolution can outperform both RNN/LSTM and
Attention-based models. Some even go as far to say Drop your RNN and LSTM, they are no good!’
(http://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0 and https://medium.com/swlh/
attention-please-forget-about-recurrent-neural-networks-8d8c9047e117).

The demise of standard RNNs was accelerated by the introduction of the Transformer architec-
ture by Google researchers (Vaswani et al., 2017), who claimed that Transformers were faster and
more accurate than LSTM and GRUs for many sequential processing tasks in NLP (Culurciello, 2018;
https://analyticsindiamag.com//why-transformers-are-increasingly-becoming-as-important-as-rnn-and-
cnn/). Within a few years of its introduction, the Transformer model has become the architecture
of choice for many NLP problems (Wolf et al., 2020), replacing RNN models such as LSTMs. The
Transformer model, the self-attention mechanism and their applications are discussed in Chapter 13.
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12.6 Exercises

1. Derive the explicit formulas for ∂ǫt ∂hk and ∂+hk ∂W in equations 12.20. Compress these
formulas into vector forms and express the formula for the gradient ∂ǫ/∂W in the form of
matrix-vector multiplications, which includes the expression in equation 12.28.

2. For the VRNN architecture, derive the formula for the gradient ∂ǫt/∂V . Why doesn’t it have
the summation over the k indices as seen in equation 12.21?

3. For the VRNN architecture, derive the formula for the gradient ∂ǫt/∂U . In this case why does
it have summation over indices as in equation 12.21? Derive the formulas for the gradients of
the bias vectors.

4. Write a MATLAB code for a simple VRNN. In this case the input is a cosine function sin t and
the output is cos t. Quantize the values of the input and output and describe your dictionary
and one-hot coding.

5. Wisdom et al. (2016) show that the solution to the stacked RNN problem can be recast as
the solution to an l2 minimization problem with l1 constraints. Their solution to minimizing
the negative log-likelihood solves the following optimization problem:

min
h1,h2,...,hT

T∑

t=1

(
1

2
||xt −ADht||22 + λ1||HT ||1 +

λ2
2
||Dht − FDht−1||22), (12.18)

where the regularization parameters are λ1 = 2σ̃2ν1 and λ2 = 2σ̃2ν2. This problem can be
numerically solved by a ISTA-like algorithm, except they name it sequential iterative soft-
thresholding algorithm (SISTA). Relate the variables in equation 12.18 to the W, V, b and
U in the VRNN formulation. Recast Algorithm 1 in Wisdon et al. (2016) in terms of these
VRNN variables.

6. Repeat exercise 4 except use the SISTA algorithm in exercise 5.

12.7 Computational Labs

1. Go to the Blind Deconvolution RNN lab in LAB1/Chapter.CNN.RNN/RNN lab.html and run
the MATLAB code.

12.8 Appendix: Vanishing Gradients

The gradient of the total loss function in equation 12.9 w/r to the component W of the W
matrix is

∂ǫ

∂W
=

1

T

T∑

t=1

∂ǫt
∂W

, (12.19)

where W represents an element of the W matrix. For example, if this matrix element is Wkl then
W →Wkl.

Each loss ǫt at time t in equation 12.9 is a composite function of the previous hidden-state
vectors ht−1,ht−2, ..., which in turn are each functions of W, as illustrated in Figure 12.14. We can
then express ǫt = ǫ(ht,ht−1,ht−2, . . . ,h1)t as a multivariable function, so that the multivariable
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Figure 12.14: Forward (red arrows) and backward (black arrows) of an RNN.

chain rule7 says that the partial derivative ∂ǫt/∂W in equation 12.19 is given by

∂ǫt(W)

∂W
=

t∑

k=1

∂ǫt
∂hk

∂hk

∂W
,

=
t∑

k=1

∂ǫt
∂ht

H×H Jacobian︷︸︸︷
∂ht

∂hk

∂+hk

∂W
, (12.20)

where

∂ht

∂hk
= Πt≥ j>k

∂hj

∂hj−1
, (12.21)

and ∂+ in equation 12.20 indicates the immediate derivative notation8 used in Pascanu et al. (2013).
Equation 12.21 follows by the chain rule that says that the derivative of a composite function
ht = f(ht−1(ht−2(...))) is a concatenated chain of derivatives, starting with the outermost composite
function and ending with the one under differentiation.

The H ×H Jacobian matrix9 is given by

J = ∂ht/ht−1 =
∂(ht,1, ht,2, ..., ht,H)

∂(ht−1,1, ht−1,2, ..., ht−1,H)
, (12.22)

7en.wikipedia.org/wiki/Chain rule
8Immediate derivative means that ∂+hk/∂W only sees hk = σ(Whk−1+Uxk+bk) as an explicit function

of W, and ignores the fact that hk−1 is implicitly a function of W .
9We are abiding by the definition of the Jacobian in en.wikipedia.org/wiki/Jacobian matrix and determinant.

Some authors refer to the Jacobian as the transpose of J in equation 12.23.
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in equation 12.21 takes the explicit form

∂ht

∂ht−1
= [

∂ht

∂ht−1,1

∂ht

∂ht−1,2
. . .

∂ht

∂ht−1,H
],

=




∂ht,1

∂ht−1,1

∂ht,1

∂ht−1,2
. . .

∂ht,1

∂ht−1,H

∂ht,2

∂ht−1,1

∂ht,2

∂ht−1,2
. . .

∂ht,2

∂ht−1,H

. . . . . .

. . . . . .

. . . . . .
∂ht,H

∂ht−1,1

∂ht,H

∂ht−1,2
. . .

∂ht,H

∂ht−1,H




, (12.23)

where [J]ij =
∂ht,i

∂ht−1,j
.

From equation 12.3 the ith component of ht is

ht,i = σ(

argi︷ ︸︸ ︷
H∑

j=1

Wijht−1,j + (Uxt)i + bi), (12.24)

so that differentiating argi (defined by the overbrace in equation 12.24) w/r to ht−1,k gives

∂σ(argi)

∂ht−1,k
=Wik. (12.25)

Defining σ(argi)
′ = ∂σ(argi)/∂argi allows the Jacobian components in equation 12.23 to be ex-

pressed as

Jik =
∂ht,i
∂ht−1,k

=
∂σ(argi)

∂argi

eq. 12.25: Wik︷ ︸︸ ︷
∂argi
∂ht−1,k

,

=

Dt,i︷ ︸︸ ︷
σ(argi)

′Wik, (12.26)

which can be expressed in matrix form as

J =
∂ht

∂ht−1
= DtW. (12.27)

Here Dt is a H ×H diagonal matrix such that [Dt]ip = δipσ((Wht−1)i + (Uxt)i + bi)
′.

Now we can put it all together to show that we have a vanishing gradient problem. Plugging
equation 12.27 into equation 12.21 gives

∂ht

∂hk
= Πt≥j>kDjW]. (12.28)

The σ′ is the derivative of a tanh function where its absolute value never exceeds 1. Therefore, the
norm of equation 12.28 is bounded above by ||W|| raised to the tth power. If ||W|| < 1 is less than
one then the H × H Jacobian ∂ht

∂hk
and the gradient in equation 12.19 vanish for large values of

t− k. This is consistent with the empirical evidence that VRNN is not a practical natural language
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translation method if a memory significantly larger than a few words is required. On the other hand,
if the ||W|| >> 1 then the gradient can explode.

12.9 Appendix: Long Short-Term Memory Architecture

The LSTMGRUs architecture is shown in Figure 12.15b and consists of three gates, each indi-
cated by the Hadamard product ⊗ symbols associated with the element-by-element multiplication
of a gate filter and input vector. We will now present the feed-forward propagation formulas for each
gate and examine the role of each gate in regulating what information passes through the network
(Graves and Schmidhuber, 2005). Don’t worry if you can’t understand why these gates work, but
somehow the coefficients can be learned so LSTM produces some amazing results.

Forget Gate

The first step in the LSTM unit is to decide which parts of the H × 1 cell-state vector ct−1 get
used. This decision is made by the H × 1 forget vector ft in Figure 12.16b. If ft has a zero in its ith

element then the Hadamard product ft ⊙ ct−1 will also have a zero in its ith element, and therefore
forget the cell-state value, i.e. word, at this element. If ft has a one in its ith element then the
product ft ⊙ ct−1 remembers the ith element of ct−1 completely. Any fractional value ft between
0 and 1 downgrades the value at the ith element. The element values of ft are determined by the
forget gate formula

ft = σ(Wf (ht−1,xt) + bf ), (12.29)

where bf is the H × 1 bias vector and 0 ≤ ct−1,i ≤ 1. Here, σ is the sigmoid function, Wf = [W U]
is the H × 2H matrix formed by concatenating the matrices W and U along the row direction; and
(ht−1,xt) is the vector formed by concatenating the vectors ht−1 and xt along the column direction.
Gers et al. (1999) introduced the first forget gate as a modification of the LSTM network, which
allows the LSTM to reset its own state.

Roughly speaking, a skip connection is the information superhighway (Srivastava et al., 2015)
in the RNN architecture, as denoted by the horizontal arrow10 in Figure 12.16a. The ct is denoted
as the cell state in Figure 12.16a. An example is now taken from colah.github.io/posts/2015− 08−
Understanding − LSTMs/: ”a language model trying to predict the next word based on all the
previous ones. In such a problem, the cell state might include the gender of the present subject, so
that the correct pronouns can be used. When we see a new subject, we want to forget the gender of
the old subject.”. How did it know that the previous word needed to be forgotten? Well, supposedly
the network has been sufficiently trained to get the correct learned weights for the matrices and bias
vector.

Input Gate

The next step determines how to additively update the old cell state ct−1 with the new cell
adjustment c̃t:

c̃t = tanh(Wc(ht−1,xt) + bc). (12.30)

This consists of two parts as illustrated in Figure 12.17. The first step is to decide how much to

10Notice that there is no explicit thresholding function applied to the input data ct−1 along this horizontal
highway. Therefore the gradient of the loss function for information entering this superhighway will not be
explicitly multiplied by the coefficients of the unknown matrices. This means that the gradient of this
information will not be damped by powers of the matrix coefficients.
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Concatenate
OperationNetwork

Layer

Pointwise CopyVector
Transferb) LSTM RNN

a) Vanilla RNN

Neural

Figure 12.15: Comparison between a) standard VRNN and b) LSTM architectures. The
key improvement with the LSTM is that there is an information superhighway (horizontal
arrow in b) where the gradient does not vanish and the gates (denoted by the Illustration
adapted from colah.github.io/posts/2015-08-Understanding-LSTMs/).



12.9. APPENDIX: LONG SHORT-TERM MEMORY ARCHITECTURE 363

σ t-1 t ftf  =   (W(h   ,x ) + b  )

a)  Cell State Highway b) Forget Gate

Figure 12.16: a) Cell state where LSTM unit cell is outlined in green and the cel-
l highway denoted by the black arrow. b) Forget gate. Illustration adapted from
colah.github.io/posts/2015 − 08− Understanding − LSTMs/.

~c = tanh(W (h   ,x ) + b )t-1t tC
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σi  =   (W (h   ,x ) + b )t t-1 ti i

C

tt

a)  Gate for Additive Cell State c

~
t-1t t

b) Adding Candidate Cell State

c = f   c  +  i   c

Figure 12.17: a) Gate for the additive cell state and b) adding the old cell state to the can-
didate one. Illustration adapted from colah.github.io/posts/2015 − 08−Understanding−
LSTMs/.
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admit into the additive cell state with the input gate

it = σ(Wi(ht−1,xt) + bi), (12.31)

where Wi is the H ×H input matrix and bi is the H × 1 input bias vector. Here, σ is the sigmoid
function that makes the decision of what to keep and forget with the element-by-element Hadamard
product it⊙ c̃t. The new cell state is a weighted summation of the old cell state ct−1 and the additive
cell state c̃t :

ct =

skip−like long−term memory︷ ︸︸ ︷
ft ⊙ ct−1 +

short−term memory︷ ︸︸ ︷
it ⊙ c̃t . (12.32)

Here Wc is the H × H additive cell matrix and bc is the H × 1 additive cell bias vector. Unlike
terms whose gradients vanish, the new cell state is the weighted addition of the old cell state and
new additive cell state. There is no explicit activation operation applied to ct−1 so its derivative
with respect to ct−n will be free of the matrix coefficients. For example, assume ct−1 = ct−30 and
the forget vectors have allowed this condition. In this case, the estimate of the gradient w/r to the

coefficients of Wc will not vanish for ∂ct−1

∂ct−30
. This superhighway of information for the cell state

adds pre-existing information to the adjusted cell state without applying the activation function.

Output Gate

The output gate is displayed in Figure 12.18 which decides what is contained in the new hidden-
state vector ht given by

ht = ot ⊙ tanh(ct). (12.33)

where the output vector ot is

ot = σ(Wo(ht−1,xt) + bo). (12.34)

Here, Wo is the H ×H output matrix, bo is the H × 1 output bias vector.
The compact form of the LSTM equations is the following.




ft
it
c̃t
ot


 =




σ
σ

tanh
σ


⊙




Wf 0 0 0
0 Wi 0 0
0 0 Wc 0
0 0 0 Wo







(ht,xt)
(ht,xt)
(ht,xt)
(ht,xt)


+




bf

bi

bc

bo




ct = ft ⊙ ct−1 + it ⊙ c̃,

ht = ot ⊙ tanh(ct), (12.35)

where W is a H ×H matrix. In summary, the roles of the input, learned parameters and gates in
equation 12.35 are the following.

• xt ∈ R
D Input vector to the LSTM.

• W ∈ RH×D, U ∈ RH×D, b ∈ RH Weight matrices and bias vector which are learned during
training.

• ft ∈ RH Forget gate: How much should we erase ct−1.

• it ∈ RH Input gate: activation vector for input/output gate.

• ot ∈ R
H Output gate: activation vector for output gate.
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Output Gate

σo =   (W (h   ,x ) + b )t t-1 to o

h = o    tanh(c )ttt

Figure 12.18: a) Gate for the additive cell state and b) adding the old cell state to the can-
didate one. Illustration adapted from colah.github.io/posts/2015 − 08−Understanding−
LSTMs/.

• ht ∈ RH Hidden state vector.

• ct ∈ R
H Cell state gate.

• c̃t ∈ RH Cell input activation vector.



366 CHAPTER 12. RECURRENT NEURAL NETWORKS



Chapter 13

Self-attention and Transformers

In 2017, Google Brain researchers (Vaswani et al., 2017) introduced the attention architecture as
a faster and more accurate replacement of LSTM and GRUs for many sequential processing tasks in
NLP (Culurciello, 2018; https://analyticsindiamag.com//why-transformers-are-increasingly-becoming-
as-important-as-rnn-and-cnn/). The Transformer architecture extended the limited LSTM and GRU
recall of a few-hundred words to that of the entire input data set with thousands of words. Instead
of processing the input data sequentially, a Transformer can process the entire sequence all at once
and so its computations, unlike LSTM or GRU, can be easily parallelized on distributed memory
computers. This can result in a processing speedup that can be an order-of-magnitude faster than
processing sequential data by a RNN.

The most important component of the Transformer is that it uses the self-attention mechanism
(https://en.wikipedia.org/wiki/Transformer (machine learning model)) to upweight pairs of words
with similar meaning and downweight dissimilar pairs of words (Vaswani et al., 2017). This is
important for language translation because related words in a sentence can be located far from one
another in one language, and be close to one another in the translation. Identifying the similarity
and common meaning of word pairs provide the context of words in a sentence. For example, the
sentence Bank of the river says that the words bank and river are related to one another even though
they are not adjacent to one another in the sentence. The self-attention mechanism will assign a large
weight k14 that indicates that the first and fourth words are related to one another, and therefore
provide a proper meaning and context for these words.

Within a few years of its introduction, the Transformer model has become the architecture of
choice for some NLP problems (Wolf et al., 2020), replacing RNN models such as LSTMs. We will
now explain the attention concept, and then describe its use in the Transformer architecture.

13.1 Attention

The self-attention, aka attention, mechanism for language translation focuses on related words
in a sentence or in a sequence of sentences. It does this by assigning large weights to pairs of words
that are related to one another and downweighting unrelated pairs of words. For example, each
word vector xi ∀ i ∈ {1, 2, ...,W} in a W -word sentence can be assigned an N × 1 embedding vector
vi, where each element of vi is a number related to a characteristic or meaning of that word.

For example, the meaning of the word Bank in the sentence at the top of Figure 13.1a is
ambiguous unless other words in the sentence are taken into account. Bank can be associated
with the characteristics of, for example, money, the lean angle of a racing track or the sedimentary
deposits along the arcuate side of a river. In the context of the sentence Bank of the river, bank is
associated with the sedimentary deposits that border the side of a river. But how does a computer
judge which words in the sentence have similar characteristics to the word bank?

367
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Figure 13.1: Untrained self-attention workflow with the aim of getting the Value vectors yi

that indicate the meaning of the words xi in the input sentence. Example adopted from
the Youtube video at https://learning.rasa.com/transformers/self-attention/.
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Word similarities can be deduced from the word-embedding vector

v = (v1, v2, v3, v4, ...) = (money, preposition, article , water content, ...), (13.1)

where the embedding elements, in the example of Figure 13.1b, correspond to the characteristics
of the word’s association with money, role as a preposition, assignment as an article, relationship
to water content, and so on. A positive number can be assigned to each characteristic, where the
maximum value of 1 indicates that the word might have a high correlation to that characteristic and
0 indicates no relationship. The word-embedding vector v might have a dimension greater than a
few hundred and can be drawn from a pre-existing embedding library for each unique word x in the
input data set.

The elements of the embedding vector for the first word x1 → bank are given by the embedding
vector v1

bank→ v1 = (0.5, 0, 0, 0.5, ...), (13.2)

in Figure 13.1b where (v1)1 = 0.5 indicates that a commercial bank is associated with money or,
if it refers to a river bank, is strongly associated with water so that (v1)4 = 0.5. The prepositional
and article characteristics (v1)2 = (v1)3 = 0 in equation 13.1 are obviously assigned values of 0 for
the noun bank. In contrast, the corresponding elements of the embedding vector v4 for the word
river are

river→ v4 = (0, 0, 0, 0.5, ...), (13.3)

which only has a large value of (v4)4 = 0.5 for the water-content characteristic1. However, the
context of the sentence suggests that its subject matter is related to the bank of a river, so there
is a contextual similarity between the words water and bank. This similarity can be quantified by
taking the inner product of the first and fourth word-embedding vectors in Figure 13.1b to get

k̃14 = (v1,v4),

= (0.5, 0, 0, 0.5) · (0, 0, 0, 0.5)T = 0.25, (13.4)

in Figure 13.1c. The relatively large value of the inner product k̃14 = 0.25 suggests a strong similarity
in contextual meaning for the first and fourth words. Recognizing this similarity is essential for
correctly translating this sentence from one language to another.

The weights k̃ij = (vi,vj) are normalized in Figure 13.1d to give the normalized weight kij ,
where

kij =
k̃ij∑W
j=1 kij

; i, j ∈ {1, 2, . . . ,W}. (13.5)

Normalization allows us to recognize that relatively values of 1 > kij >> 0 close to unity indicate
that the ith input word is contextually similar to the jth word. Correspondingly, small values
1 >> kij > 0 indicate that the ith and jth words are weakly related to one another.

The weighted sum of W word-embedding vectors in a sentence

yi =

W∑

j=1

kijvj , (13.6)

gives the Value vector yi in Figure 13.1e, which provides a more contextual meaning to the ith word

1For convenience, we will assume (vi)k = 0 k ∈ {5, 6, . . . , }.
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compared to the embedding vector. For example, the embedding vector v4 = (0, 0, 0, 0.5) for the
fourth word river in equation 13.3 suggests that it could only refer to a flowing river, but the Value
vector for the fourth word is

y4 = k41v1 + k44v4,

= α0.25v1 + β0.25v4, (13.7)

which is a weighted sum of the embedding vectors for the first word bank and the fourth word river.
Thus, the value vector y4 recognizes that the word bank might be related to river as in a river bank,
and is not necessarily just a place to deposit money. Here, k12 = k13 = 0 and the normalization
terms are α = 1/0.75 and β = 1/0.5.

In summary, the untrained self-attention mechanism illustrated in Figure 13.1 computes a weight-
ed sum of embedding vectors for each input word, where the weights are inner-products of embedding
vectors. It is untrained in the sense that the weights are computed by simple inner products of em-
bedding vectors from the input sequence and do not require a supervised learning procedure.

The problem with this untrained approach is that a word in a complicated sentence, such as ”The
bank of the river is where the First National bank will be built”, might have contextual relationships
with many other words in the sentence. The first word bank has the meaning of a river bank,
while the second use of this word is that of a money bank. Moreover, the word built refers to the
money bank, not the river bank. To extract the contextual meanings of these different combinations
of words requires something more powerful than the untrained-attention mechanism. That is, we
need an attention mechanism that can learn multiple contextual meanings of a single word. Such a
capability exists by training a neural network from a large training library of different sentences.

The first step for transforming Figure 13.1 into a neural network is to replace the normalization
operation with the softmax function in Figure 13.2, which allows for a probabilistic interpretation
of the output. The second step is to incorporate learnable weights into the attention mechanism,
as described in the next section. This will eventually include a fully connected neural network as
described in section 13.2.1 that describes the multi-head attention mechanism.

13.2 Trained Attention

The untrained-attention architecture in Figure 13.2 can incorporate learnable weights by intro-
ducing the N × N Query MQ, Value MV and Key MK matrices in Figure 13.3. The top row of
embedding vectors v(i) in Figure 13.3a are multiplied by the N ×N Query matrix MQ to give the
N × 1 Query vector

ωi = MQvi i ∈ {1, 2, . . . ,W}, (13.8)

where W is the number of words in the sentence. The weights in MQ are unknown but, as later
sections show, these weights can be found by a gradient descent method applied to a large training
set with sentences translated from one language to another. Similarly, the N × 1 vi vectors along
the leftside column of Figure 13.3b are multiplied by the Key matrix MK to give the N × 1 Key
vector ω̃i:

ω̃i = MQvi i ∈ {1, 2, . . . ,W}. (13.9)

The inner product of the Key and Query vectors gives the un-normalized weight

k̃ij = (ω̃i,ωj) i, j ∈ {1, 2, . . . ,W}, (13.10)
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Figure 13.2: Untrained attention blocks obtained from Figure 13.1. Example inspired by
Rasa’s Youtube video at https://youtu.be/wj3ZYbKKUHI.
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Figure 13.3: Trained attention blocks obtained from Figure 13.2 by
multiplying vi by the Query MQ, Value MV and Key MK matri-
ces. Example inspired by the Youtube video at https://www.youtube.com/
watch?v=23XUv0T9L5c&list=RDCMUCJ0V6493mLvqdiVwOKWBODQ&index=3.
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Figure 13.4: Single-head attention architecture, where kij is given in equation 13.11.
Example adopted from Rasa’s Youtube video at https://youtu.be/wj3ZYbKKUHI.

in Figure 13.3b. To achieve a more robust convergence (Vaswani et al., 2017), the inner products of
the embedding vectors that are input into the Key and Query matrices are divided by the square root
of the dimension N of the embedding vectors. For example, if N = 64 then the (ω̃i, ωj) is divided
by 8. For this example, we assumed that the Key, Query and Value matrices are N × N square
matrices. In practice, these matrices can be rectangular with dimension N ′ × N , where N ′ < N
(Vaswani et al., 2017; http://jalammar.github.io/illustrated-transformer/).

The weights in equation 13.10 should be normalized, which can be done by the softmax operation

kij = normalize(k̃ij) =
exp(k̃ij)∑
j exp(k̃ij)

i, j ∈ {1, 2, . . . ,W}, (13.11)

where kij can be interpreted as the probability that the jth word is similar to the ith word. These
normalized weights are then used to obtain the N × 1 Value vectors

yi =

W∑

j=1

kijM
V vj , i ∈ {1, 2, . . . ,W}, (13.12)

in Figure 13.3c. These Value vectors can provide more accurate contextual meanings to the words
in the sentence than the embedding vectors vi.

The procedure described in Figure 13.3 is depicted as a single-head attention mechanism in the
block diagrams of Figure 13.4. The three tan-colored blocks, the inner product and the softmax
operations are classified as a single head of the attention mechanism. A boost in processing power
can be attained by increasing the number of heads to get the multi-head attention architecture shown
in Figure 13.5. The kth head for the Query computes the matrix-vector multiplication MQkvi = ωk

i

to get the output vector ωk
i for the kth head. Here we assume h heads.
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Figure 13.5: Multi-head attention architecture, where the hth, e.g. Key MKh, matrix has

the symbol h appended to the superscript. The result of MKhvi = ω̃
(h)
i .

The inner products for the outputs from the Key and Query blocks are computed, which are then

used as inputs into the softmax operation to get the vectors y
(k)
i k ∈ {1, 2, ..., h}, i ∈ {1, 2, ...,W}.

These outputs are concatenated together as the tall vector at the bottom right of Figure 13.5, and
fed into a fully connected feed-forward operation to get a shorter sequence of N × 1 Value vectors
yi for i ∈ {1, 2, . . . ,W}.

13.2.1 Single- and Multi-head Attention Architectures

The single- and multi-head attention architectures in Figures 13.4-13.5 are depicted in the
Vaswani et al. (2017) paper as the block diagrams in Figure 13.6.

• Masking. The masking operation is optional in the encoder. If it is used, then self-attention
modules in the decoder can use masking to ensure the prediction of future words only uses
inputs from previous words. See Figure 13.7c for an illustration of this mask.

• Inner Products and Scaling. The inner products of the Key and Query vectors are ob-
tained. The Scale block in the single-head rectangle scales the inner product of the Key and
Query vectors by 1/

√
d, where d = N is the dimension of the word-embedding vector v(i).

This scaling is needed, otherwise large values of N might result in huge inner products in the
argument of the softmax, which leads to small gradients.
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Scaled Dot-Product Attention Multi-Head Attention

Figure 13.6: Block diagrams for single- and multi-head attention architectures in the
Vaswani et al. (2017) paper. These are related to the block diagrams in Figure 13.4-13.5.

• Softmax. After scaling, the inner products of the scaled Query and Key vectors gives the
un-normalized k̃ij , which are fed into the softmax operation to give the normalized weights
kij . These weights kij multiply the vector MV vj , and the product is summed over the j index
to give the Value vector yi for a single head.

• Symbolic Representation of Attention. These operations are symbolically expressed in
Vaswani et al. (2017) as

Attention(MQ,MK ,MV ) = softmax(
MQ(MK)T√

d
MV ), (13.13)

which assumes that the embedding vectors are in row format. In our notation we assume the
embedding vectors are in column format.

• Block Diagram of Multi-head Attention. The block diagram of the multi-head attention
mechanism is shown on the right of Figure 13.6. It can also be expressed in a compact manner
as

MultiHead(MQ,MK ,MV ) = Concat(head1, head2, . . . , headh)M
O,

Attention(MQi ,MKi ,MVi) (13.14)

where the MQi ,MKi , and MVi are projection matrices for the ith head and the matrix co-
efficients are learnable. The output vectors of the heads after a scaled inner product and
softmax operation are concatenated into a long sequence of vectors, which is then multiplied
by the matrix MO to shape the result into a specified number of value vectors with a desired
dimension. Similar to the other matrices, the coefficients of MO are learnable by supervised
training. The dimension of the output vector after multiplication of the embedding vector
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by the Key or Query matrices is dK , but the dimension dV of MV vi is not necessarily the
same as dK . The number of heads in the Vaswani et al. (2017) paper is selected to be 8,
dK = dV = 64, and the dimension of the embedding vector is N = 512. Reducing the out-
put dimension of each matrix-vector multiplication to dK = dV = 64 makes the multi-head
computational cost to be the same as that for a single-head for dK = dV = N = 512.

• Positional Encoding Vector pi. Information about the order of words in a sentence must be
injected into the attention mechanism, as indicated by the round pos symbols in Figure 13.7.
At first glance, we might just assign the number 1 to the first word, the number 2 to the
second and so on. The problem with this approach is that the numbers can get very large
for long sequences of words. Also, the maximum number of words in the training set might
be less than that of the test sequences. Moreover, the training set might not have a certain
number of words in a sequence that characterizes sentences in the test set. Consequently the
training is incomplete, which might degrade the accuracy of translations. These problems can
be avoided by introducing sinusoidal position vectors, as shown in the next paragraph.

To introduce word order into the training, a N × 1 positional encoding vector pi is added to
the N × 1 embedding vectors vi:

v′
i = vi + pi, (13.15)

where pi is used to equip each word with information about its position in a sentence. There
are many choices of positional encodings, both learned and fixed as described in Gehring et
al. (2017). Vaswani et al. (2017) used sine and cosine functions to give the following Nx1
positional vector pi:

pi =




sin(iω1)
cos(iω1)
sin(iω2)
cos(iω2)

.

.

.
sin(iωN)
cos(iωN)




, (13.16)

where i is the position of the word in the sentence and the angular frequency is

ωk =
1

100002k/N
. (13.17)

A plot of pi for N = 128 and a 50-word sentence from Kazemnejad (2019) is shown in
Figure 13.8. Each row has a unique color pattern that represents the elements of a unique
positional vector pi with a different word position i ∈ {1, 2, . . . , 50}. Each word position in the
sentence is assigned a unique color pattern that resembles that of a binary number assigned
to each word position.

As an illustrative example, assume a simple binary encoding scheme such that the first word
is added to the positional binary vector p1 = (1, 0, 0, ...), the second word vector added to
p2 = (0, 1, 0, 0, ...), the third word vector added to p3 = (1, 1, 0, 0, ...), the fourth word vector
added to p4 = (0, 0, 1, 0, ...) and so on. Similar to the color patterns in Figure 13.8, the
corresponding binary color patterns of the binary positional vectors increase the presence of
non-zero numbers, i.e. colors, to the right with increasing word position.

In summary, the positional encoding vector is added to the embedding vector to indicate the
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Figure 13.7: Transformer architecture with the a) encoder, b) decoder and c) mask blocks.
The attention blocks from the encoder identify the related words in the English sentence
I am a Berliner, and the lower-attention block in b) indicates the related words in the
translated German sentence. These self-attention indicators are combined in the upper-
attention block in b) to establish the relevant relationships between the words in the English
and German sentences. The mask in c) ensures that the current output word in German
only uses the previous input words in German. Figure adapted from Vaswani et al. (2017).
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Figure 13.8: Positional encoding vectors pi plotted for N = 128 and a 50-word sentence.
Each row is a different 1 × 128 positional vector pi whose element values are color coded
according to the color bar and equation 13.17. Example adopted from Kazemnejad (2019).

position of each word.

• Feed-forward Block.

The softmax operations in the multi-head attention architecture of Figure 13.8 produce a
sequence of h vectors, which are concatenated together into a long vector. This long vector
is then multiplied by a dense matrix of learnable elements to form a sequence of W vectors,
each of which can be of dimension N × 1.

For the decoder in Figure 13.7, the number of output vectors in the topmost linear block can
be the same number of usable words in the German language. In this case, the word with the
highest softmax probability is selected to be the output word.

There are two linear transformations in each feed-forward network with a ReLU activation in
between. While the linear transformations are the same across different positions, they use
different parameters from layer to layer.

13.3 Transformer Architecture and Training

The multi-head attention architecture in Figure 13.7b largely comprises the encoder part the
Transformer architecture (Vaswani et al., 2017). The decoder part takes the Value vectors vi from the
encoder and decodes them into the output sentence of the translated language. Both the encoder and
decoder use block architecture diagrams similar to that for the multi-head attention block diagram in
Figure 13.6. A detailed description of the Transformer architecture is in http://jalammar.github.io/
illustrated-transformer/. The following description of the encoder and decoder workflows is largely
taken from Vaswani et a. (2017).

• Encoder. Each encoder consists of two parts: a self-attention mechanism and feed-forward
neural network. Only one encoder layer is shown in Figure 13.7a, but any number of these
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layers can be stacked on top of one another where the output of a layer is the input into the next
layer. For the example in Vaswani et al. (2017), they assumed a stack of Nx = 6 identical
layers. Each layer has two sub-layers. The first is a multi-head self-attention mechanism,
and the second is a simple, position-wise fully connected feed-forward neural network. A
residual connection, aka a skip connection, is used around each of the two sub-layers, followed
by layer normalization (Ba et al., 2016). That is, the output of each sub-layer is given by
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-
layer itself. To facilitate these residual connections, all sub-layers in the model, as well as the
embedding layers, produce output vectors with the same dimension.

• Decoder. The decoder in Figure 13.7b is also composed of a stack of Nx = 6 identical
layers. In addition to the two sub-layers in each encoder layer, the decoder inserts a third
sub-layer, which performs multi-head attention over the output of the encoder stack. Similar
to the encoder, residual connections are employed around each of the sub-layers to avoid a
vanishing gradient, which is then followed by layer normalization (Ba et al., 2016). The self-
attention sub-layer is also modified in the decoder stack with a masking operation illustrated
in Figure 13.7c. Masking, combined with the fact that the output embeddings are offset by
one position, ensures that the word predictions for position i at the top of Figure 13.7b can
depend only on the known inputs at positions less than i at the bottom of Figure 13.7b.

• Training. The examples in Vaswani et al. (2017) translated English to French and English
to German sentences. Each training batch consisted of a set of sentence pairs containing
approximately 25000 source words and 25000 target words. A dropout of about 10% was
applied to the output of each sub-layer, before it is added to the sub-layer input and normal-
ized. Dropout was also applied to the sums of the embeddings and the positional encodings
in both the encoder and decoder stacks. For training, the English sentences were used as
input into the encoder, and the German sentences were used as the input and output of the
decoder. Each embedding vector had a dimension of 512× 1. The German embedding words
in Figure 13.7b are fed in one at a time, while the output words at the top are advanced by
a one-word sample. The output of the softmax operation at the top of Figure 13.7b might
be a, for example, 10000× 1 vector where each element corresponds to the probability of the
output belonging to one of the 10 000 most-frequently-used German words. The element with
the highest probability is the one selected as the output word during the testing phase.

13.4 Advances in Transformer Models

Within a few years of its introduction, Transformer models such as BERT and GPT-3 (Goled,
2021) have become the architecture of choice for many NLP problems (Wolf et al., 2020), replacing
RNN models such as LSTMs. It has found great success in other fields such as computer vision
(Carion et al., 2020) and audio processing (Gulati et al., 2020; Lin et al., 2021) and promises to
expand in other areas of engineering and science such as application programming interfaces (Yang
et al., 2022), chemistry (Schwaller et al., 2019) and life sciences (Rives et al., 2021).

For example, application programming interfaces (API) are software modules that can be linked
together and used to solve many types of engineering and science problems. The MATLAB software
toolbox and the Java Software Development Kit come with hundreds of modules that can be reused
over and over again to solve different problems. The result of using APIs is a great reduction in de-
velopment time and effort. Pretrained Transformer modules can also be used in an API environment
where programmers frequently search for reviews of APIs using mainstream software question and
answer (Q and A) platforms. Traditionally, the software for Q and A platforms is based on tradi-
tional ML algorithms. However, Yang et al. (2022) found that six pretrained Transformer modules
for aspect-based API review classification outperformed the standard one based on a traditional ML
algorithm.



380 CHAPTER 13. SELF-ATTENTION AND TRANSFORMERS

A survey of dozens of Transformer models is in Lin et al. (2021). They introduce the vanilla
Transformer, and then classify a wide variety of Transformer-like models. Variants such as the
Transformer XL model effectively allows for the processing of long-range dependencies. This is
important when related words in a long sequence are significantly separated from one another.

13.4.1 Transformer Models and Event Picking in Seismograms

Geophysical applications of Transformer models are starting to emerge, but one promising ap-
plication is the detection of P-wave and S-wave arrivals in earthquake records (Mousavi et al., 2020;
Hu et al., 2021; Stepnov et al., 2021). In contrast, Ba et al. (2022) avoided the Transformer model
and only used a fully connected and LSTM network with self-attention modules to successfully pick
arrivals in earthquake records. The self-attention mechanism is also used with CNN U-Net models
for successfully picking earthquake records (Wei et al., 2021). All of the above papers compared
their picking performance to that of standard phase pickers and claimed the superiority of their
network models. An essential component for success with these different network architectures is
the self-attention mechanism.

As a Transformer example, Mousavi et al. (2020) applied a complicated network model to 5
weeks of continuous earthquake data recorded in Japan. The network consisted of one very-deep
encoder and three separate decoders composed of 1D convolutions, bi-directional and unidirectional
LSTMs, residual connections, feed-forward layers, a Transformer, and self-attention layers. They
were able to detect and locate more than double the number of earthquakes using data recorded by
less than 1/3 of the seismic stations. The network picks of P and S phases were as accurate as those
picked by human analysts.

Instead of training a Transform model directly from time-domain traces, Stepnov et al. (2021)
trained their model on the spectrograms computed from the time records. They used a trans-
former architecture with a self-attention mechanism and without any convolution blocks, and it
only required the learning of 57 000 parameters. Their pre-trained Transformer provided the best
classification and computation performance compared to other pickers when tested on local earth-
quake data. The model code is available online (see Exercise 13.6.1) and can perform real-time
arrival picking of seismic traces.

The simple architecture of a Transformer’s encoder was used by Hu et al. (2021) for picking
P-arrivals in hundreds of aftershock records. They transformed each earthquake seismogram into a
pseudo-word format by assigning each word to contiguous windows of time samples in a trace. These
windows have a length of T time samples in the left part of Figure 13.9a. Here, the colored blocks
depict the E-W (green), N-S (yellow), and vertical (red) waveform components in a hypothetical
three-component recording, where the time axis is along the vertical. Transposing these columns of
seismic amplitudes gives the row vectors in the middle of Figure 13.9a, where the time axis is along
the horizontal.

Taking the transpose of columns in the leftmost diagram gives the block diagram in the middle
image of Figure 13.9a. Every T = 2 columns of blocks in the middle image can be converted into a
tall 3T × 1 vector of blocks on the right side of a). This reshaped set of blocks now resembles the
word vectors associated with a sentence, where there are k words in the sentence and each word has
3T letters. This reformatting of the 3-component seismograms is now in the format for input into
a Transformer. The goal is to train a Transformer model that can detect P arrivals in earthquake
seismograms. In this case, the Transformer classifies each of the k windows in a three-component
seismogram as containing a P arrival or not. Once this model is trained, then it can be used to
identify P arrivals in new seismic data.

This block of reshaped data in Figure 13.9a is fed into the fully connected layer in Figure 13.9b
to give the pseudo-word embbedding vectors vi for i ∈ {1, 2, . . . , k}. Each embedding vector has
dimension 3T × 1 and there are k such vectors in a pseudo-sentence. The 3T × 1 positional coding
vectors pi for i ∈ {1, 2, . . . , k} are created on the right side of Figure 13.9b, and are added to vi.
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Figure 13.9: a) Digitized three-component traces on the left reshaped into pseudo-word
format on the right and b) the fully-connected network reshaping a 3T × 1 pseudo-word
into a d×1 embedding vector and adding a d×1 position vector. The encoding architecture
is shown in c). Hu et al. (2021) employed the STA/LTA algorithm to create input traces
from the three-component data. Figure from Hu et al. (2021).
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Figure 13.10: Seismograms and attention scores averaged over 8 heads in the multi-attention
architecture. The strongest attention is mainly focussed at the P- and S-arrival times as
indicated by the black bands. Figure from Hu et al. (2021).

The results vi + pi for i ∈ {1, 2, . . . , k} are fed into the encoder in Figure 13.9c. A 10% dropout
operation is used in the fully-connected layer in b) and the self-attention module in c) to regularize
the algorithm.

Hu et al. (2021) only use the encoder part of a Transformer architecture for picking P arrivals.
The architecture of the encoder in Figure 13.9c probabilistically classifies the input pseudo-words
as to whether each window contains a seismic P-wave event or not. A gradient descent method is
applied to a regularized cross entropy loss function for training on a labeled data set. Once the
encoder model is trained on labeled data, the encoder is used to pick P-wave arrivals in new data.

The above picking scheme, denoted as TransQuake, is tested on aftershock data recorded by 14
stations after a 7.9 MW earthquake in China. The data consist of 109 719 noise traces and 9891
traces with P arrivals. 5/6 of the data set was used for training, 1/6 for validation (1/12) and 1/6 for
testing (1/12). There are 8 attention heads, the window length for some tests is T = 50 samples (i.e.
a 0.5 s window), and each 3-component record is reshaped from 3×5000 into the shape k×3T , where
k = (3 × 5000)/3T is the number of window positions. That is, each pseudo-word corresponds to a

0.5 s time window of amplitudes in the trace. Attention scores, similar to 1
k

∑k
j=1 wij , are averaged

over the 8 heads in the multi-head attention architecture depicted in Figure 13.9. Figure 13.10
depicts 6 different seismograms and the corresponding attention plots averaged over eight attention
heads. These plots indicate that the most attention (black bands) is at the P and S arrivals in the
seismograms. This can be a useful diagnostic tool for identifying other phases as well.

The accuracy in picking P arrivals by TransQuake is compared to that of eight other picking
methods listed in Figure 13.11. Here, the acronyms are defined as

Accuracy =
TP + TN

TP + TN + FN + FP
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 =
1

1/Precision+ 1/Recall
, (13.18)

where Accuracy indicates the percent of correctly-predicted samples, Precision the percent of true
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The overall performance.

Method Accuracy Precision Recall F1

Logistic Regression 0.499 0.073 0.504 0.127

Support Vector Machine 0.697 0.079 0.300 0.126

RNN (LSTM) 0.857 0.163 0.234 0.192

Random Forest 0.879 0.259 0.352 0.298

CNN (CPIC) 0.932 0.521 0.739 0.611

CNN (ConvNetquake) 0.946 0.649 0.581 0.613

MSDNN 0.952 0.678 0.638 0.658

MSDNN þ Multi-task Learning 0.954 0.683 0.667 0.675

TransQuake 0.956 0.712 0.667 0.689

Figure 13.11: Comparison of accuracy scores for 9 picking methods for identifying P arrivals
in the aftershock data set. Table from Hu et al. (2021).

samples we predict compared to the total number of true-positive and false-positive predictions,
and Recall detects the percent of true-positive samples compared to the number of true and false-
negative predicted samples. The metric F1 indicates a balance between Precision and Recall, where
F1 = 1 indicates a perfect prediction capability. The Figure 13.11 results suggest that TransQuake
typically provides a better performance than the other methods. Here, the MSDNN picker combines
the advantage of both CNN and LSTM.

There is not a significant difference between some of the scores for MSDNN, CNN and Tran-
sQuake, and so further testing on other data sets is necessary before drawing general conclusions.
There are efforts at hyperparameter optimization for TransQuake, but extensive optimization is not
reported for the other methods.

13.5 Summary

LSTMs and GRUs typically require large computational resources to train from huge sequential-
data sets, are not easy to parallelize and have a word recall capability limited to only a few hundred
words. To mitigate these problems for translation systems, Vaswani et al. (2017) introduced the
Transformer architecture which allows for much faster and more accurate processing of NLP tasks.
Unlike an RNN, the entire sequence of a sentence is simultaneously input into the Transformer and
the data in each head in a multi-head attention block can be independently computed by a separate
node in a parallel computer. In addition, the attention mechanism highlights important word pairs so
that the computations can analyze words separated by thousands of other words without a vanishing
gradient.

The architecture of the vanilla Transformer consists of the encoder and decoder blocks shown
in Figure 13.7. Each of these blocks consist of a stack of Nx identical blocks. The encoder block
is mainly a sequence of multi-head self-attention, position-wise, and feed-forward network (FFN)
operations. To build a deeper model that mitigates the vanishing gradient problem, residual con-
nections are incorporated into each module, followed by a layer normalization module. Decoder
blocks, unlike the self-attention blocks in the encoders, incorporate cross-attention modules between
the multi-head self-attention modules and the position-wise FFNs. Furthermore, the self-attention
modules in the decoder can use masking to prevent each position from using subsequent positions.
There are dozens of Transformer models, where many of them are listed in Figure 3 in Lin et al.
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(2021).
The recent invention of the Transformer mechanism has naturally limited its widespread appli-

cations to geoscience. However, there are a number of successful tests of its utility with the detection
of earthquake events and arrival-time picking. At least three groups report its superior performance
compared to standard picking methods. Several other groups also report superior picking perfor-
mance when the self-attention mechanism is combined with a neural network architecture, which
can include LSTM. The Fuzzy clustering method in Chapter 17 also claims superior performance
when compared to standard picking methods.

So, which picking method is the best? We can answer this question by following the example
of the computer science community: create a public data base with seismic simulations and field
recordings of earthquakes, vibroseis, microseisms and controlled sources. These data should also
be accompanied by the groundtruth traveltime picks of P-arrivals, and S-arrivals if relevant. There
should also be a data base of noise traces as well that can be added to the clean data for testing.
Such noise can be passive recordings of, for example, wind noise, urban noise such as traffic, and
glitches. The noise can be added by the user at various SNR levels. Thus, the geoscience community
will have a standard by which to judge the efficacy of different picking methods.

13.6 Exercises

1. Test the sensitivity of hyperparameter values for the Stepnov et al. (2021) algorithm in picking
phases in earthquake records. The Stepnov et al. (2021) data, examples, and pre-trained
model are online at GitHub: https://github.com /jamm1985 /seismo-performer (accessed on
18 September 2021). Datasets for Sakhalin and Dagestan are available online in HD5 format at
Google Drive (the links are also present on the GitHub page): https: //drive.google.com /file
/d /1dH2 JF9TQmyB6GpIB dY1jiWAI5uqp6ED (accessed on 18 September 2021), https://
drive.google.com/file/d 156w3I9QVnhkCo0u7wjh-c6xekE9f6B3G (accessed on 18 September
2021).

2. Compare the traveltime picking method by Fuzzy Clustering in section 17.5.1 with that from
Stepnov et al. (2021). Use synthetic data with various noise levels as the input data. List the
relative advantages and liabilities of each method.



Part IV

Unsupervised Learning
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Chapter 14

Autoencoders

Convolutional neural networks are often used in the context of supervised learning where the
input data must be classified before it is used for training. To avoid this expense autoencoders are
used where the goal is to determine the weights that produce an output that is identical to the
input, as shown in Figure 14.1. In this case no classification of inputs is required so autoencoders
are often classified as an unsupervised learning method. However, some refer to an autoencoder as
a semi-supervised learning method because a target output is required (Dai and Le, 2015).

The autoencoder architecture in Figure 14.1 is symmetrical about the middle layer, and the out-
put image is deemed to be the same as the input image. The left-half architecture of the autoencoder
is known as an encoder because it encodes the high-dimension input image into a low-dimensional
code, known as the latent variables z. Thus, the autoencoder is said to be undercomplete because of
the thin information bottleneck in the middle layer. The latent variables serve as a means for data
reduction without losing valuable information about the input, and is one of the most practical uses
of autoencoders for data reduction.

The right-half architecture is known as the decoder because it decodes the latent variables into
an approximation of the input image. The decoder can be thought of as a generative modeler in the
sense that small perturbations of the latent variables associated with a single input image will lead
to an output image that was never seen before. However, this output image might be unrealistic.

There are a number of practical uses of autoencoders.

1. Data compression. A practical use of the autoencoder is to reduce the size of the original
input data to that of the middle bottleneck layer. In this case the latent-space information
only needs to be transmitted or stored, which can reduce transmission and storage costs. Of
course, the weights associated with the decoding layers must be eventually used in order to
decode the latent space variables.

2. High-frequency random noise reduction. Another practical use of the autoencoder is
to filter unwanted high-frequency random noise, which is automatically achieved by using a
low-dimensional latent space (Vincent et al., 2008) that does not overfit the data. Therefore
it tends to ignore high-frequency random noise and only learn weights that capture the lower-
frequency information associated with the coherent signals. An example is demonstrated with
least squares migration in Chapter 24 and seismic noise filtering in Chapter 15. Sometimes
white noise is added to the data prior to training and the autoencoder is trained to produce an
uncontaminated image. This forces the network to ignore random noise that might be in the
images. It also is a form of regularization so that the autoencoder does not overfit the data.
Results from adding high-frequency noise to MNIST images and the output of the trained
autoencoder is shown in Figure 14.2.

3. Robustness to partial input data destruction. The input data can be corrupted by

387
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Figure 14.1: Autoencoder architecture with a three-dimensional latent space. Here the
input image is a seismic shot gather and the desired output is the same as the input image.
Many different shot gathers are used to train the AE, whose weights can be those for a fully
connected NN or a CNN.

removing large portions of the data, and forcing the autoencoder to infill the missing portions
to produce uncorrupted data. An example is that of missing seismic data in a common shot
gather. Well sampled traces data can be deliberately corrupted by removing, for example, the
near-offset traces. The output will be the uncorrupted shot gather. This is called inpainting
(Xie et al., 2012; Pathak et al., 2016) by the computer vision community and more generally
is referred to as interpolation of data. An example is shown in Figure 14.3 where the output of
an autoencoder is iteratively improved by inserting it again into another trained autoencoder.

4. Pretraining for supervised learning algorithms. Recurrent neural networks (RNN) are
often used to predict what comes next in a sentence, which is one of the goals of natural lan-
guage processing. Dai and Le (2015) used an autoencoder to read the input sequence of words
and then predict the input sequence again. The learned weights of the autoencoder are then
used in supervised recurrent network models to accelerate convergence. In their experiments
they found that the pretrained recurrent neural networks (RNN) showed improved stability
and generalization properties than a standard RNN. They labeled this type of pretrained RNN
as semi-supervised sequence learning.

5. Coloring grayscale pictures. Grayscale images can be colorized by training an autoencoder
with a large set of colored images deliberately corrupted to be grayscale, and the output is
the original colored images. Once the network is sufficiently trained then it can be used
to colorize grayscale images. The example in Figure 14.4 is generated by the Keras code
in https://www.kaggle.com/valkling/image-colorization-using-autoencoders-and-resnet. The
autoencoder (AE) can also be used to transform colorized images into grayscale images, as
illustrated in Figure 14.5.

The autoencoder characterized by the loss function in equation 14.1 is also known as a deter-
ministic autoencoder (Ghosh et al., 2019), which does not enforce an a prior distribution on the
latent space. In comparison, the variational autoencoder (VAE) in section 14.3.5 is a regularized
autoencoder that learns the statistical parameters associated with the data (Kingma and Welling,



389

Figure 14.2: (Top row) Autoencoder with noisy MNIST images, (middle row) some noisy
input images, and (bottom row) output images from the trained autoencoder (images from
https://www.andreaamico.eu/unsup-learning/2019/06/24 /autoencoder.html).

2014; Doersch, 2016). They encode inputs as distributions instead of points and whose latent s-
pace is regularized by constraining distributions returned by the encoder to be close to a standard
Gaussian.

The advantage of the VAE is that the latent space vectors can be interpolated to give new output
images that are more realistic than interpolated images from autoencoders. This can be useful for
training CNN architectures without the need for a large set of classified data. In comparison, a
deterministic autoencoder more often produces unrealistic output images when the latent-space
vectors are interpolated (Foster, 2019).

As alternatives to AE- or VAE-based interpolation, regularized autoencoders and adversarial
autoencoders have been proposed as effective interpolators of latent spaces generated by autoen-
coders. Ghosh et al. (2019) proposed that a deterministic autoencoder with explicit and implicit
regularization applied to the latent space vector can produce output images comparable to or better
than VAEs. This claim is supported by some empirical examples, but there is no mathematical proof
that it generalizes better than a VAE. In contrast, Berthelot et al. (2018) proposed a combination
of a critic network and a regularization procedure which encourages interpolated outputs to appear
more realistic by fooling a critic network. Empirical tests showed that the adversarial autoencoder
often produced more realistic output images than a VAE or autoencoder for interpolated latent
space vectors. Later, Oring et al. (2020) proposed regularization of the latent-space variables for
improving the accuracy of interpolating data with an AE.
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a) Iterative Stacked Autoencoders b) Corrupted Input Image Iteratively Denoised

Figure 14.3: a) Series of stacked autoencoders where there are multiple layers per decoder
and encoder, and b) restored photo corrupted by time. Images from Quan and Kim (2019).

Figure 14.4: (Top row) Grayscale images and (middle and bottom rows) color images col-
orized by an autoencoder network (https://www.kaggle.com/valkling/image-colorization-
using-autoencoders-and-resnet).

14.1 Theory of Autoencoders

An autoencoder is a semi-supervised neural network in which the predicted output is the same
as the input data, as illustrated in Figure 14.1. An autoencoder is trained to learn the extremely
low-dimensional representation of the input data, also denoted as the skeletonized representation,
in an unsupervised manner. The parameters of the autoencoder neural network are determined by
finding the values of W[n] and b[n] for the special two-layer case n = 1, 2 that minimize the following
objective function:

ǫ(W[1],b[1],W[2],b[2]) =

M∑

m=1

(x̃(m) − x(m))2,

=

M∑

m=1

( g(W[2][

z=latent−variable︷ ︸︸ ︷
f(W[1]x(m) + b[1])] + b[2])− x(m))2, (14.1)

where M is the number of input examples, x̃(m) (x(m)) denotes the mth predicted (given) data
vector, and W[n] and b[n] are the weights and bias terms in the n = 1, 2 layers. Here, f( ) and
g( ) are non-linear thresholding functions such as a ReLU. The architecture for the autoencoder
can be a convolutional neural network as long as there is a series of layers that form an encoder, a
lower-dimensional latent space in the middle, and a decoder network that is often a mirror image of
the encoder.
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Figure 14.5: Autoencoder network for transforming colored images to grayscale im-
ages (https://towardsdatascience.com/autoencoder-for -converting-an-rbg-image-to-a-gray-
scale-image-3c19a11031c9).

The typical autoencoder architecture includes three parts: the encoder, the low-dimensional
latent space, and the decoder.

• Encoder: Semisupervised learning by an autoencoder uses a set of training data consisting of
M training samples {x(1),x(2), . . .x(M)}, where x(m) is the mth input vector with dimension
D × 1. For the seismic trace example, D is the number of time samples along the time axis1.
The encoder neural network in Figure 14.1 encodes the high dimension input data xi into
a low-dimension latent space with dimension C × 1 using a series of neural layers with a
decreasing number of neurons; here C is smaller than D. For two hidden layers n = 1, 2, the
encoding operation can be mathematically described as z[n] = f(W[n]z[n−1] + b[n]), where
z[n−1] is the input vector for the nth layer and the superscript (i) for the data sample index
in z[n−1] is silent. Also, b[n] is the bias term for that layer, W[n] is the weight matrix for the
nth layer, and f( ) is the activation function for that layer. Here, the layers for the encoder
are n = [1, 2], and the activation functions can be, for example, sigmoid, ReLU, or Tanh.

• Latent Space: The compressed data z[n] with dimension C × 1 in the latent space layer (see
middle layer in Figure 14.1) is the lowest dimension C = 3 space in which the input data are
reduced and the key information is preserved. The latent space is an effective low-dimensional
representation of the high-dimensional input data. These low-dimensional attributes can be
used by the decoder to reconstruct the original input. This is similar to principal component
analysis (PCA), which is generally used to represent input data with a smaller-dimensional
space (Hotelling, 1933). However, PCA is a linear operation that finds the optimal rotation
of the original data axes that decorrelates the data. In comparison, the autoencoder with
a sufficient number of layers can find a non-linear sparse mapping between the latent-space

1A seismic shot gather is usually stored as an nt × ng matrix. If you want to input it into a 1-D
autoencoder, then you need to unroll it to be a vector with length nt · ng. In this case D equals nt · ng.
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variables and the output image. In fact, for the simple case of a 1-layer encoder with no
activation function and mean squared error loss, the linear autoencoder behaves like PCA,
learning to project the input in the span of the first K principle components of the data
(Bengio, 2009; Jacques et al., 2017).

• Decoder: The decoder portion of the neural network (see Figure 14.1) is represented by a
series of neural network layers with an increasing number of units per layer. The reconstructed
data g(W[n]z[n−1] +b[n]) , where the index for the decoder layer is n = 2 for this example. If
the matrix W for each layer in the decoder is constrained to be the transpose of the matrix
for the encoder then this is said to have tied weights (Vincent et al., 2008).

In the above description of the autoencoder, the encoder and decoder are deterministic functions that
map x to f(x) = z and z to g(z) = x̃. Therefore, the only stochastic component is the probability
distribution that governs the input data. Since the mapping between the latent space vectors is
highly non-linear, then a linear interpolation of the two latent space vectors does not necessarily
lead to a realistic output image. In other words, the mapping between latent space vectors and
images is not necessarily continuous. For example, if the input data consist of pictures of different
dogs and cats, the weighted sum of a latent-space vector belonging to a German shepherd and one for
a Siamese cat will likely lead to a strange animal that is neither cat or dog. Even the interpolation
of the latent vectors for a german shepherd and a bulldog will not necessarily produce a picture of
a realistic hybrid dog.

A more concrete example of this non-linear mapping is illustrated in Figures 14.6. Here, the

z
0

9
z

a) Autoencoder Diagram for MNIST Data b) Latent Space Points for MNIST Data

Figure 14.6: a) Input and output pictures of the digit ”2” from the autoencoder trained
on the MNIST data set. b) Latent-space points for each of the input examples from the
MNIST data set. The variables for the horizontal and vertical axes are z1 and z2 where
z = (z1, z2). The color bar indicates the digit number for each input sample. Images from
Ali Masri’s blog at https://towardsdatascience.com/autoencoders-in-keras-273389677c20.

Keras code in Appendix 14.7 is that of an autoencoder with the 28× 28 MNIST images as the input
and their approximations are the output. An example of the input and reconstructed output of the
digit ”2” is shown in Figure 14.6.

Plotting the 2 × 1 latent space vector z = (z1, z2) for a batch of input MNIST samples gives
the graph shown in Figure 14.6b. The different colors correspond to the different labels for digits
associated with a latent-space point, where the colder colors indicate smaller values of the digits. It
is noticed that two neighboring filled circles, for example the black z0 and yellow z9 circles near the
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bottom right, correspond to the digits ”0” and ”9”. The interpolated latent space variable

z̄ = 0.5z0 + 0.5z9, (14.2)

and its decoded number g(z̄) will likely result in an uninterpretable symbol of a digit. In other words,
g(z) is a nearly discontinuous function of z, where a small perturbation δz leads to an enormous
change in g(z+ δz)− g(z). Therefore, an autoencoder might not be a reliable means for augmenting
a labeled data set by decoding interpolated points in the latent space. This problem is addressed by
regularizing the autoencoder (see section 14.3).

14.1.1 Linear Autoencoder and PCA

The linear autoencoder is related to PCA, as demonstrated in https://towardsdatascience.com/
understanding-variational-autoencoders-vaes-f70510919f73. Figure 14.7 supports this claim by show-
ing the PCA components and linear AE components for the input MNIST data set. The image on
the left depicts the PCA components (color coded according to the digits 0 − 9) associated with
the two strongest eigenvectors. For comparison, the output points from the linear autoencoder are
on the right, where there is no non-linear activation function in the network. It can be seen that a
rotation of one image by about 90 degrees and a reflection about the vertical axis brings the two
images into rough agreement.

Figure 14.7: Plots of (left) PCA components and b) linear AE latent-space variables. Images
from https://en.wikipedia.org/wiki/Autoencoder#cite note-:10-28.

The meaning of each latent variable can be obtained by a trial-and-error procedure, where the
image associated with each latent variable is computed by applying the decoder to that variable.
However, Ladjal et al. (2019) adds a covariance regularization term to the autoencoder’s objective
function. This loss term encourages the latent variables to be statistically independent of one anoth-
er, similar to that of a PCA. Iteratively increasing the number of latent variables with this objective
function has the effect of ordering the latent-space variables in decreasing order of importance in
representing that data. Thus, the latent-space variables can be interpreted in terms of physically
meaningful properties in the data.
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14.2 Problems with Autoencoders

Ideally, we would like the decoder g(z,W′) to be a generative modeler so that small perturbations
of the latent vector z associated with a single input image will lead to a realistic output image that
was never seen before. However, this output image is often unrealistic (Makhzani et al., 2016;
Berthelot et al., 2018) because the AE can discontinuously map the input images to the latent-space
domain, even if the input images are similar to one another. Smoothing this mapping to be more
continuous has led to the development of regularized autoencoders (Hinton, 2013; Berthelot et al.,
2018). Such regularized autoencoders can be used to generate realistic unseen images by regularized
interpolation of the latent space variables, a generative procedure.

As an example, the middle row of Figure 14.8 shows an unrealistic output of interpolated points in
the z domain. The top row consists of rotated-line images, and the middle row consists of the output
of an AE. Ideally, the goal is to interpolate two latent-space vectors and decode the interpolated
result to give the new output image. In this case, the encoder transforms the vertical-line image
x1 = xleft and horizontal-line image x2 = xright in the top row of Figure 14.8 into the latent-space
vectors f(x1) = z1 and f(x2) = z2. To augment this data set by interpolation, the latent-space
variables are interpolated by

z̃ = αz1 + (1− α)z2, 0 < α < 1, (14.3)

so that the decoded interpolated output is

x̂ = g{z̃} = g{αz1 + (1 − α)z2},
= g{αf(x1) + (1− α)f(x2)}. (14.4)

Hopefully, the interpolated image x̂ will be a realistic-looking image not seen in the training set.
Unfortunately this is not generally the case as illustrated by the interpolated output in the middle row
of Figure 14.8. The interpolated AE images above the two-sided arrow are not realistic renderings
of rotated lines.

Why does the autoencoder fail to produce believable interpolated images and so fail to be
a reliable generator of new input images x? A key problem is that the autoencoder does not
always produce a somewhat continuous mapping between the input points x and output points z.
Equivalently, there is no constraint on the mean and variance of the z points for different classes of
input data x. This failure was recognized early by Hinton (2013) and described as ”fracturing the
manifold” of z into many separated domains for similar input images (Makhzani et al., 2016). An
example of this fractured manifold is shown in Figure 14.9 where the input images are mapped to
scalar values of z along the real line. In the latent space there is a large gap between the full-moon
and half-moon representations in the latent space. Thus, decoding the value of, e.g. z = 0, in the
fracture zone gives an image that will not look similar to any of the images in the training set.

A more familiar example is in Figure 14.10, where the 2× 1 latent space vectors z are computed
for different input images. Each colored dot is the result of inputting a written digit from the
MNIST data set into the autoencoder. There is a large fracture or gap between the purple (the
digit 7) and the yellow (the digit 1) points. Consequently, the decoded digit in the upper right is an
unrealistic rendering of a written number. Also, note the intermingling of purple and yellow points.
The associated numerical letters are likely to be quite different, which indicates a discontinuous
mapping between nearby input points x and their latent space points z. In other words, the Fréchet
derivative ∂x/∂z of the encoder is unstable or discontinuous.

What promotes large fractures in the latent space? If there is a large l2 difference ||x1/2 moon−
xfull−moon|| between half-moon x1/2 moon and full-moon xfull−moon images, then it is possible that
there is a relatively large difference ||z1/2 moon − zfull−moon|| between their latent-space variables.
The ReLU operation in the encoder will tend to preserve large l2 differences in the z-domain if there



14.3. REGULARIZATION OF AUTOENCODERS 395

Rotated Lines
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ACAI Interpolated Lines

AE Interpolated Lines
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Figure 14.8: Top row corresponds to images of rotated lines, middle row of images between
the two-sided arrow corresponds to the output of the autoencoder after interpolation of the
latent-space variables z1 and z2 using equation 14.4. The bottom row of images between the
two-sided arrow is computed using the adversarially constrained autoencoder interpolation
(ACAI) network (Berthelot et al., 2018). Here, x1 is the image on the far left and x2 is the
image on the far right. Image adapted from Berthelot et al. (2018). For this example, the
autoencoder was properly trained with images of many training lines rotated at different
angles.

are large distances between input images with different classes. This problem will be amplified if the
W matrices have large eigenvalues. Fracturing is less likely if the different classes consists of objects
that are somewhat similar to a neighboring class, such as a more complete training set consisting of
1/4−moon, 1/3−moon, 2/3−moon and 3/4−moon pictures. Other partial remedies are available
such as stochastic neighbor embedding, which is similar to putting springs on the z variables with
different classes, so they aren’t too far apart or too close together (Hinton, 2013).

14.3 Regularization of Autoencoders

The previous section describes three problems with autoencoders: overfitting , fracturing of the
latent space with large gaps between different classes of points, and intermingling of points in z-space
with different classes. We now show that different regularization methods can mitigate some of these
problems to enable generalization of an AE.
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Figure 14.9: AE input x, latent-space vector z and output x̃ for the training set consisting
of full- and half-moon images. The various full-moon images should be clustered together
in z-space and somewhat separated from the half-moon z-values. If this separation is too
wide then it is denoted as a fracture (Hinton, 2013) of the z-space into widely separated
clusters, where the point, e.g. z = 0, in a fracture zone decodes into an unrealistic im-
age x̃. The l2 norm difference minsamples ||xfull−moon − x1/2−moon|| is large, so the width
minsamples ||zfull−moon − z1/2−moon|| of the fracture zone can be large as well.

To mitigate the fracture problem we need a regularizer ”that will make it costly to fracture the
manifold” (see Figure 14.11b) in the latent space (Hinton, 2013). The regularizer can also be used
to prevent collapse of the input images to the same latent variable (see Figure 14.11c), encourage
the network to resist noisy perturbations to the input image as shown in Figure 14.11d, and prevent
overfitting . These benefits are enabled by finding the weights that minimize the regularized objective
function:

ǫ(W,W′) =

M∑

m=1




data misfit︷ ︸︸ ︷
||x̃(m) − x(m)||2 +λ

regularizer︷ ︸︸ ︷
R(x(m), x̃(m))


 , (14.5)

where R(x(m), x̃(m)) is the regularization term and the summation is over the M training examples.
The value of the damping term λ > 0 determines which objective is more important, reducing the
data misfit or the regularizing penalty term. Figure 14.12 illustrates how increasing the complexity
of the neural network to the right of the critical point (red asterisk) leads to overfitting where the
test-data accuracy starts to decrease. The tendency to overfit can be reduced by using a larger value
of the regularization parameter λ > 0. The next subsections present some regularization methods
for AEs.
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Figure 14.10: Two-dimensional latent-space points z computed by an autoencoder, where
the input consists of the MNIST data of written digits. Note the large gap, or fracture,
between the gold→ digit−four and purple→ digit−seven points and the blurry rendering
of what is supposed to be an interpolated digit. Illustration from Stewart (2019).

14.3.1 Dropout

Wager et al. (2013) and Srivastava et. al. (2014) showed that randomly eliminating nodes in a
layer is equivalent to regularizing the objective function (see Appendix 14.8). Reducing the number
of nodes is equivalent to reducing the complexity of the network and the tendency to overfit in
Figure 14.12.

14.3.2 Denoising Autoencoders

The input images are noisy or corrupted versions of the clean output, as illustrated in Fig-
ure 14.11d. It can be shown that training with noisy images is equivalent to Tikhonov regularization
(Bishop, 1995; Rifai et al., 2011), which prevents memorization of the input (Vincent et al., 2008)
and overfitting by the network. The mapping of input images to a small region in z-space is illus-
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Figure 14.11: AE mappings for a) a well-behaved AE that does not memorize the input
to give an accurate rendering of the new test image, b) an AE with a fractured latent
space where the l2 differences between the black, white and yellow balloon images are also
large, c) an AE with too small of a bottleneck so many colorful input images collapse to
the same latent-space value z, and d) a denoising AE where the z-space codes resist noisy
variations of the same balloon image to give a clean output image. The noisy image points
surrounding the line on the bottom right in d) are projected by the encoder to be on the
red 1D manifold line in the leftmost middle graph (Vincent et al., 2008).

trated in Figure 14.13a. Here, flatter slopes ∂z/∂x ≈ 0 of the red solid lines means that a wide
variety of noisy full-moon images map to nearly the same latent code z of a ”clean” full-moon im-
age. Unfortunately, this diagram also suggests that flatter slopes of the red line lead to undesirably
wide-fracture zone compared to the thin-fracture zone in b). In contrast, a thin fracture zone is
associated with steeper slopes in the red lines.

14.3.3 Contractive Autoencoders

Assume a small l2 difference ||x′
full−moon − xfull−moon|| ≈ 0 between similar full-moon images

in Figure 14.9. For a smooth mapping between x and z then z′ and z should also have a small l2

difference ||z′ − z|| ≈ 0. To encourage this we impose the constraint that the Fréchet derivative of

the output of the encoder’s activation function should be small, ||∂f(W,x)
∂x || → small. Thus, many

different full-moon images will map to a small region in z-space.
Contractive mapping is illustrated in Figure 14.13a, where the flatter solid-red lines are asso-

ciated with smaller regions in the z-space. Here, ∂z/∂x ≈ 0 is equivalent to ∂f(W,x)/∂x ≈ 0.

The objective function with contractive regularization is

ǫ(W,W′) =

M∑

m=1

data misfit︷ ︸︸ ︷
||x̃(m) − x(m)||2 +λ

M∑

m=1

‖∇xf
[m]
i ‖2, (14.6)
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Figure 14.12: Prediction accuracy of the training and test data versus complexity/1/λ of the
AE. If the network is too complex, starting at the red critical point, then it starts to mem-
orize both noise and signal in the input images. Increasing the value of the regularization
parameter λ tends to eliminate memorization.

where the summation is over the training examples and f
[m]
i is the ith component of the encoder’s

activation function for the mth example.
The gradient of equation 14.6 is related to that of a Fréchet derivative (Schuster, 2017) in seismic

inversion, i.e. ∇kf
[m]
i = ∂f

[m]
i /∂xk where xk is the kth component of the data vector input into

the encoder’s only hidden layer. It is a measure of the sensitivity of the encoder’s activation output
to the change in the kth component of input data. The goal of contractive autoencoders is to keep
this sensitivity small so as to compress the cloud of input data points x[m] with the same class into
a small region in z space (see Figure 14.13a). It is assumed that batch normalization is used to
stabilize and enhance the convergence rate (Ioffe and Szegedy, 2015).

14.3.4 Sparse Autoencoders

The sparse regularizer encourages the activation of a small number of neurons per layer. This
is a cure for overfitting if there are a large number of hidden units in the network; e.g., there are
more hidden units than inputs. Reducing the number of units reduces the tendency to memorize
the input images, but not too much of a reduction so it still is able to extract important features of
the input data (Asperti, 2018). Such a regularized network will be denoted as a sparse autoencoder
(Ng, 2013; Zhou, 2018).

An example of a sparsity regularizer is the L1 norm of the I components of the activation

functions f
[m]
i i ∈ [1, 2, ...I] that can be added to the encoder’s objective function:

ǫ(W,W′) =

M∑

m=1

data misfit︷ ︸︸ ︷
||x̃(m) − x(m)||2 +λ

M∑

m=1

regularizer︷ ︸︸ ︷
I∑

i=1

‖f [m]
i ‖, (14.7)
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Figure 14.13: Mapping of input images of the moon to the associated 1D z-domain points
along the slanted red lines. As illustrated in a), a contractive mapping encourages flatter
solid lines that map to a smaller region size in the z-domain. This is similar to denoising
AEs which resist small perturbations in the input image so they map to the same z. On
the other hand, an adversarial AE tends to encourage steeper slopes that reduce the size of
the fracture zones in b).

where the summation in m is over the M training examples. After training, the smallest number
of nodes in the hidden layer is employed by the network to compute z, which avoids the overfitting
tendency of a complex network with many nodes. Fewer nodes means less complexity and encourages
the trained network to be at or just to the left of the critical red point in Figure 14.12. The sparsest
number of nodes that yields accurate predictions forces the model to focus on the really important
features, highly reducing the risk of overfitting. An alternative sparse regularizer is to incorporate the
Kullback-Leibler penalty function in the objective function (see Appendix 14.9). Also, the manifold
of the latent space variables can be shaped with smoothness regularizers (Oring et al., 2020).

A numerical example that illustrates the performance of sparsity is shown in Figure 14.14. Here
the MNIST data set is used to train the standard AE and the AE with the L1 regularizer. The
output AE images are nearly identical to the input images for both the standard and regularized
AEs. However, the mean square error for the regularized MSE is about 5% less than that for the
standard AE.

Figure 14.15 shows that there are far fewer activated neurons than generated in the standard
AE. This will help mitigate problems with overfitting . However, it theoretically does not overcome
the problem of fracturing illustrated in Figure 14.13.

14.3.5 Variational Autoencoder

The autoencoder can be trained to denoise input images and to reduce the dimension of the
input image into a smaller-dimensional latent vector z, as illustrated by the AE architecture in
Figure 14.1. However, interpolating between two points z̄ = (z1+z2)/2 and feeding the interpolated
vector z̄ into the decoder D(z̄) often fails to generate a new image that is realistic, as seen in the
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Figure 14.14: MNIST images as (left) input and (right) output of a L1 regularized AE (from
Zhou, 2018).

Figure 14.15: Activated nodes from the (left) standard and (right) L1 regularized AE for the
MNIST data depicted in Figure 14.14 (from Zhou, 2018). There are many fewer activated
nodes for the regularized AE.

middle row of images in Figure 14.2. The problem is that the mapping between latent space and the
decoder’s image space is highly non-linear, so there is a wide fracture in the z domain as illustrated
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Figure 14.16: Architecture of the variational autoencoder (VAE) where a large set of training
examples is used to compute the learnable parameters (W(i),W̄(i),µ,σ) where (µ,σ) are
the mean and standard deviation vectors for a multivariate Gaussian. Once the VAE is
trained, then a new output x̄ is produced by sampling the distribution to get a new latent
vector z̄, and then inserting z̄ into the decoder to get x̄.

in Figure 14.9. Thus, a small change in the values of the latent variables can lead to an enormous
change in the output image. This is similar to standing on the edge of a steep cliff, where a small
change in the horizontal (x, y) coordinates of your feet can lead to an enormous change in the output
of your elevation z.

A partial remedy to the AE fracturing problem (Ghosh et al., 2019) is the variational autoencoder
(Kingma and Welling, 2014; Doersch, 2016). The variational autoencoder (VAE) is a regularized
autoencoder that learns both the NN weights and the statistical parameters (µ,σ) associated with the
training data. Its architecture is almost identical to that of the AE except it includes a distribution
layer where the output is drawn from a statistical distribution as illustrated in Figure 14.16. The
VAE encodes the input training data x as a probability distribution instead of points; and its latent
space variables z are regularized by constraining these points to be drawn from a standard Gaussian.
This pdf is not steeply sided, so a small change in the component zi of the latent variable will lead
to an output that has similar probability and, therefore, resemblance to the input.

The mean µ and standard deviation σ vectors in the Gaussian distribution describe those learned
from the training data. Thus, interpolating between points in this distribution should provide new
outputs that realistically resemble those from the training data. In comparison, a deterministic
autoencoder often produces unrealistic output images when the latent-space vectors are interpolated
(Foster, 2019).

The following steps describe the workflow for the VAE in Figure 14.16.

1. Use a large data set of input images x(i) to train the VAE by a gradient descent method.
For forward modeling, the input x(i) is fed into the encoder’s input with weights W[n], which
can be those for a fully connected neural network or a CNN. These layers compute the input
into the layer with a multivariate Gaussian probability distribution. This pdf is sampled (see
Chapter 19) to produce the output vector denoted as the latent vector z. The latent vector z
is then fed into the decoder to compute the output ≈ x(i).

2. Once the network is trained, then a new unseen output x̄ is computed by sampling from the
pdf, or interpolating neighboring points in the z domain, to generate the latent vector z̄. The
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Figure 14.17: Architecture of the reparameterized variational autoencoder for a 3-
dimensional latent space with z = (z1, z2, z3).

latent vector z̄ is then fed into the trained decoder to get x̄.

The problem with the above approach is not with the forward modeling, but in the back-
propagation by a gradient descent method. Gradient descent works well with the deterministic layers
because their operations are represented by deterministic functions such as sigmoids or operations
such as convolutions. In these cases, the formulas for the Fréchet derivatives can easily be obtained.
However, the computational operation associated with the distribution layer in Figure 14.16 is
the non-deterministic sampling of a probability function, whose formula for the Fréchet derivative
cannot be easily obtained. To overcome this problem, the ith component zi of the latent vector z is
re-parameterized by the following formula:

zi = µi + σiǫi, (14.8)

where ǫi ∝ exp(− 1
2z

2
i ) is the standard normal Gaussian distribution with zero mean and unity

variance, and σi is re-expressed
2 as σi = exp(log{σ2

i }/2). Now, the Fréchet derivative of zi w/r to
the learnable parameters σi or µi can easily be derived and computed. This reparameterization trick
allows for the mean and log-variance to remain learnable parameters and still retain the stochasticity
of the sampling.

Figure 14.17 depicts the VAE with a 3× 1 latent vector z. Since the distributions ǫi in the red
rectangle are not functions of the learnable mean and variance parameters, then there is no need for
a Fréchet derivative of ǫi.

A TensorFlow code for the sampling operation is taken from Paul (2020):

def sampling(args)

z_mean, z_log_var = args

epsilon = K.random_normal(shape=(batch_size, latent_dim), mean=0.)

return z_mean + K.exp(z_log_var / 2) * eps

2Here, log{σ2
i } is known as the log-variance and is used as the output to the decoder prior to sampling

because it forces the encoder to have the output range of the real numbers rather than just the positive
values of variances. This allows for smoother representations for the latent space (Paul, 2020).
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Experience suggests that a KL regularizer should be added to the mean square error (MSE) loss
function:

ǫ =
1

2
||F (x) − x||2 + λKL(P ||P0), (14.9)

where F (x) represents the operations of the VAE, x is the input, λ > 0 is the damping coefficient
and KL(P ||P0) is the KL regularizer that penalizes the VAE distribution P (x|µ,σ) if it departs
from the desired one P0 = P (x|µ0,σ0). See Appendices 14.9 and 20.11 for further information
about the KL regularizer.

In summary, the variational autoencoder (VAE) is a regularized autoencoder that learns the
statistical parameters associated with the data (Kingma and Welling, 2014; Doersch, 2016). The
VAE encodes inputs as distributions instead of points and whose latent space is regularized by
constraining distributions returned by the encoder to be close to a standard Gaussian. Without
this regularization, there are neighboring areas in latent space which don’t represent any of our
observed data. The advantage of the variational autoencoder (VAE) is that the latent space vectors
can be interpolated to give new output images that are more realistic than interpolated images from
autoencoders (Foster, 2019). This can be useful for training CNN architectures without the need
for a large set of classified data.

The VAE can also be considered as a sparse AE because it encourages the internal coding of the
encoder to become sparse (Dai et al., 2018; Asperti, 2018). Regularization is explicitly incorporated
into the VAE by using the Kullback-Leibler component in the objective function (Asperti, 2018).
Regularization can be manually improved by eliminating the poorly activated nodes in the VAE as
training progresses. If the number of active units is too few then this phenomenon is referred to as
over-pruning (Young et al., 2018). However, Berthelot et al. (2018) shows examples where the VAE
significantly underperforms compared to ACAI.

14.3.6 Adversarially Constrained Autoencoder Interpolation

The ACAI (Berthelot et al., 2018) uses equation 14.3 to interpolate two latent-space vectors z1
and z2, and then decodes the interpolated vector z̃ with equation 14.4 to get the interpolated output
image x̂. If the output image appears to be a new but realistic input image, then the ACAI could
be an efficient means for data augmentation.

To promote the construction of a realistic interpolated output x̃ that appears to be part of the
input training set x, Berthelot et al. (2018) regularizes the AE to include a critic network, as
illustrated in Figure 14.18. This critic network, denoted by d(x̃, γ), predicts the actual interpolation
coefficient α and is incorporated in the regularized objective function ǫRAE :

ǫRAE =

M∑

m=1

||
input image︷ ︸︸ ︷

x̃(W,W′)(m)−x||2 + λ

M∑

m=1

||d(
interpolated image︷︸︸︷

x̂(m) , γ)||2, (14.10)

where λ is the regularization parameter and γ represents the coefficients of the critic network that,
in this case, are functions of the coefficients of W and W′. The components of W,W′ are computed
by stochastic gradient descent (SGD) to minimize ǫRAE , and then the critic’s coefficients in γ are
computed that minimize the critic’s objective function

ǫcritic = λ

M∑

m=1

||d(x̂(m), γ)− α||2. (14.11)

This alternating procedure of training for W,W′ in equation 14.10 and then for γ in equation 14.11
is repeated until suitable convergence.
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The goals of minimizing ǫRAE and ǫcritic are contradictory: in equation 14.10 we findW,W′ that
minimizes both the data misfit and the predicted interpolation coefficient d(x̂(m), γ) → 0, while in
equation 14.11 we find the components of γ that correctly predict the actual interpolation coefficient
α > 0. If the predicted interpolation coefficient d(x̂(m), γ) is nearly zero, then this suggests that x̂ is
of high quality because it is mostly interpolated from a true input x = g((1− α)x1 + αx2) ≈ x̃1 for
α ≈ 0. However, a high quality interpolation is also possible if the weights W,W′ are computed to
mostly eliminate fracturing zones in, e.g. Figure 14.10, and intermingling of different classes3. This
is the role of training equation 14.10 by SGD: find the weights that try to eliminate fracture zones
and intermingling of points from different classes.

If the critic successfully predicts the interpolation coefficient α 6= 0 used by the IAE then it
has succeeded in identifying x̂ as an interpolated image. However, if the interpolation point is in a
fractured zone (see blurry digit reconstruction in upper right of Figure 14.10) then α >> 0 indicates
an interpolated latent point which is decoded into a poor-quality decoded image x̂. Nevertheless,
the hope is that the image quality is high because the AE has eliminated the fracture zone problem
so that d(x̂, γ) ≈ 0. If the value of λ is too large then γ is undesirably prioritized to correctly
predict the actual interpolation coefficient 0.5 > α >> 0. If λ is small enough then training
W,W′ is prioritized to mitigate fracture zone problems and allow for high quality interpolations
with 0.5 > α >> 0 where the critic is fooled ||d(x̂(m), γ)|| → 0 into choosing the coefficients in γ
that suggest the interpolated image x̂ is realistic and selected from the original training set. This
tension between minimizing ǫRAE and ǫcritic is similar to that between the goals of the generator
and discriminator in a generative adversarial network (GAN) discussed in Chapter 18. It is related
to the Nash equilibrium point discussed in section 18.3.

Critic Network

f(x3.W)

Critic misfit

Find: W, W’, and that minimize   

regularizerAE misfit

f(x2 ,W)

x = g( z2 + (1- )z3, )       
^

g( z2 + (1- )z3, W’) 

critic = ||d(x, ) - ||2

RAE = ||x-x(W,W’)||2 + ||d(x, )||2^

^

~

d(x, ) ^

Figure 14.18: Critic network and the formulas for the ǫcritic and ǫRAE objective functions
at the bottom.

As pointed out by Berthelot et al. (2018), the regularization term
∑M

m=1 ||d(x̂(m), γ)||2 is effec-
tively trying to make the critic output 0 regardless of the value of α, thereby ”fooling” the critic into
thinking that an interpolated input is non-interpolated (i.e., having α = 0). The parameters W and

3There are many non-unique AEs that accurately code and decode the same input, but we are seeking
the one with desired properties such as the sparse AE on the rightside of Figure 14.15.
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W′ are optimized with respect to ǫRAE (which gives the autoencoder access to the critic’s gradients)
and γ is optimized with respect to ǫcritic. Berthelot et al. (2018) refer to interpolating z − domain
codes with equations 14.10 and 14.18 as ACAI.

As an example, the bottom row of Figure 14.8 shows the result of using an ACAI network to
interpolate points in the z-space. The ACAI interpolated lines just below the two-sided arrow are
almost identical to the ground-truth images in the top row. Berthelot et al. (2018) show that ACAI
is superior to many of the other regularized AE’s (Verma et al., 2018) such as the VAE (Kingma and
Welling, 2014; Dai et al., 2018; Asperti, 2018), vector quantized VAEs (Yadov, 2019), and adversarial
AEs (Makhzani et al., 2016). Another regularized AE includes the generative AE (Mescheder et al.,
2017; Roy et al., 2018; Mao et al., 2018) which has an architecture that is similar to that of the
ACAI. Oring et al. (2020) proposed shaping the latent space manifold using smoothness regularizers.

14.4 Numerical Examples

The application of autoencoders is now presented for seismic data. First, autoencoders are
used to interpolate seismic data, and then they are used to invert seismic data for the velocity
model. Finally, an example is given for using autoencoders to interpolate time-lapse data for CO2

monitoring.

14.4.1 Seismic Interpolation Example

Seismic traces in exploration surveys are often spatially undersampled, where the sampling
interval of the geophones is larger than the smallest horizontal wavelength (Yilmaz, 2001). For
example, surface waves recorded in land surveys are severely aliased because their slow velocities
lead to very short wavelengths at higher frequencies. In addition, there are large gaps in seismic
surveys because of, for example, large obstructions in the survey area, localities are off-limits due to
regulations, or the near-offset traces are missing in marine surveys due to the difficulties in deploying
hydrophones next to the boat and the airgun sources.

To fill in the trace gaps, many schemes have been promoted such as model-based interpola-
tion (Stolt, 2002; Fomel, 2003) predictive deconvolution (Spitz, 1991; Abma and Claerbout, 1995),
normal-moveout and FK filtering (Yilmaz, 2001), and compressive sensing (Herrmann and Hennen-
fent, 2008; Gan et al., 2015; Wang et al., 2014). All of these methods have their strengths and
limitations, and no method is perfect under severe aliasing conditions.

One of the candidates for interpolating aliased seismic data is the denoising autoencoder used for
inpainting (Xie et al., 2012; Pathak et al., 2012) by the computer vision community. For inpainting
seismic data, Mandelli et al. (2018) proposed an autoencoder network with the U-Net architecture
(Ronneberger et al., 2015) illustrated in Figure 14.19. The latent layer is at the bottom of the
diagram where the latent-space vector has the dimension of 512× 1.

The following is a summary of the seismic interpolation work performed by Mandelli et al.
(2018). Seismic data from a marine survey are used to give 1001 1024× 128 shot gathers in the t−x
domain, one of which is shown in Figure 14.20a. These shot gathers are decimated by factors of
10%, 30% and 50% in Figures 14.20b-14.20d. Each shot gather is segmented into 128× 128 patches,
these patches are demeaned and normalized, and then more than 28,000 patches are used for the
process of training, validation and testing. In the following examples, 57%, 18% and 25% of the
original data set are, respectively, used for training, validation, and testing.

The input layer consists of the concatenation of three decimated 128× 128 images: the original
shot gather patch P and the 128 × 128 spatial gradients ∂P/∂x and ∂P/∂y of this patch in the
x− and y− directions. Empirical tests suggest that the gradient components are important for this
problem (Mandelli et al., 2018).
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Figure 14.19: U-Net architecture used for the autoencoder (Mandelli et al., 2018) to inpaint
the corrupted traces.

The training data are inserted into the U-Net architecture in Figure 14.19, where each hidden
layer in the encoding layers, i.e left side, of the U-Net consists of three operations: 2D convolution by
4×4 filters, batch normalization, and a leaky ReLU operation. The output image is the uncorrupted
version of the decimated input image. To reduce the size of the output feature maps from one layer to
the next, a stride of two is used for the 2D convolutions and padding is employed for each convolution
so the output image is the same size as the input image. The first hidden layer uses 64 4× 4 filters,
and the next layer doubles the number of filters to 128 4 × 4 filters while halving the size of the
feature maps by a stride of two. This doubling the number of filters and halving the size of the
feature maps at each layer continues until the last layer at the bottom of the U-Net. In this last
layer the latent-space vector has a dimension of 512× 1.

The decoding, i.e. right side, of the U-Net is similar to that of the coding portion except 1)
the encoding output at the neighboring layer to the left of the decoding layer is concatenated onto
the decoder’s input, and the transpose operation (https://medium.com/apache-mxnet/transposed-
convolutions-explained-with-ms-excel-52d13030c7e8) is used for the 2D convolution to give an output
feature map twice the size of the input feature map.

An Adam optimization method (Kingma and Ba, 2014) is used for batches of 128 images, and an
initial learning rate of 0.01 is used. The learning rate was halved when the residual reduction stalled,
and no more 20 epochs were required to get acceptable interpolations, as shown in Figures 14.21b-
14.21d. These results were noticeably more accurate than those using the Multichannel Singular
Spectrum Analysis (Oropeza and Sacchi, 2011) method.

14.4.2 Seismic Tomography

We now present an autoencoder example for inverting skeletonized seismic data. The mathemat-
ical details and FWI examples are presented in Chapter 25. For now, we will test this methodology
on seismic data recorded by the crosswell survey shown on the left side of Figure 14.22. Here, there
are 77 sources (red stars) along the left well and 156 receivers (blue quadrilateral) along the right
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Figure 14.20: a) Original shot gather and shot gathers with b) 10%, c) 30% and d) 50%
decimation of traces. Images from Mandelli et al. (2018).
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Figure 14.21: a) Original shot gather and shot gathers reconstructed from b) 10%, c) 30%
and d) 50% missing traces in Figure 14.20. Images from Mandelli et al. (2018).

well, and the source and receiver sampling intervals are 20 m and 10 m, respectively. We mainly
focus on the inversion of the transmitted arrivals by windowing the input data around the early
arrivals.

The inversion strategy, as outlined in Figure 14.23, is to employ an autoencoder to skeletonize
the input traces as low-dimensional latent-space variables. Then, use the wave-equation method
similar to that of Luo and Schuster (1991a,b) to invert for the associated velocity model. Instead
of picking the transmission traveltimes the trained autoencoder automatically determines the latent
variables for each trace. In our examples, we will train for just one latent variable for each trace,
and compare this to inversion of several latent variables per trace (Chen and Schuster, 2019).

The following workflow is used to train the autoencoder network.

1. Build the training set from just one of every five shot gathers. For the Gaussian-anomaly
data, the training data consist of 2496 seismic traces. Each shot gather is computed by a
finite-difference solution to the 2D acoustic wave equation.

2. Data processing. The input trace is Hilbert transformed to get its envelope, then the resulting
traces are normalized by the variance of that trace. Figures 14.24a and 14.24b show a seismic
trace before and after processing, respectively.

3. Training the autoencoder. We feed the processed training set into an autoencoder where
the dimension of its latent space is equal to 1. In other words, each training trace with a



14.4. NUMERICAL EXAMPLES 409

Gaussian Anomaly & Crosswell Data 

Initial model: Homogeneous velocity with 

0.2

1.4

0.2 1.2

True Velocity Model

2500

2550
m/s

Shot # 1
0

2

T
im

e
 (

s)

Shot # 38
0

2

T
im

e
 (

s)

Shot # 77
0

2

T
im

e
 (

s)

Geometry: Crosswell (source on the left and receiver 

on the right)

Figure 14.22: Gaussian anomaly model, In this example there are 77 sources (red stars)
along the left well and 156 receivers (blue quadrilaterals) along the right well. Figure
adapted from Chen and Schuster (2020).

Machine Learning + Wave Equation Inversion of Skeletonized Data 
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Figure 14.23: The inversion strategy is to generate the skeletal features, i.e. latent variables,
by an autoencoder, and invert these features by an iterative wave-equation inversion method.
Figure from Chen and Schuster (2020).
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Figure 14.24: The a) original seismic trace and the b) processed seismic trace. Figure from
Chen and Schuster (2020).

dimension of nt× 1 will be encoded as one latent variable by the encoder. The autoencoder
parameters are updated by iteratively minimizing equation 14.1 using the architecture shown
in Figure 14.25. Figures 14.26a and 14.26b show, respectively, an input training example and
its corresponding reconstructed signal by the autoencoder.

Figures 14.27a, 14.27b and 14.27c show three observed shot gathers which are not included in
the training set, and their encoded values are shown in Figures 14.27d, 14.27e and 14.27f which are
the skeletonized representations of the input seismic traces. The encoded values do not have any
units and can be considered as skeletonized attributes of the data, even though they appear to have
about the same moveout patterns as the traveltimes of the first arrivals. The autoencoder believes
that these encoded values are the best low-dimensional representations of the original input in the
least-square sense.

We compare the traveltimes and the encoded values for the observed (black curves) and synthetic
(red curves) data in Figure 14.28. Figures 14.28b shows a larger traveltime difference than Figures
14.28a and 14.28c as its propagating waves are affected more by the Gaussian anomaly than the
other two shots. Similar to the traveltime values, the encoded values are also sensitive to the velocity
changes.

Finally, the far rightmost tomogram Figure 14.29 results from the inversion of two latent variables
per trace. It can be seen that there is a slight accuracy improvement with the two-latent variable
result compared to the one-latent tomogram. In comparison, the wave-equation traveltime inversion
(WT) tomogram (Luo and Schuster, 1991a, b) is shown on the left of Figure 14.29, which provides
a modestly more accurate estimate of the true model. The WT method uses solutions to the wave
equation to invert the first-arrival traveltimes and so avoids the high-frequency approximation of
ray tracing. However, the WT method requires picking of the traveltimes while the autoencoder
automatically estimates the latent values as the skeletonized data. This can, in principle, result in
a great amount of time savings when millions of traveltimes need to be picked for 3D data. This
claim should be tested with data recorded in large field surveys.
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Figure 14.25: The architecture of the autoencoder neural network used for inverting the
Gaussian-anomaly data. Figure from Chen and Schuster (2020).

The problem with the above result is that the decoder g(z) is not necessarily a continuous
function of z for all values of z. Empirical experiments with latent-space vectors with dimensions
larger than 1 show significant problems in convergence. This problem is partly addressed with the
constraints introduced in Chen and Schuster (2020). One possibility is to include regularization of
the latent-space vectors in the AE objective function (Oring et al., 2020).

14.4.3 4D Seismic Image Monitoring and Forecasting

The autoencoder can be used for interpolating data in 4D seismic monitoring of CO2 sequestra-
tion projects. The frequency of seismic data acquisition in the CO2 sequestration project is limited
by high cost, availability of equipment, exclusion zones around surface structures, etc (Koster et
ak, 2000). To improve the security and applicability of the CO2 sequestration project, the missing
data between the infrequent acquisitions are required for real-time monitoring. An interpolation
network can used to “connect the dots” between the seismic data in years and its structure is given
in Figure 14.30. Two encoders and the three decoders share their weights with other encoders and
decoders. A compressed representation of the seismic data is generated in the latent space by the
encoder-decoder network, then a linear regularization is imposed on the latent space. The latent
space is interpolated based the total CO2 injected volume:

Ln+i = Ln +
m− i
m− n (Ln+m − Ln), (14.12)

where dn and dn+m are the observed seismic data with total CO2 injected volume n and n + m,
Ln and Ln+m are their latent space representations. The interpolated latent space Ln+i with total
CO2 injected volume n+ i is fed into the decoders to reconstruct the interpolate seismic data.

The interpolation network is tested with the Sleipner data and an example is shown in Fig-
ure 14.31. When no real seismic data are acquired, the data gap between the years can be filled
by the high fidelity synthetic seismic data being generated the interpolation network. In compar-
ison, the linear interpolation in the data domain can only generate the cross-dissolve transition in
Figure 14.31b.

The autoencoder can be also used for the forecasting the seismic data in the CO2 sequestration
projects. To better learn the complex temporal dynamics of CO2 plume migration, a long short-term
memory (LSTM) (Hochreiter and Schmidhuber,1997) layer is incorporated with the autoencoder for
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(c) Data Difference

Figure 14.26: The a) input training example, b) reconstructed signal by autoencoder and
c) their difference. Figure from Chen and Schuster (2020).
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Figure 14.27: Three shot gathers with their corresponding encoded data. Figure from Chen
and Schuster (2020).
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Figure 14.28: Comparison of (top row) traveltimes and (bottom row) skeletal-data latent
values for different shot gathers: black and red curves represent the observed and synthetic
data, respectively. The latent variables in the bottom row are computed from the traces
generated from either the tomographic model or the Gaussian-velocity model. Figure from
Chen and Schuster (2020).
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Figure 14.29: Left to right: WT, true, 1-latent-variable, and 2-latent-variable velocity
models.

the extrapolation of the seismic data in Figure 14.32. Instead of using seismic data as input, the
extrapolation network has better performance using seismic data change as the input. LSTM takes
the historical latent representations of the seismic data change as input and predicting the future
states. In addition, an optical flow (Horn and Schunck, 1981) regularization is applied to constrain
the movement direction of the reflection events over time.

The extrapolation network is also tested on the Sleipner data. Figure 14.31 shows the data change
in the CO2 plume area from 9.6 to 12.0 Mt. The predicted data change from linear interpolation
is far away from the real data. With the regularization of the optical flow, the predicted data
change from the extrapolation network is more consistent with the real data than that from the
extrapolation network without optical flow.

14.5 Summary

The autoencoder architecture is defined as a symmetrical set of layers where the number of
neurons per layer progressively diminish towards the center of the architecture, where the central
layer has the fewest number of units. If the number of units is too few in the central layer then it will
be impossible for the autoencoder to produce a nearly identical copy of the input image at the output
layer. Thus, a trial-and-error method is used to determine the smallest dimension of the bottleneck
latent space that can be decoded and still reproduce an acceptably accurate rendering of the input
image. The benefit is that the latent space has many fewer dimensions than the input space so that
memory and computation costs can be significantly reduced. Small memory also results in small
transmission costs for WiFi or across copper wires or optical cables.

Autoencoders can also be used for denoising, especially for restoring corrupted images, videos
and musical recordings. The latent space can be fractured, so interpolating latent-space points z
can often produce unrealistic output images. The partial cure is to regularize the autoencoder, such
as accomplished by dropout of the weights, adding noise to the system, constraining the size of the
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Figure 14.30: A schematic illustration of the interpolation network which contains two
encoder networks and three decoder networks (Feng et al, 2021b).

Fréchet derivatives, sparsifying the weights of the AE, incorporating damping terms for the latent
space, implementing a VAE that forces the latent space points to be fitted to a Gaussian, or using
an adversarial network such as ACAI.

For seismic interpolation, the autoencoder can be an accurate interpolator for marine surveys
and seismic monitoring of time-lapse data. Further testing is needed to define its limitations and
benefits for a comprehensive set of corrupted data.

In the case of traveltime tomography, a trained autoencoder does not necessarily require travel-
time picking of first arrivals, and an enormous savings can be gained in eliminating manual picking of
traveltimes. However, the decoder g(z) is not necessarily a continuous function of z so this presents
problems in convergence for a latent space dimension larger than one. Further work is needed to
increase the robustness of this method.

14.6 Exercises

1. Derive the AE formulas for the objective function and the gradient where the regularization
term is ||z||2. Discuss the benefits of using this type of regularization if the data are overfitted.
Compare this regularizer to those presented in Oring et al. (2020).

2. Derive the AE formulas for the objective function and the gradient where the regularization
term is

∑
i(zi − zi−1)

2. What is the physical meaning of this regularization term in terms of
smoothness?

3. Derive the formula for the gradient of the AE objective function using a total variation reg-
ularization (Estrela et al., 2016) of the latent space vectors. When would this regularization
be better than the penalty term ||z||2?

4. Discuss the relationship between an AE and an AE with skip connections in the form of a
U-Net. Can the AE with skip connections be used to form a U-Net with skip connections?
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Figure 14.31: a) 2D observed data, interpolated data in the b) data domain and c) latent
space with total CO2 injection volume from 0 to 4.2 Million tons (Feng et al, 2021b).

14.7 Appendix: Autoencoder in Keras

We now create an autoencoder code in Keras, where the logical flow and Keras code are following
that of Ali Masri at towardsdatascience.com.

We will create a Keras code for the following autoencoder architecture:

1. An input layer with 28 ∗ 28 = 784 neurons.

2. A Hidden layer with 2 neurons.

3. An output layer with 28 ∗ 28 = 784 neurons (same as the input layer).

The input data set will be the 28× 28 MNIST images (see images in Figure 14.10) and the goal will
be to autoencode compress them to the encoded dimension of 2× 1.

The Keras code is below.

% First, we import the dataset:

from keras.datasets import mnist

(data, labels), (_, _) = mnist.load_data()

% Need to reshape and rescale:

data = data.reshape(-1, 28*28) / 255.

% Time to define the network. We need three layers:

% An input layer with size 28*28
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Figure 14.32: A schematic illustration of the extrapolation network which contains four
encoder networks and five decoder networks (Feng et al, 2021b).

% A hidden layer with size 2

% An output layer with size 28*28

% from keras import models, layers

input_layer = layers.Input(shape=(28*28,))

encoding_layer = layers.Dense(2)(input_layer)

decoding_layer = layers.Dense(28*28) (encoding_layer)

autoencoder = models.Model(input_layer, decoding_layer)

% Compile and Train: Fit the model using a binary cross entropy loss

% between the pixel values:

autoencoder.compile(’adam’, loss=’binary_crossentropy’)

autoencoder.fit(x = data, y = data, epochs=5)

Did you notice the trick? X = data and y = data as well.

The results of the decoded picture are on the right side of Figure 14.6. After fitting the model, the
network is supposed to learn how to calculate the hidden encodings. But we still have to extract the
layer responsible for this. In the following, we define a new model where we remove the final layer
since we do not need it anymore:



418 CHAPTER 14. AUTOENCODERS

Figure 14.33: a) Observed data change, predicted data change b) by linear extrapolation,
by extrapolation network c) without regularization and d) with regularization from 9.6 to
12.0 Mt (Feng et al, 2021b).

encoder = models.Model(input_layer, encoding_layer)

% Now instead of predicting the final output, we are predicting

% only the hidden representation using the following command:

encodings = encoder.predict(data)

The encoded variables are represented by an (n,m) array where n is the number of examples
and m is the number of dimensions. The first column is the first feature and the second column
is the second one. But what are those features? Actually, we do not know. We only know that
they are well representatives of each input value. Figure 14.6 plots the encoded values for all of
the examples, where they cluster into about 6 or 7 distinct colors. Interesting, since there are 10
numbers and a few of them are visually similar. Clearly it learned the different characteristics for
each digit and how they are distributed in a 2D space.
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14.8 Appendix: Dropout=Regularization

Consider a single-layer neural network as shown in Figure 14.34 with output a single scalar value
denoted by the target variable t. For simplicity, we assume a linear activation function, with the
understanding that the theory can be extended to a non-linear activation function. The input is the
M × 1 vector x and the weights are denoted by the M × 1 vector w. Following Ranjan (2019c), the
goal is to find the weights that optimally predict the given target scalar t in the least squares sense.

x1

x2

x3

x4

w1

w2

w3

w4

iwixi = t

Figure 14.34: Single-layer linear network (Ranjan, 2019c).

For the regularized least squares problem the objective function is

ǫ =
1

2
(

M∑

i=1

wixi − t)2 +
λ

2
wTw, (14.13)

where λ > 0 is the damping parameter. An extra summation could be added to the objective
function to account for many input samples of x, but the results we get for the single example in
equation 14.13 are applicable to the case of a large training set.

The kth gradient of the regularized objective function 14.13 is

∂ǫ

∂wk
= xk

residual︷ ︸︸ ︷

(

M∑

i=1

wixi − t)+λwk,

=

M∑

i=1

(xkxi + λδik)wi − xkt, (14.14)

where the residual
∑M

i=1 wixi − t is the difference between the predicted
∑M

i=1 wixi and actual t
target values.
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14.8.1 Least Squares Minimization with Dropout

We now define a random binary dropout variable f such that f = 1 has the probability p and
f = 0 with probability (1 − p). The composite discrete probability function is p(f)(1 − p)(1−f). For
the ith data example we will assign a separate random variable as fi. Therefore if we exclude the
regularization term in equation 14.13 but now multiply each wi by the dropout variable fi we have

ǫ =
1

2
(

M∑

i=1

fiwixi − t)2. (14.15)

The average of the kth gradient of this regularized objective function is

<
∂ǫ

∂wk
> = < fkxk(

M∑

i=1

fiwixi − t) >,

= xk

M∑

i=1

< fkfi > wixi − xkt
f̄︷ ︸︸ ︷

< fk >,

= < f2
k > x2kwk + [

M∑

i=1, i6=k

< fkfi > xkxiwi]− xktf̄ , (14.16)

where < > indicates averaging over the jointly distributed dropout variables f1, f2, ..., fM and
f̄ =< fk >. Recall that if fk and fi are independent variables then

< fifk > = < fi >< fk > = f̄2. (14.17)

It is also known that the variance σ2 of the random variable fk is given by

σ2 =< (fk − f̄k)2 > = < f2
k > − f̄2 → < f2

k > = σ2 + f̄2. (14.18)

Substituting equations 14.17 and 14.18 into equation 14.16 gives

<
∂ǫ

∂wk
> = (f̄2 + σ2)x2kwk + f̄2[

M∑

i=1, i6=k

xkxiwi]− xktf̄ ,

= σ2x2kwk + f̄2
M∑

i=1

xkxiwi − xktf̄ ,

= f̄2
M∑

i=1

(xkxi + λδik)wi − xktf̄ , (14.19)

where λ = σ2/f̄2. Thus, this averaged dropout gradient is the same as the regularized objective
function

ǫ′ =
1

2
(

M∑

i=1

xif̄wi − t)2 +
λ

2
f̄2wTw, (14.20)

seen in equation 14.13, except the w→ f̄w.
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14.9 Appendix: KL Regularization

Mapping similar input images to a small region of z-space should encourage a small average
value ρ̂j of the encoder’s jth activation function:

ρ̂j =
1

M

M∑

m=1

f
(m)
j , (14.21)

whereM is the number of input examples. We would like this average value to be a reasonably small
number such as rho = 0.05, so we could incorporate a penalty term (http : //deeplearning.stanford.edu/

tutorial/) such as
∑J

j=1(ρ̂j−ρ)2. There are other choices of penalty functions, but one choice favored
by some statisticians is

J∑

j=1

KL(ρ||ρ̂j) =

J∑

j=1

ρ log
ρ

ρ̂j
+ (1− ρ) log 1− ρ

1− ρ̂j
, (14.22)

which is the Kullback-Leibler (KL) divergence between a Bernoulli random variable with mean ρ and
a Bernoulli random variable with mean ρ̂j . This is a standard metric for measuring the difference
between two probability distributions. As illustrated in Figure 14.35, the minimum is reached when
the network is trained so that ρ̂j = ρ = 0.2. See Appendix 20.11 for more details about KL
regularization.
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Figure 14.35: KL penalty function plotted against ρ̂ for ρ = 0.2. Illustration from http : //
deeplearning.stanford.edu/tutorial/.



Chapter 15

Convolutional Sparse Coding

According to Papyan et al. (2017b), the NN operation of the feature map convolved with a layer’s
filter can be interpreted as a weighted summation of basis functions. Here, the basis functions are
the filters and the values in the feature maps are interpreted as the coefficients. Therefore, a signal
polluted by noise, both coherent and random, can be filtered by decomposing the input into desirable
and undesirable basis functions. The undesirable ones can be eliminated by muting and the input
can be approximated by the weighted sum of desirable basis functions, which is the signal. This
process, denoted as denoising by convolutional sparse-coding (CSC), is now described.

15.1 Introduction

Seismic data may suffer from different sources of noise during field acquisition, and this noise
generally falls into two categories: (1) coherent noise such as ground roll and multiples; (2) incoher-
ent (random) noise generated by activities in the environment such as the acquisition truck, drill rig,
seismic vessels, wind and animal movements. Seismic noise attenuation is one of the critical compo-
nents of seismic data processing. This type of noise, either coherent or random, can be attenuated
by a convolutional type of denoising method which we denoted as CSC denoising.

Traditional seismic denoising methods exploit the different characteristics of the noise and the
seismic data in a transform domain. The transform domain is selected so that the signal and noise
have different characteristics. For example, the band-pass, f − k, and kx − ky filtering method will
separate the undesirable noise from the signal in the Fourier domain (Yilmaz, 2001). Some other
examples include the following.

• Chanerley and Alexander (2002) use the stationary wavelet transform as an alternative to
band-pass filtering for denoising.

• The curvelet transform is used by (Hennenfent and Herrmann, 2006) to attenuate both random
and coherent noise in seismic data.

• Ibrahim and Sacchi (2014) use the hyperbolic Radon transform for deblending seismic data
obtained from a survey with blended sources.

• The seislet transform is used for seismic denoising by Chen (2016).

• Other seismic random noise attenuation methods include the nonlocal means method (Bonar
and Sacchi, 2012) and the sparsity and low-rank regularization method (Li et al., 2020).

• Coherent noise attenuation methods include prediction filters (Guitton, 2002), empirical mode
decomposition (Bekara and Van der Baan, 2009), and nonstationary polynomial fitting (Liu
et al., 2011).

423
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The transform methods mentioned above are typically model-driven processes based on a speci-
fied mathematical model of the data. The performance may not be satisfactory due to the inability
to adapt to changing data structures (Zhu et al., 2015). Alternatively, the sparse dictionary learn-
ing method is a data-driven process, which learns its dictionary so that complicated data can be
represented by a sparse set of weighted basis functions. Kaplan et al. (2009 use the sparse-coding
algorithm to attenuate both coherent and incoherent noise. Beckouche and Ma (2014) evaluate a
dictionary learning method for seismic-data denoising. Zhu et al. (2015) develop a seismic data
denoising method based on a parametric dictionary learning scheme. Chen et al. (2016) combine
learning based dictionaries and fixed-basis transforms and propose a double-sparsity dictionary to
better handle the special features of seismic data. Li et al. (2018) proposed a novel method based
on unsupervised learning to recover the weak residual signal from seismic data. Their synthetic and
real data examples indicate that this method is capable of recovering signal even if it is orders of
magnitude weaker than the surrounding noise.

Most of the sparse coding (SC) denoising methods partition the seismic data into overlapping
patches, and process each patch separately. These methods, however, ignore the consistency of
structures in overlapping patches. That is, the learned features often contain shifted versions of the
same features so that latent structures of the underlying signal may be lost when dividing it into
small patches (Bristow et al., 2013; Heide et al., 2015). Liu et al. (2020) propose a convolutional
sparse coding (CSC) method based on the seismic denoising method to address the consistency
issue. As opposed to SC, CSC operates on whole seismic images, thereby seamlessly capturing the
correlation of features in nearby neighborhoods.

The CSC method can learn a set of translation invariant dictionaries for a large variety of different
training signals (Xiong et al., 2019). It has been demonstrated effective for solving problems in
neural and brain information processing (Jas et al., 2017; Peter et al., 2017), and in different image
processing tasks, such as image inpainting (Heide et al., 2015), super-resolution (Gu et al., 2015),
high dynamic range imaging (Serrano et al., 2016), and high-dimensional signal reconstructions
(Choudhury et al., 2017). CSC is shown to be closely connected to convolutional neural networks
(CNN) by Papyan et al. (2017a,b) and has been applied to the seismic least-square migration
problem (Liu and Schuster, 2020; Liu et al., 2020). Al-Madani et al. (2019) use CSC for seismic
random noise attenuation and interpolation. They didn’t discuss how to use CSC to attenuate the
coherent noise, and the efficacy of this method is validated with synthetic data. However, further
studies are needed to assess its capabilities.

The CSC problem can be solved by using the Alternating Direction Method of Multiplies (AD-
MM) (Boyd et al., 2011) in the Fourier domain (Wohlberg, 2016; Heide et al., 2015) or in the
space domain (Papyan et al., 2017a,b; Zisselman et al., 2019) which alternate between finding the
dictionary (dictionary learning problem) and then finding the sparse coefficients (sparse pursuit
problem).

The next sections will apply the fast and flexible CSC method proposed by Heide et al. (2015) to
seismic denoising. The theory of the fast and flexible CSC method is proposed along with its workflow
for noise attenuation by CSC. Then the CSC denoising method is applied to synthetic data and field
records. Numerical results indicate that the proposed method achieves good denoising performance.

15.2 Theory

The convolutional sparse coding problem can be defined as finding the optimal d and z that
minimize the following objective function (Heide et al., 2015):

argmin
d,z

1

2
‖x−M

K∑

k=1

dk ∗ zk‖22 + β

K∑

k=1

‖zk‖1 +
K∑

k=1

indC(dk), (15.1)
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where x is an m × n image in vector form, dk refers to the k-th d × d filter in vector form, zk is
a vector of sparse coefficients with size (m + d − 1) × (n + d − 1), β controls the l1 penalty, and ∗
denotes the 2D convolution operator. M is a binary diagonal matrix that masks out the boundaries
of the padded estimation

∑K
k=1 dk ∗ zk. The term indC(·) is an indicator function:

indC(d) =

{
0 d ∈ C
1 d /∈ C, (15.2)

which is defined on the convex set of the constraints C = {d | ‖d‖22 ≤ 1}. Equation 15.1 can be
expressed as the following sum of functions

argmin
d,z

f1(Dz) +

K∑

k=1

(f2(zk) + f3(dk)), (15.3)

where,

f1(v) =
1

2
‖x−Mv‖22, f2(v) = β‖zk‖1, f3(v) = indC(v). (15.4)

Here, z = [zT1 , · · · , zTK ]T is the coefficient matrix and D = [D1, · · · , DK ] is a concatenation of
Toeplitz matrices, each one representing a convolution with respect to the filter dk. Equation 15.3
is a sum of functions fi, which are simple to optimize individually. However, computing their sum is
challenging. Following Heide et al. (2015), equation 15.3 is a bi-convex problem for z (or d) when d
(or z) is fixed. So, we can use the alternating coordinate descent method to solve it. First, compute
the filter update:

argmin
d
f1(Zd) +

K∑

k=1

f3(dk). (15.5)

Then compute the coefficient update:

argmin
z
f1(Dz) +

K∑

k=1

f2(zk). (15.6)

Repeat the above two steps until there is no more progress in both directions.

15.2.1 Generalization of the Objective Function

The above two subproblems have the same format and so we can define their generalized form
as

f(Ku) =

I∑

i=1

fi(Kiu), (15.7)

where K = [K1,K2, · · · ,KI ]
T . Ki are arbitrary matrices, and I is the number of functions. Here,

u can be d or z. For example, if K1 = D, K2u = z1 · · · , the problem for the coefficient update can
be written as:

argmin
u
f(Ku) = argmin

z
f1(Dz) +

K∑

k=1

f2(zk). (15.8)

Heide et al. (2015) use the alternating direction method of multipliers (ADMM) (Boyd et al., 2011)
to solve for u in equation 15.8. We will see that the resulting minimization by ADMM becomes
separable for all the fi. For example, the following problem is the same as the problem in equation
15.8:

argmin
u
h(u) + f(y) subject to Ku = y, (15.9)
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Figure 15.1: Workflow of CSC for noise attenuation.

where h(u) = 0. Its augmented Lagrangian can be written as:

Lρ(u,y,α) = h(u) + f(y) +αT (Ku− y) + (ρ/2)‖Ku− y‖22.

The scaled form of the augmented Lagrangian is:

Lρ(u,y,α) = h(u) + f(y) +
ρ

2
‖Ku− y + λ‖22, (15.10)

where λ = 1
ρα. The ADMM of equation 15.10 is described by the following three steps.

• u update:

uk+1 = argmin
u

Lρ(u
k,yk,λk),

= argmin
u
‖Kuk − yk + λk‖22. (15.11)

• y update:

yk+1 = argmin
y

Lρ(u
k+1,yk,λk),

= argmin
y

ρ

{
f(yk)/ρ+

1

2
‖Kuk+1 − yk + λ

k‖22
}
. (15.12)

• error update:

λk+1 = argmax
λ

Lρ(u
k+1,yk+1,λk),

= λ
k + (Kuk+1 − yk+1). (15.13)

Because f is a sum of fi, equation 15.12 can be separated as:

yk+1
i = argmin

yi

fi(y
k
i )/ρ+

1

2
‖Kiu

k+1
i − yk

i + λk
i ‖22,

for all i ∈ {1, · · · , I}. (15.14)

Appendix 15.7 shows how to solve the problems defined by equations 15.11 and 15.14.

15.2.2 Workflow

The workflow of CSC for noise attenuation is shown in Figure 15.1. It includes the following
two steps:
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Figure 15.2: Marmousi velocity model used for computing the synthetic data.

• Training phase: solve for the filter dk and the coefficient vector zk. The training data are
chosen with a relatively high signal-to-noise ratio (SNR). We should remark that training on
high-SNR data is not necessary because the CSC process has a noise rejection capability like
the traditional SC (Elad and Aharon, 2006). However, training on high-SNR data will have
better denoising performance than training on the noisy data because it will learn cleaner
filters. The filter size should be larger than one wavelength.

• Denoising phase: solve for the coefficient vector zk with the knowledge of the learned vector
dk. Change the value of the coefficient β for the l1 penalty function to control the degree of
noise removal. For coherent noise, remove some of the learned filters that are more indicative
of noise than signal, and the remaining filters are used for denoising.

15.3 Numerical Examples

The performance of CSC for denoising seismic data is demonstrated with two examples: (1)
synthetic data from the Marmousi model and (2) field data from Saudi Arabia. The synthetic data
example tests the performance of CSC in removing random noise in seismic data, and the field data
example demonstrates the removal of coherent noise. The SNR used in our synthetic test is defined
as follows:

SNR = 10 log10(
‖Xsignal‖22
‖Xnoise‖22

) (15.15)

where Xsignal and Xnoise denote the signal and noise, respectively.

15.3.1 Synthetic Test

The first example is a 2-D synthetic dataset calculated from the Marmousi model, as shown in
Figure 15.2. There are 116 sources with a 40 m interval and 231 receivers with a 20 m interval
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located along the free surface at the top of the model. The source wavelet is a Ricker wavelet with
the center frequency of 15 Hz. The recording time is 4s with a time sampling of 1 ms. For each
common shot gather (CSG), we extract part of data for testing, where the time interval is from 1.6s
to 2.5s, and the maximum source-receiver offset is 2 km. For example, the extracted data from the
second CSG are displayed in Figure 15.3a, and the dimension of each input panel is 181×100.

We first compare the denoising performance of the CSC method versus the traditional SC method
based on the K-SVD algorithm proposed by Elad and Aharon (2006). We use the noisy data with
a SNR of 4.27 (Figure 15.3b) to train the dictionaries. We use 32 11× 11 filters for CSC, which are
initialized with zero-mean random numbers between -1 and 1. For the patch-based traditional SC
method, we first divide the noisy data set into overlapping patches each with size 11×11 and the
stride size is 1. The total number of the patches is 171×90, and we randomly select 10,000 among
them as a training set. The number of the atoms (filters) is set to the size of the filters, which make
a dictionary of 121 atoms.

A factor of redundancy of two is also a popular choice (Beckouche and Ma, 2014), but here we
set the factor of redundancy as one. The atoms are initialized randomly, and the atom sparsity level
is set to 10.

Figure 15.4a and 15.4b show the learned filters by the convolutional and traditional SC methods.
If we compare the filters marked by the red rectangles in Figure 15.4, we see that the traditional
SC method learns shifted versions of the same features. The filters are learned from the red area
of the data shown in Figure 15.3a. The denoised results by the convolutional and traditional SC
methods are shown in Figure 15.3c and 15.3d, respectively. The SNRs of the denoised data by the
convolutional and traditional SC methods have increased to 14.13 and 13.95, respectively. From the
comparison, we see that CSC denoised results may have better SNR than provided by the traditional
sparse coding method.

We then test the performance of CSC denoising by training the filters from a clean data set.
Five CSGs with a high SNR are selected for training. There are 50 learned filters (see Figure 15.6)
and the filter size is 55 × 55. Assume that the second CSG is contaminated with some noise (see
Figure 15.5b) and its SNR is -1.76. The denoised CSG is shown in Figure 15.5c and its SNR increases
to 14.5. We can change the coefficient β of the l1 penalty function to control the noise level. Figures
15.7a and 15.7b show the denoised results by setting β to 0.2 and 5, respectively. We observe that
more noise is removed with larger values of β. But it may also hurt some useful signals, which can
be seen in the comparison of the residuals in Figures 15.7c and 15.7d.

15.3.2 Field Data Test

Seismic data are recorded over the Qademah fault system (Li et al., 2019; Liu and Lu, 2018),
approximately 30 km north of the KAUST campus, Saudi Arabia. There are 228 sources with a
source spacing of 10 m. Each CSG has 456 receivers with a receiver spacing of 5 m. The dataset
is first filtered by a bandpass filter with a frequency range from 10 Hz to 60 Hz. Ten CSGs are
chosen for training, and one of the CSGs is shown in Figure 15.8a. Its offset range is from 0.2 km
to 1.3 km. The surface waves are muted out in the training set. There are 30 21 × 21 learned filters
displayed in Figure 15.8b. Some features of the coherent noise are learned from the training data
set, as indicated by the red boxes in Figure 15.8b.

We select the first CSG (see Figure 15.9a) for denoising, where the offset range is from 0.8 km
to 1.9 km. β is set to 0.8 during the denoising phase. Using all the learned filters in Figure 15.8b for
denoising gives the denoised results displayed in Figure 15.9b. Its corresponding residual is shown
in Figure 15.10a. There is still coherent noise in the area indicated by the red box in Figure 15.9b.
The reason is that the learned filters include features with coherent noise.

Next we exclude the filters with noise features indicated by the red boxes in Figure 15.8b. Then
we apply the remaining filters for denoising. The denoised result and its residuals are shown in
Figures 15.9c and 15.10b, respectively. We see that the noise level within the red box of Figure 15.9b
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Figure 15.3: a) Synthetic data; b) noisy data; the denoised results by the c) CSC and d)
traditional SC methods based on the K-SVD algorithm. The red rectangle in a) is selected
for comparison in Figure 15.4.
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Figure 15.4: Comparison of the learned filters from the noisy data by a) CSC and (b)
traditional SC based on the K-SVD method. Here, the red rectangles show the filters with
similar features.

is reduced by only using the selected filters. We continue to exclude more filters as indicated by the
yellow boxes in Figure 15.8b during the denoising phase. The denoised result is shown in Figure 15.9d
and its residual is shown in Figure 15.10c. From the residuals in Figure 15.10, we see that more
coherent noise is removed.

Next, we choose the near-offset traces with offsets ranging from 0.05 km to 0.35 km (see Fig-
ure 15.11a) that are contaminated with surface waves to perform the test. We use all the filters
shown in Figure 15.8b for denoising. The denoised data and the residuals are shown in Figures
15.11b and 15.11c, respectively. The learned filters do not include the features from the surface
waves, so the surface waves are removed.

15.4 Discussion

In the synthetic data example, for simplicity, we test our denoising algorithm on only a part of
the CSG. The application to all of the CSGs is straightforward. From the synthetic results, we see
that for CSC denoising there are two training options: using the noisy data set itself, or training on
a similar but noiseless data set. By the comparison of the learned filters from the convolutional and
traditional SC methods, we find that the filters from the traditional SC method are highly redundant
because they have to capture all shifted copies of the filters.

The computational cost of CSC is discussed in Papyan et al. (2017). Papyan et al. (2017) show
that the dictionary leaning step in CSC can be solved in the spatial domain by K-SVD instead of
ADMM in the Fourier domain proposed by Heide et al. (2015), the method used in this paper.
They conclude that the K-SVD-based method scales linearly with the global dimension, while the
method used in this paper grows as N log(N) where N is the dimension of the signal x. So, when
the dimension of data is larger, the KSVD-based method should be used with the CSC algorithm
(Papyan et al., 2017).

The CSC-based denoising method is an unsupervised learning process that differs from super-
vised learning processes such as CNN-based denoising suggested by Yu et al. (2019). It does not
heavily depend on the availability of a huge amount of training data. However, it may need human
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Figure 15.5: a) Synthetic data from Marmousi model and b) noisy data with the SNR of
-1.76; c) the denoised data with the SNR of 14.5 and d) the residual between b) and c).
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Figure 15.6: Fifty 55 × 55 filters learned by CSC from five CSGs with a high SNR.
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Figure 15.7: Denoised data by setting β = a) 0.2 and b) 5 and their corresponding residuals
in c) and d), respectively.
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a)  Common Shot Gather                 b)          Learned Filters

Figure 15.8: a) A CSG from the training data recorded over the Qademah fault with the
offset range from 0.2 km to 1.3 km; the ground roll has been muted. b) 30 21 × 21 filters
learned by CSC.

intervention for inspecting the quality of the filters, and we may need to visually separate the noisy
filters from the clean filters.

15.5 Summary

The convolutional sparse coding (CSC) method can be used to eliminate both coherent and
random noise in seismic data. It mitigates the consistency issue suffered by sparse coding (SC). The
seismic data with a relatively high signal-to-noise ratio are chosen for training to get the learned
basis functions, and then we use all (or a subset) of the basis functions to attenuate the random or
coherent noise in the seismic data. For denoising random noise, the value of the coefficient of the L1

penalty function is selected by a trial-and-error procedure. For attenuation of coherent noise, the
learned basis functions must exclude coherent noise features, such as ground roll.

The CSC can learn a set of shifted invariant filters, which can reduce the redundancy of learned
filters in the traditional SC denoising method. The synthetic numerical tests indicate that CSC
can achieve better performance when training on similar but noiseless data compared to training
on a noisy data set. Even training with noisy data, CSC still has a good denoising performance.
Numerical results from the Qademah data indicate that CSC can effectively suppress seismic noise.
By excluding filters with features of coherent noise, the proposed method can further attenuate
coherent noise and separate ground roll. When attenuating the coherent noise, it requires human
intervention to inspect the quality of the filters. This limitation can be relaxed by labeling the basis
functions according to the physical attributes that differentiates signal from noise.
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Figure 15.9: a) Noisy data from the far offset of the Qademah data with an offset range
from 0.8 km to 1.9 km; the denoised data by a) all filters, and selected filters excluding
those indicated by b) red and c) red and yellow boxes in Figure 15.8b.
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Figure 15.10: Residuals of the denoised data shown in Figure 15.9 b-d.
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Figure 15.11: a) Near-offset data with surface waves, b) denoised data, and c) its residual.
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15.6 Computational Labs

1. Go to the sparse coding lab at LAB1/Chapter.Book.Sparse/Chapter.Sparse2/lab.html and
perform the exercises.

15.7 Appendix: ADMM

We will show how to use the ADMM procedure to solve the problems defined by equations 15.11
and 15.14. For the quadratic problem in equation 15.11, its solution is

uopt = argmin
u
‖Ku− τ‖22 = (KTK)−1(KTτ ), (15.16)

where τ = y − λ.

For the problem defined in equation 15.14, it can be divided into the following three problems.

1. When fi = f1(v) =
1
2‖x−Mv‖22, the problem becomes

y1opt = argmin
y1

1

2ρ
‖x−My1‖22 +

1

2
‖K1u1 − y1 + λ1‖22, (15.17)

and its solution is

y1opt = (I+
1

ρ
MTM)−1(

1

ρ
MTx+K1u1 + λ1). (15.18)

2. When fi = f2(v) = β‖v‖1, the problem becomes:

y2opt = argmin
y2

β

ρ
‖y2‖1 +

1

2
‖K2u2 − y2 + λ2‖22. (15.19)

This is a soft threshold problem. Assume that v = K2u2 + λ2 = (v1, v2, · · · )T , y2 =
(y1, y2, · · · )T , and its solution is:

yi
2opt =





0 β
ρ ≤ vi ≤

β
ρ ,

vi − β
ρ vi >

β
ρ ,

vi +
β
ρ vi <

β
ρ ,

(15.20)

The above solution can be expressed in a vector form:

y2opt = max(1− β

ρ

1

|v| ,0) ◦ v,

where ◦ is the element-wise product operator, 1/|v| is a vector where each of its elements is
the inverse of the absolute value of the corresponding element in vector v.

3. When fi = f3(v) = indC(v) where the convex set C is {d | ‖d‖22 ≤ 1}, assume b = K3u3+λ3

and the problem becomes:

y3opt = arg min
y3∈C

1

2
‖y3 − b‖22, (15.21)

if b ∈ C, y3opt = b. if b /∈ C, y3opt will have the miminum distance to b. So, y3opt =
b

‖b‖2
,

as shown in Figure 15.12.
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Figure 15.12: Projection of b on the convex set ‖y‖22 ≤ 1.
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If we define the proximal operator as:

proxf (v) = argmin
x

(
f(x) +

1

2
‖x− v‖22

)
, (15.22)

the above three solutions can be expressed as:

prox f1
ρ

(K1u1 + λ1) = (I+
1

ρ
MTM)−1(

1

ρ
MTx+K1u1 + λ1),

prox f2
ρ

(K2u2 + λ2) = max(1− β

ρ|K2u2 + λ2|
,0) ◦ (K2u2 + λ2),

prox f3
ρ

(K3u3 + λ3) =

{
K3u3 + λ3 : ‖K3u3 + λ3‖22 ≤ 1,

K3u3+λ3

‖K3u3+λ3‖2
: else.

(15.23)



Chapter 16

Principal Component Analysis

Large multidimensional data sets are increasingly being recorded, and therefore becoming more
difficult for the geoscientist to interpret. To mitigate this problem, principal component analysis
(PCA) is an unsupervised machine learning method that compresses data to a smaller dimension
with minimal information loss. This assumes that there are significant linear correlations between
the components of the data vectors. The data compression is accomplished by finding an orthogonal
coordinate system that maximizes the variability, i.e. variance, of the components along the principal
component axis. The components along the principal axis are decorrelated from the ones along the
other orthogonal axes. The components with higher-variance explain more information and help
reveal hidden patterns in the data.

For strong linear correlations in the data components, dimensional reduction is achieved by
approximating the data along a few eigenvector axes with the largest eigenvalues. This also allows
for the discovery of hidden, i.e. correlated, patterns in the data.

16.1 Introduction

Principal component analysis (PCA) is an unsupervised machine learning method that finds an
orthogonal coordinate system which maximizes the variability of the components along different axes
(Joliffee, 2002; Jolliffe and Cadima, 2016; Bishop, 2007). It implicitly assumes that there is a linear
correlation between different components of the data vector. For example, the normally distributed
points (x1, x2) are linearly correlated along the 45o line in Figure 16.1 and are plotted over the range
−1 < x < 1. Their x1-components and x2-components vary over a range of 2 units along each axis.
If the coordinate system is rotated by 45o then the variation of the components x′1 along the slanted
line, denoted as the principal axis, has the maximum range of 2

√
2 > 2 units. In contrast, there is

a much smaller variation of the point projections along the orthogonal axis tilted at 135o. If these
variations of the data along the 135o axis are much smaller than those along the 45o axis then the
important portions of the original data can be approximated by their projections x ≈ x′1x̂

′
1, where

x̂′
1 is the unit vector along the principal-component axis. This approximation reduces the dimension

of the original data vector by one dimension.

In general, the high dimension of the original data points can be significantly reduced by
projecting them onto the hyperplane which maximize their variance. For example, the points

x(i) = (x
(i)
1 , x

(i)
2 , x

(i)
3 ) mainly plot along the blue hyperplane in Figure 16.2 which is spanned by

the unit vectors â1 and â2. Principal component analysis (PCA) is the procedure for finding a
rotated coordinate system which maximizes variance of the data along the principal axes.

Another example is the PCA analysis of images of the 10 digits between 0 and 9. Figure 16.3a
depicts an 8 × 8 image which is a hand-written version of the digit 4. The image plots as a point

441
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a) Data correlated along one axis b) Data correlated along two axes

Figure 16.1: Elliptical clouds of points where the projections on the horizontal and vertical
axis vary over the range −1 ≥ x, y ≥ 1. The data points are mostly correlated along the
red axis.
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Figure 16.2: The blue points x(i) = (x
(i)
1 , x

(i)
2 , x

(i)
3 ) can be accurately approximated by only

using two components x(i) ≈ y
(i)
1 â1 + y

(i)
2 â2 in the rotated coordinate system defined by

the unit vectors â1 and â2. The components in the rotated coordinate system are given by

y
(i)
2 = (x(i), â2) and y

(i)
1 = (x(i), â1).
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PC1
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a)        Digit #4                       b) PC1 & PC2 Components of 10 Digits

Figure 16.3: a) An 8 × 8 image of the hand-written digit 4 and b) the points associated
with handwritten digits between 0 and 9 plotted on the PC1 and PC2 axes.

in the 64-dimensional space spanned by the unit vectors û1 = {1, 0, 0, . . . , 0}, û2 = {0, 1, 0, . . . , 0}
, . . . , û64 = {0, 0, 0, . . . , 0, 1}. This high-dimensional space cannot be easily visualized in order to
determine the proximity of one digit point from another. However, projecting these points to the
principal-component axes PC1 and PC2 gives the 2D plot shown in Figure 16.3b. Here, the purple
dots (representing the digit 9) are in close proximity to the dark-blue dots (representing the digit
8), which is not surprising given their similar shapes.

In summary, PCA finds a rotated coordinate system which maximizes the variability of the
components of the points along the principal component axes. It can be used both for dimensional
reduction of the data and enhances the ability to visualize the data in the reduced dimensional space.
Similar to a NN, it employs the data to form the best basis functions for a sparse expansion. In this
reduced dimensional space, correlated points data can be more easily recognized and filtered from
the background noise.

16.1.1 Historical Background of PCA

PCA was introduced by Pearson (1901) and independently developed by Hotelling (1936). For
different fields of science and engineering, the PCA goes by different names such as the Karhunen-
Loéve transform (KLT) in signal processing, the Hotelling transform in multivariate quality control,
and the singular value decomposition that is used in many different fields (Golub and Van Loan,
1996; https://en.wikipedia.org/wiki/Karhunen-Loeve theorem). The machine learning community
uses PCA as an unsupervised learning method that, combined with a clustering algorithm, can
classify unlabeled data into different classes if the data have distinct correlations in the different
classes. Many variants of PCA have been developed (Jolliffe, 2002) and have been adapted to
special types of data (Diamantaras and Kung, 1996). Recent overviews of PCA are in Jolliffe and
Cadima (2016), Wu et al. (2018) and https://en.wikipedia.org/wiki/Principal component analysis.

Some PCA Geophysical Applications

PCA has been used in many areas of geoscience. A recent paper (Hussein et al., 2020) shows
that PCA and self-organized maps can be used to detect subtle faults in seismic sections without
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supervision. The PCA was used to compactly integrate the geologic information contained in many
different attributes computed from 3D seismic data. Another example of data integration by PCA
is in a geothermal field in France (Ars et al., 2020). Here, the geological models were computed
from log data, joint inversion of gravity recordings, ambient seismic noise and resistivity recordings.
The log data included resistivity, density and shear-velocity models, so that PC1 reveals geophysical
anomalies related to the geothermal system. The second component (PC2) represents 22% of the
total variance and is strongly correlated with the resistivity. The third component seems to be
related to the 3D geometry of the geological units.

Predicting the flood frequency of catchment basins is important information for relief agencies,
farmers and city planners. In this regard, Rahman and Rahman (2020) used 8 characteristics of
catchment basins as the input 8 × 1 vector from 88 different basins in Australia. They used PCA
to remove the linear correlation between components, and combined the PC components with a
clustering technique. This technique provided some useful predictions for smaller-sized catchment
basins.

PCA has been extensively used for condensing and interpreting the many different components
of geophysical attributes (Zhang et al., 2009; Liu et al., 2011; Chopra and Marfurt, 2014) and
measurements recorded in well logs. For example, Nicuescu and Andrei (2016) applied PCA to a
geophysical logging data set and conjectured that the first principal components respond to major
lithological changes or shale/clay content variations. The higher-order principal components most
likely reflect fluid-related data variability, such as fluids type and/or volume. They concluded that
PCA successfully complements the standard log interpretation and formation evaluation methods.
This is one of the examples where PCA has benefited well log analysis, including identification and
characterization of pressure seals and low permeability intervals (Moline et al., 1992), delineation of
lithostratigraphic units, identification of aquifer formations and distinction between hydraulic flow
units (Kassenaar, 1991; Barrash and Morin, 1997; Goncalves, 1998), establishing interdependency
and correlation between some hydraulic properties and geophysical and petrophysical parameters
(Morin, 2006), distinguishing anhydrite, siliciclastics, and carbonates in 3D well surveys (Hu et al.,
2017) and well-to-well correlation (Lim et al., 1998).

PCA is also used to denoise seismic signals. Ma and Zhai (2018) used PCA to denoise 2D panels
of seismic traces. regularization of traces was employed by adding random noise. Results with both
synthetic and field data show a significant reduction of noise. Huang et al. (2016) assume that
the random noise and irregularly missing data are additive and uncorrelated with the signal, and
utilize the PCA method to simultaneously reconstruct and de-noise seismic data. They derive an
operator that acts on the extracted principal components to make the reconstructed data closer to the
signal. Their results on synthetic data and recorded traces show a marked improvement compared
to conventional PCA filtering of seismic noise. A similar improvement in denoising seismic data
was achieved by applying the non-local Robust PCA (RPCA) to seismic data (Duarte et al., 2012;
Sha et al., 2019), which is classified as a sparse transform method. Sha et al. (2019) improved the
efficiency of this sparsity algorithm by sequentially upgrading the signal and downgrading the noise.
Liu et al. (2020a,c) also use RPCA for denoising seismic data. Liu et al. (2020a) created windowed
patches of the seismic section and grouped them based on the nonlocal similarity. For each group,
they established a similar block matrix and set up the objective function of the RPCA. The weights
for the PCA were determined by a minimization procedure for each block, and all of the results for
different blocks are aggregated together to get the denoised seismic data. Their results appeared to
surpass standard denoising methods, where standard PCA is ineffective in the presence of strong
additive noise.

The following sections describe the theory of PCA and demonstrate some of its applications
to geoscience problems. Finally we show how PCA can be used with a clustering algorithm for
automatic classification of points. The PCA lab is at the colab.research.google.com site1.

1
https://colab.research.google.com/drive/1ghJRvIdKkgEQy-ABoU5A7NNZNjubHU90#scrollTo=py1FLHEWiGsT
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16.2 Theory of Principal Component Analysis

Assume x is an N × 1 column vector where each component xn is a random variable governed
by a Gaussian probability distribution with mean value µn = 0. In our analysis we will assume that
the data x has been demeaned before applying PCA, so that the data covariance matrix < xxT >
for zero-mean data is defined as

< xxT > = <




x1
x2
...
xN



(
x1 x2 . . . xN

)
>

=




< x1x1 > < x1x2 > . . . < x1xN >
< x2x1 > < x2x2 > . . . < x2xN >

. . . . . .

. . . . . .
< xNx1 > < xNx2 > . . . < xNxN >



, (16.1)
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, (16.2)

where < > indicates averaging of the random variable xi over the infinite set of experimental
outcomes, which we call an ensemble. We approximate this averaging by the weighted summation

over the product x
(i)
k x

(i)
l of I random variables, where x

(i)
k is the outcome of ith experiment for the

xk random variable. The components of the vector x are normalized by their standard deviations
in order to avoid imbalanced component values when the components have different units (Jolliffe
and Cadima, 2016). In this case the normalized covariance matrix is referred to as the correlation
matrix.

As an example, consider the two prestack migration images Mig1 and Mig2 in Figure 16.4a
where the reflectivity amplitude is non-zero along the yellow reflector. Assume each image has been
demeaned2. The non-zero amplitudes in Figure 16.4a are correlated along the yellow reflector. Each
migration image can be discretized into a 2×2 grid of cells3. The discretized amplitude at the center
of each cell is taken to be the average amplitude value in that cell’s original image. Flattening each
image into a 4 × 1 vector gives the feature vectors x(1) and x(2) in Figure 16.4a, and their outer

products x(1)x(1)T and x(2)x(2)T in Figure 16.4b can be added together to give the product XXT of
the data matricesX and XT . Each row ofXT is the feature vector of a migration image; equivalently
each column of X is a feature vector. The product XXT in Figure 16.4d gives the summation of
the two 4× 4 matrices in Figure 16.4b, which approximates the data-covariance matrix.

The goal of PCA is to find the N × 1 principal axis vector unit â that maximizes the variability
of the projection of the N × 1 vector x onto â. This projection xT â is interpreted as the length
between the origin and the projected point along the unit vector â, denoted as x1 in Figure 16.1 for
â along the horizontal axis. Mathematically this principal axis vector is found by finding the unit

2The mean value of the xn random variable in the nth pixel can be approximated as µn ≈ 1
I

∑I
i=1 x

(i)
n

In contrast, the variance in equation 16.2 is divided by I − 1, rather than I , because the mean is already
computed to give one equation of constraint with I RVs. Thus, there are now only I − 1 independent RVs
when this constraint equation is taken into account. See Exercise 16.7.2.

3In reality, the number of pixels in each migration image is on the order of O(105) or more. For simplicity
of exposition we assume a 2× 2 image.
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Figure 16.4: a) Two 2 × 2 migration images, denoted as Mig1 and Mig2, are used to b)

form the outer-product matrices x(i)x(i)T for i = 1, 2, which can be added together to get
c), which approximates d) the data covariance matrix XXT .

vector â that maximizes the sum of the normalized squared lengths (x(i)T â)2:

ǫ =

1
I−1×sum of squared lengths of x(i) projected onto â

︷ ︸︸ ︷
1

I − 1

I∑

i=1

(âTx(i))(x(i)T â) + λ(1 − âT â),

= âT

(
1

I − 1

I∑

i=1

[x(i)x(i)T ]

)
â+ λ(1 − âT â), (16.3)

where I is the number of experiments (or migration images), [x(i)x(i)T ] is the N ×N outer product
matrix and λ > 0 is the Lagrange multiplier condition that insures that â is a unit vector. The data
covariance matrix approximated from two migration images is depicted in Figure 16.4d.

The stationary condition ∂ǫ/∂ai = 0 ∀i for equation 16.3 leads to

1

I − 1
XXT â = λâ, (16.4)

where ||â|| = 1 and 1
I−1XXT is the approximation to the data covariance matrix in equation 16.1.

The solution to equation 16.4 solves the eigenvalue problem, and the unit eigenvector ân with the
largest eigenvalue λn maximizes the objective function ǫ, i.e. the variance, in equation 16.3.

Since the N ×N matrix XXT is real and symmetric then there are N real eigenvalues λn where
the N eigenvectors ân are orthogonal and have unit length. Each eigenvector ân defines one of the
principal axis of the system. The physical interpretation of λn is that it is equal to the sum of the
squared values of the projections of the points x(i) for i ∈ [1, 2, ..., I] along the nth principal axis.
These lengths are the distances from the projected points to the origin of the rotated coordinate
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system. Therefore, the eigenvector with the largest eigenvalue λn defines the eigenvector ân with
the largest variation of projections x(i) onto this axis.

16.2.1 Intuitive Dinosaur Example

Assume that 100 hadrosaur teeth are collected and their features (w, h, a, s, c) vary in width,
height, age, sharpness, and color. These features are inserted into a 5 × 1 vector for each tooth so
that the input data consist of the 5 × 1 vectors x(i) = (w, h, a, s, c)(i) for i ∈ {1, 2, . . . , 100}. Here,
(w, h, a, s, c) denote the feature values of width, height, age, sharpness and color of a tooth. The
goal is to discover a lower-dimensional pattern in these 5-dimensional data.

In this example, the height and width of a tooth are assumed to be linearly proportional to
age a, so that h = ah1 + h0 and w = aw1 + w0. Here h0 and w0 are the starting values of height
and width for a baby tooth. Color and sharpness of a tooth are independent of any other features.
Therefore, the 5× 1 vectors x(i) project mainly to the line (aw1 +w0, ah1 + h0, a) in the w − h− a
space. The hypotheses that explain this pattern is that a tooth increases in width and height linearly
with increasing age, and that tooth color and sharpness are independent random variables.

The above pattern is difficult to discern in a high-dimensional space because we can only visualize
3D plots. However, the PCA analysis of this data will detect these linear correlations and show that
only a one-dimensional space described by the line (aw1 +w0, ah1 + h0, a) is required to explain the
feature variations in these 100 data points. The interpretation of the variable along this line can be
ascertained by a biplot analysis discussed in section 16.3.2.

So this is the key idea of PCA: project linearly correlated components to a lower-dimensional
space where the components of the new space are decorrelated. In the above example, the w−h− a
components were linearly correlated and so could be projected to the lower-dimensional space of
a line described by (aw1 + w0, ah1 + h0, a). This line coincides with PC1 in the PCA coordinate
system.

16.2.2 Simple Two-Point Example

As a simple example, apply PCA to the two demeaned points x(1) = (1, 1)T and x(2) = (−1,−1)T
plotted in Figure 16.5. In this case

XXT =

(
x
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1

x
(1)
2

)(
x
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1 x
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2

)
+
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x
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x
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(2)
2

)
,

=
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]
,
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[
1 −1
1 −1

][
1 1
−1 −1

]
,

=

[
2 2
2 2

]
. (16.5)

The eigenvalues of this matrix can be found by setting the determinant |XXT − λI| to zero:

|XXT − λI| = |
[

2− λ 2
2 2− λ

]
|,

= (2− λ)2 − 4 = 0, (16.6)

where the two eigenvalues are λ1 = 4 and λ2 = 0 and their normalized eigenvectors are, respectively,
â1 = (1, 1)/

√
2 and â2 = (1,−1)/

√
2.
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Figure 16.5: The sum of the squared projections |(1, 0)Tx(1)|2 + |(1, 0)T x(2)|2 = (1)2 +
(−1)2 = 2 on the x-axis is equal to 2. The sum of the squared projections of x(1) and x(2) on
the slanted red unit vector (1, 1)/

√
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The first eigenvector â1 is parallel to the maximum principal axis and is slanted at 45o to

the horizontal as shown in Figure 16.5. It is obvious that the projections â
(T )
1 x(1) =

√
2 and

â
(T )
1 x(2) = −

√
2 on the principal axis now have their maximum variation along this line. That is,

the sum of the squared lengths of these projections is equal to the eigenvalue λ1 = 4. The two
points have zero projection along the other principle axis vector â2, which is consistent with the null
eigenvalue λ2 = 0.

16.2.3 Filtering the PCA Components

The original image x(i) can be expressed as a weighted sum of eigenvectors4:

x(i) =

N∑

n=1

(ân,x
(i))ân, (16.7)

where (ân,x
(i)) is the projection of the ith migration image onto the nth principal component vector.

Here, the increasing value of the eigenvector index n ∈ [1, 2 . . .N ] is associated with the decreasing
magnitude of the eigenvalue. The component (ân,x

(1)) associated with the largest eigenvalue is the
first principal component, and the next one is the second principal component, and so on. Since the
eigenvectors are orthogonal then there is zero correlation between the different components. The
goal now is to filter the migration image to retain coherent signal and reduce the random additive
noise. In this regard, section 16.2.4 presents the PCA workflow and a simple example with outlier
noise is shown in Figure 16.6.

The random noise in the migration image is often uncorrelated with itself (and assumed to
be uncorrelated with the signal) so it does not contribute much to the element values of the data
covariance matrix. This suggests that the eigenvectors associated with small eigenvalues are largely
due to the additive noise, while the larger eigenvalues are associated with the coherent reflection
image. To filter out this noise, a subjective rule-of-thumb (Jolliffe and Cadima, 2016) is to only keep
the eigenvector components from n = 1 . . .Ncutoff in equation 16.7 that contribute about 70% of
the energy. Thus we take the upper limit in the sum to be Ncutoff << N , where

∑Ncutoff

n=1 |λn|∑N
n=1 |λn|

≈ 0.7. (16.8)

The standard measure of quality of the jth principal component is given by the proportion of total
variance

πj =
λj∑N
i=1 λi

, (16.9)

which is the proportion of the variance that each eigenvector represents. The values of πj can be
plotted against the order of the PC components in the scree plot5 of Figure 16.11b. A reasonable
approximation of the original data can often be computed by using a weighted sum of principal
components from the top of the curve to the PC associated with the elbow of the curve. Instead of
assigning a fixed threshold for the proportion of total variance in equation 16.9, ”the elbow of the
graph where the eigenvalues seem to level off is found and factors or components to the left of this
point should be retained as significant6.”.

4Any N × 1 vector x can be expressed as a weighted sum of the eigenvectors such that x =
∑N

n=1 αnân.
The eigenvectors are orthonormal, where (âm, ân) = δmn, so that taking the inner product of x with âm

gives (âm,x) =
∑

n αn(âm, ân) =
∑

n αnδmn = αm.
5
https://en.wikipedia.org/wiki/Scree plot#: :text=A%20scree%20plot%20always%20displays,should%20be%20retained%20as%20significant.

6
https://en.wikipedia.org/wiki/Scree plot#: :text=A%20scree%20plot%20always%20displays,should%20be%20retained%20as%20significant.
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16.2.4 PCA Workflow

A MATLAB script is used to generate the data shown in Figure 16.6 and the MATLAB code
and PCA workflow are described in Box 16.2.1.

Code 16.2.1. MATLAB Workflow and Code for PCA

1. Record or create data. Demean the D×1 data vectors x(i) for i = [1, 2, ..., N ]. Dividing
by standard deviation is an option for each type of random variable. Don’t normalize
if you wish to preserve true relationship between the different types of data.

clear all

data=zeros(30,2);data1=data;

data(:,1) = randn(30,1);

data(:,2) = 3.4 + 1.2 * data(:,1) + 0.2*randn(size(data(:,1)));

% data=data2;

subplot(121);plot(data(:,1),data(:,2),’o’);

title(’a) Raw data’);axis(’equal’);pause(1)

data(:,1) = data(:,1)-mean(data(:,1));

data(:,2) = data(:,2)-mean(data(:,2));

subplot(121);plot(data(:,1),data(:,2),’o’);

title(’a) Demeaned data’);axis(’equal’)

2. Compute the covariance matrix XXT in equation 16.2.

C = cov(data);

3. Compute the eigenvectors ai and eigenvalues λi of XXT . In MATLAB script below
the eigenvectors are columns of ”V” and eigenvalues are diagonal components of ”D”.

[V,D] = eig(C);

4. Filter the input data by reconstructing the data x(i) by a truncated sum of the eigen-
vectors:

x(i) =

M∑

n=1

(ân,x
(i))ân, (16.10)

where M << N is hopefully much less than the original dimension of the data. In
MATLAB the filtered components along the V(:,1) and V(:,2) axes are

x=V(1,1)*data(:,1)+V(2,1)*data(:,2);

y=V(1,2)*data(:,1)+V(2,2)*data(:,2);

subplot(122);plot(x,y,’o’);axis(’equal’);

title(’b) PC1 & PC2 Coordinate System’)

xlabel(’PC2’);ylabel(’PC1’)



452 CHAPTER 16. PRINCIPAL COMPONENT ANALYSIS

-1 0 1
x

1

-1

-0.5

0

0.5

1

x 2

a) Demeaned Data

-1 0 1
PC1

-1.5

-1

-0.5

0

0.5

1

1.5

P
C

2

b) PC1 & PC2 System

-1 0 1 2 3
x

1

-1

0

1

x 2

c) Demeaned Data+Noise

-3 -2 -1 0 1
PC1

0

1

2

P
C

2

d) PC1 & PC2 System

Figure 16.6: Correlated raw data points on the left and same points in PC1 and PC2
coordinate system on the right. The data in a) are mostly correlated along the red-dashed
line so they mostly plot along the PC1 axis in b). However, the input data with six noisy
outliers (red circles) in c) are not linearly correlated with the blue circles, so the PCA in d)
does not accurately decorrelate the data. This reinforces the requirement that outliers in
the input data should be eliminated before demeaning and PCA. The red- and green-dashed
lines in c) are for reference, and are not rotated to be the dashed lines in d). Partly adapted
from http://mres.uni-potsdam.de/index.php/2017/09/14/principal-component-analysis-in-
6-steps/.
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Figure 16.7: Matrix decomposition of the M ×N matrix XT into a) SVD, b) reduced SVD,
and c) truncated SVD matrices. The dashed black rectangle in a) the green matrix indicates
the portion of U that multiplies the null singular values in the dashed box of the orange
matrix Σ. The reduced SVD matrices in b) ignore these null portions of the matrices, while
the truncated SVD in c) deliberately zeros out a large band of small singular values along
the diagonal of Σ.

16.2.5 Singular Value Decomposition

Singular Value Decomposition (SVD) can accomplish the same dimensionality reduction as PCA,
and is sometimes less expensive. The SVD can be considered a rank-reduction method in the same
class as RPCA (Siahsar et al., 2017), where a low-rank matrix approximates the covariance matrix.
An excellent SVD lecture by Gilbert Strang is at www.youtube.com/watch?v = rY z83XPxiZo.

The following steps describe the SVD method.

• Decompose the M ×N data matrix XT into

XT = UΣVT , (16.11)

where M ≥ N and the V is an N × N matrix with orthonormal column vectors known as
right-singular vectors. The M ×M matrix U also has orthonormal column vectors, but are
denoted as left-singular vectors, and Σ is an M ×N rectangular diagonal matrix of singular
values σi depicted by the narrow orange band in Figure 16.7a. The diagonal components are
sorted in decreasing order σ1 ≥ σ2 ≥ . . . ,≥ σN . By orthonormality, UTU = I and VTV = I.

• The columns in V are right-singular vectors equivalent to the eigenvectors of XXT , and the
singular values of XT are equal to the square root of the eigenvalues of XXT . If the data are
demeaned, then the data-covariance matrix can be formed from

XXT = VΣTUTUΣVT ,

= VΣ̃
2
VT , (16.12)

where Σ̃
2
= ΣTΣ. We can express the data vector x as a truncated sum of weighted singular

vectors that have a singular value above a critical threshold. These singular vectors are the
column vectors of V

• The right-singular vector vi in the ith column of V is the ith principal component vector of
PCA, and the singular value σi is the square root of the variance along the ith PC axis. For
example, multiply the right of the N × N covariance matrix XXT in equation 16.12 by the
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N × 1 singular vector v1 to get

XXTv1 = VΣ2VTv1 = VΣ̃
2
ê1,

= σ2
1Vê1,

= σ2
1v1, (16.13)

where ê1 = (1, 0, 0, . . . , 0) is an N × 1 unit vector, and v1 the is first singular vector, i.e. first
column vector of V. According to PCA analysis, σ2

1 is the variance of the first PC vector
because v1 is an eigenvector, not just a right-singular vector, of XXT .

• The SVD approach is sometimes preferred over PCA because computing singular vectors
and singular values can sometimes be less expensive than computing the eigenvalues of XXT

(https://en.wikipedia.org/wiki/Principal component analysis). IfN is large then the compact
SVD methodology is recommended 7. If only a few singular values are large, then the truncated
SVD in Figure 16.7c requires much less memory and computational complexity than that for
full or reduced SVD in a) or b). See Exercises 16.7.11 and 16.7.12.

• PCA (or SVD) is sensitive to outliers in the data, so such points should be removed prior to
analysis. An alternative is to downweight the noisy data (Kriegel et al., 2008).

Denoising Seismic Data with SVD

Singular value decomposition, which is equivalent to PCA in that it can decompose XXT into
eigenvectors, can be used to detect and enhance laterally coherent signals in multitrace recordings
(Bekara and Van der Baan, 2007). It can be used for dip filtering of seismic reflections, VSP up/down
wavefield separation, elimination of the direct waves in ground penetrating radar data (Liu et al.,
2017a), and residual statics corrections (Ulrych et al., 1988). It can also be used as a regularized
inverse method to improve the spatial resolution of traveltime tomograms (Infante-Pacheco et al.,
2020).

SVD is suitable for data where coherent events can be aligned laterally. For example, the
reflection events in Figure 16.8a can be time shifted so the early arrivals are aligned, that is flattened,
in Figure 16.8b. The data vector x(t), where the time t plays the role of a sample index, consist of
the amplitudes at the fixed time t for the 5 flattened traces in the red window of Figure 16.8b. Each
trace is at a different offset and each example x(t) is at a new time value t.

Figure 16.9a in the red box shows a windowed view of 5 flattened traces from Figure 16.8b. At a
fixed time t, the amplitudes from the five traces are used to form the 5×1 vector x(t) that surrounds
the 3rd trace. Another set of amplitudes at t + 1 forms the 5 × 1 vector x(t+1). This is repeated
for all the time values in the red window to form the ensemble of examples x(t) t ∈ {t1, t2, . . . , tN}.
These data are used to compute the covariance matrix XXT after demeaning. For the 5× 1 sample

vectors x(t) = (x
(t)
1 , x

(t)
2 , . . . , x

(t)
5 ), the SVD algorithm is then used to obtain the 5 singular vectors

shown in Figure 16.9b. Notice how the first one contains most of the signal in the 3rd trace of

Figure 16.9a because the samples for a fixed time are largely redundant, i.e. x
(t)
1 ≈ x

(t)≈···≈x
(t)
5

2 , for
that time value. This is the reason why we flatten the traces, we want the amplitude values to be
nearly the same and largely redundant so they can be approximated by the 1st singular vector. As
can be seen in Figure 16.9b, the 2nd and higher-order singular vectors are weak in amplitude and
are assumed to represent noise in the traces. After SVD filtering of the 3rd trace in a) we get the
leftmost trace in Figure 16.9c. This filtered trace appears similar to the stacked trace on the right
where all the traces in the red box in a) are stacked together. This process of estimating the singular
vectors and filtering the traces is repeated for the red window sliding over the entire CSG. The final
result of using this sliding window SVD filtering method is shown in Figure 16.10.

7https : //en.wikipedia.org/wiki/ Singular value decomposition#Compact SV D
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a) Common Shot Gather (CSG) b) Flattened CSG

0.0

1.5

2.5

Zoom

View

0.0

1.5

2.5

-4                                0                                4 km -4                                0                                4 km

Offset (km)                                                                         Offset (km)

T
im

e 
(s

)

T
im

e 
(s

)

Figure 16.8: a) Common shot gather and b) flattened and windowed portion of shot gather
with a zoom view in red box. Results from Yasmin Oshiro.

Computational Cost of SVD

Sanger (1993) presented an iterative algorithm to find the singular values and vectors for SVD.
The SVD of the M × N matrix XT is computed by a two-step procedure: 1) the matrix XT is
reduced to a bidiagonal matrix, which takes O(4MN2− 4N3/3) floating-point operations (flops) by
a Householder-like algorithm, and 2) the SVD of the bidiagonal matrix is computed by an iterative
method such a QR-type algorithm8. It is often the case that the entire SVD is not required when
we only need the singular vectors associated with a few large singular values. In this case, there are
several reduced SVD methods that can be used to significantly reduce memory and computation
costs, such as the reduced SVD in Figure 16.7b or truncated SVD in Figure 16.7c. In the reduced
SVD of Figure 16.7b, the dimmed column vectors in the green U matrix associated with the dimmed
zero-singular values in Σ are muted. This can significantly reduce the computational complexity of
the computing the SVD. For the truncated SVD illustrated in Figure 16.7c, only a few columns in
U are retained because just a few singular vectors associated with the largest singular values are
required. This can significantly reduce the computational complexity compared to SVD or reduced
SVD.

16.3 Numerical Examples

We will now demonstrate the use of PCA applied to several examples. One of the examples will
be eruption times of Yellowstone earthquakes and their duration.

16.3.1 Yellowstone Eruption Data

Figure 16.11a depicts the eruption duration time of Yellowstone earthquakes plotted against their
waiting time (WT) between eruptions (Jenset and McGillivray, 2014). In these two coordinates the

8https : //en.wikipedia.org/wiki/Singular value decomposition#Numerical approach
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Figure 16.9: a) Windowed and flattened traces from Figure 16.8b, b) singular vectors from
the windowed traces in a), and c) the SVD filtered trace on the left and the stacked trace
from 5 traces on the right. In practice, the red window size is 5 samples in time and 5
samples in offset. The filtered trace was obtained by estimating the SVs by shifting the red
window down in time but centered at the 3rd trace in a). Results from Yasmin Oshiro.
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Figure 16.10: a) CSG of the data on the left and the singular-vector representations to the
right. Notice that the singular vectors of 2nd-order and higher appear to consist mostly of
random noise. Results from Yasmin Oshiro.
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a)          Yellowstone Data b)             Scree Plot
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Figure 16.11: a) Waiting Time for Eruption plotted against Duration for Yellowstone data.
The solid and dashed double-sided arrows correspond to the PC1 and PC2 axes, respectively.
The scree plot in b) is for an unrelated data set with over 20 principal component vectors.
Figures adapted from (Jenset and McGillivray, 2014).

points form a cloud that slants about 45 degrees with respect to the horizontal axis. It is clear that
there is a correlation between the waiting time and eruption duration: the longer we wait the bigger
the eruption.

The projection of these points along the horizontal axis, the duration of eruption (DUR), approx-
imately covers the range 1.7 < DUR < 5.1. The PCA axes are computed using the PCA workflow
described above, and the 1st principal component (PC) axis is plotted as the solid double-sided
arrow. It is clear that the solid double-arrow axis does not fully account for all the variation in the
data. The remaining variability in the data is accounted for by the projections of the points along
the orthogonal PC2 axis plotted as dashed double-sided arrow. These two axes constitute the basis
vectors for the subspace that best accounts for the total variation of the data.

Science is all about collecting data and determining mathematical models that explain the data.
The simplest model is favored, and so in this case the PC1 axis allows one to predict WT from DUR.
That is, the double-arrow PC1 line represented by WT = (90 − 50)/(5.5− 1.5)DUR+ b is a good
approximation for predicting WT from DUR. Here, b is the intercept WT for DUR=1.5.

If these data constituted a cloud of points in M -dimensional space, and the data were only
correlated only along the PC1 and PC2 axes, then no other axes are needed to represent these
points. This represents a tremendous reduction in data storage, not to mention a simple model that
accurately predicts eruption waiting times from DURs.

The scree plot in Figure 16.11b is used to determine the number of PC axes needed to accurately
represent the data, which in this case is unrelated to the Yellowstone data. Here, the value of each
point along the vertical axis is determined by equation 16.9, which gives the proportion of variance
explained by each PC. The first PC accounts for around 48% of the variance and the second one
accounts for 12%. The strong drop between the second dark bar and the first light bar suggests that
only two PCs are needed for this data set.
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16.3.2 Biplots and Geochemical Data from a Gold Site

Biplots can be used to understand the physical meaning of the points in the principal component
space. For example, Figure 16.12 depicts the geochemical points from an Australian gold site plotted
in the PC1 and PC2 subspace. The geochemical data consists of various percentages of Ca, As, K,
Ba, Cr, Cu, Ti, Fe, Mn and Ni in a 4-9 meter wide outcrop of quartz breccia in an Australian gold
field (Gazley, et al., 2015). Each data sample is assigned a percentage and a 9 × 1 Euclidean unit
vector. For example, The Chromium element is assigned the 9 × 1 unit vector ê1 = (1, 0, 0, . . . , 0)
and if the sample i = 1 contains 100% Chromium then x(1) = (100, 0, 0, . . . , 0). Similarly, the
potassium sample can be assigned the 9 × 1 Euclidean unit vector ê2 = (0, 1, 0, . . . , 0) so that if
sample i = 2 is 40% Chromium and 60% Potassium then the data sample vector for i = 2 is
x(2) = (40, 60, 0, 0, . . . , 0). In general, each of the nine listed elements is assigned a unique 9 × 1

Euclidean unit vector, and the element percent of each sample is assigned as the coefficient x
(i)
k in

x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
9 ).

The projection of the Ca, As, K, Ba, Cr, Cu, Ti, Fe, Mn and Ni unit vectors onto the PC1-PC2
subspace form the biplot vectors vi shown in Figure 16.12 and defined as

v(i) = (x(i), â1)â1 + (x(i), â2)â2, (16.14)

where â1 and â2 are the first and second principal component unit vectors. Here, x(i) is the ith

data sample vector in the original data space and (x(i), â1) is its projection along the first principal
component axis â1. Its projection to the 2nd PC axis â2 is given by (x(i), â2).

The geochemical meaning of a biplot vector is deduced by noting that the red Cr vector
(1, 0, 0, . . . , 0) in the input space projects to the point yCr = (−9, 1) in the PC1 × PC2 plane.
This says that the Chromium content is negatively and strongly correlated along the PC1 axis de-
noted by â1; here, a scaling has been applied to the axes. The projection along the PC2 axis is only
1, which is 9 times weaker than the projection along PC1. Points farther to the left of the origin
along the PC1 axis indicate input samples with increasing Chromium content.

The green Ca biplot vector is along the −45o line and suggests a strong negative correlation of
calcium for points along this slanted line. In fact, gold compounds are correlated quite well along this
slanted line and suggest that a gold element vector, which was not in the original batch of elements,
would have correlated well along this slanted line. Note that the purple potassium element is a point
that is in the 4th quadrant.

The lengths of these biplot vectors are proportional to the magnitude of the projection of the
original unit vector onto the PC1-PC2 plane. In the Figure 16.12 example, the PC1 axis is strongly
correlated with the elements Ca, As, K, and Ba, while the vertical PC2 axis is strongly correlated
with the elements Cr, Cu, Fe, Mn and Ni. Gazley et al. (2015) claim that PC1 and PC2 accounts
for > 60% of the variance in a multivariate dataset, with careful selection of components. They
also claim that ”that the majority of variation accounted for by PC1 is a function of variation in
background rock chemistry, most likely a function of fine scale layering. The variation accounted
for by PC2 is likely to show evidence for chemical changes as a result of hydrothermal alteration.”.
The points with red circles account for the rocks with the highest gold concentrations.

16.3.3 Nashville Limestones

Around 200 limestone samples were taken from outcrops near Nashville, Tennessee and their
geochemical composition was measured by Theiling et al. (2007). These data were analyzed with
PCA and the data points, biplot vectors and scree plots are plotted in Figure 16.13b- 16.13d, while
the loadings of the PC vectors are provided in Figure 16.13a 9. The loadings, i.e. components, for
the unit vector PC1 = (y1, y2, . . . , y8) were computed by taking the dot product of the unit vector

9http://strata.uga.edu/8370/handouts/pcaTutorial.pdf and http://strata.uga.edu/8370/data/
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Figure 16.12: Geochemical samples from an Australian gold field plotted in the PC1-PC2
subspace. Samples with red circles indicate a high gold content.
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PC1 with the unit vector for d13C, e.g. ê1 = (1, 0, 0, . . . , 0) to get y1 = −0.17. Note that the square
of the components in the column vector for PC1 sum to unity, as it should for a unit vector.

The mineral dolomite is a double carbonate (CaMg(CO3)2) and is rich in magnesium (Mg).
The biplot vectors for Mg and d18O in Figure 16.13c indicate that data points near the top of the
graph and close to the vertical axis are indicative of dolomites. Indeed, this part of the graph is
interpreted as dolomite-type rocks in Figure 16.13d. In contrast, limestones are rich in Calcium (Ca)
and so the biplot for Ca is near the horizontal axis to the right of the origin in Figure 16.13c and so
the interpretation in Figure 16.13d indicates clean limestones to the right and near the horizontal
axis.

Limestones can be polluted with clay particles, which are rich in Al, Si and Al. These elements
are indicated to be more common for data points along the left side of the PC1 axis as suggested by
the biplot vectors in Figure 16.13c. Therefore, the clay-rich limestones are interpreted to be on the
left of Figure 16.13d. The biplot vectors indicate that Al, Si and Al are negatively correlated to the
PC1 axis, which means larger loadings of clay correspond to the data point being located farther to
the left of the origin along the negative PC1 axis.

The non-dolomitized rocks are interpreted to be at the bottom of this graph, as indicated by
the biplot vector for O13. These elements often occur in non-dolomitized rocks. The colored points
in Figure 16.13d are associated with either the Carters or the Hermitage formations from which the
samples were obtained.

A stand-alone Python lab for these data is available at the CoLab site10. This is a lab exercise
in the Exercises section at the end of this chapter.

16.3.4 PCA Applied to Hyperspectral Images

A digital color camera outputs three N ×N images from an N ×N ×Nb color cube, where Nb

is the number of color bands and N is the number of pixels along one side of a square image. Each
image is denoted as a channel. The bands are uniquely assigned one of the red, blue or green colors
where the input light is filtered by the appropriate red, green, or blue filter. These images can be
blended together to give one color image, which is known as a RGB image. Each color corresponds
to a different band of photon frequencies, which are quite wide and overlapping.

To get more information from light, multispectral (4 ≤ Nb ≤ 12) and hyperspectral (Nb > 12)
cameras11 record more than three channels. The output is an N × N × Nb data cube, where Nb

can be more than 200 with bands between the far-infrared and ultraviolet regions. A particular
problem will demand a particular selection of bands that need to be recorded and processed. The
hyperspectral bands can be finely resolved to a width as fine as 10− 20 nanometers12. An example
of a hyperspectral image taken by a satellite is shown in Figure 16.14.

A multispectral survey of a portion of south Brazil (see Figure 16.15 was carried out to detect the
presence of uranium deposits (de Lima and Marfurt, 2018). The survey airplane carried a gamma ray
counter no more than 80 m above the ground to detect the radiation count from surficial radioactive
elements that emitted gamma rays by decay of radioactive nuclei near the surface. The target
elements were potassium, thorium and uranium so the spectral images were thresholded around the
associated energy bands.

Figure 16.16a shows the recorded RGB images for potassium, thorium and uranium channels,
which are combined to give the ternary color image. The ternary color chart is shown in the triangle.
The plot of energy (frequency) versus counts/s is displayed in Figure 16.16b, and the bands of interest
for the target elements are in color. The counts/sec of each channel are shown in Figure 16.17 and
are marked by arrows indicating possible economic targets.

10https://colab.research.google.com/drive/1mLWN8TdIAMowLsbQ3UQASOeo6-
V0qLOz?usp=sharing#scrollTo=iF5JHUyZHmHR

11https://en.wikipedia.org/wiki/Hyperspectral imaging
12http://www.adept.net.au/cameras/hyperspectral.shtml
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Figure 16.13: a) Table of elemental components, b) scree plot, c) data points plotted in
the PC1-PC2 plane along with scaled biplot vectors associated with each of the elemental
compositions in a). d) Data points with geological interpretation of the limestone/dolomites.
The first two PCs explain about 60% of the data variance. In contrast, PCs with a percent
variance less than 1/8 = 0.125 (see dashed red line in b) explain less than the average
variance associated with all of the PCs. Plots adapted from Stephen Holland’s tutorial at
http://strata.uga.edu/8370/handouts/pcaTutorial.pdf.
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Image Cube from a Hyperspectral Camera
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Figure 16.14: Hyperspectral image cube, where x and y are the geograph-
ic coordinates and b is the frequency band coordinate. Image from http-
s://en.wikipedia.org/wiki/Hyperspectral imaging.
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The University of Oklahoma, CPRM – Geological Survey of Brazil

Figure 16.15: (Left) Red survey zone and (right) counts/sec versus gamma-ray energy for
responses to uranium, thorium and potassium. Images from de Lima and Marfurt (2018).
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Figure 16.16: a) RGB images of each channel recorded by the gamma-ray spectrometer are
above the blended ternary image, and b) depicts the graph of recorded counts/sec versus
energy of gamma rays. Images from de Lima and Marfurt (2018).
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Total Count Potassium

Thorium
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Figure 16.17: Recorded counts/sec for the a) total count (TC), b) potassium (K), c) Thori-
um (Th) and d) Uranium (Ur) channels. The total count image serves is a reference for the
gamma-ray measurements over each pixel. The colored arrows indicate possible economic
targets deduced from these images (Lima and Marfurt, 2018).
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a)      Geology Map           b)     Ternary Image    

c)              PC1                  d)            PC2

Figure 16.18: a) Geology map, b) ternary image, c) PC1 image and d) PC2 image of the
survey area. Each pixel in c) and d) displays the coefficient value associated with the,
respectively, 1st and 2nd PC axes (di Lima and Marfurt, 2018). Arrows indicate possible
economic targets deduced from these images.

Figure 16.17 displays the images of counts/s for each element, which are not very revealing of
anomalous target zones compared to the PC1 and PC2 images in Figure 16.18c-16.18d. These PC
images were formed by applying PC analysis to the 4 × 1 vectors of counts/s at each pixel in the
recorded data. They are more revealing of possible target opportunities than the original channel
images in Figure 16.17.

A K-Means clustering program is applied to the 4-channel data and the PC1 and PC2 compo-
nents to give the results in Figure 16.19. In this case the spectral distance, i.e. djk, of the j

th pixel
to its kth neighbor is

djk =
√
||∆xjk ||2, (16.15)

where djk is the normalized difference between the 4 × 1 data vectors x(j) and x(k) at the jth

and kth pixels, respectively. For Figure 16.19a, x(j) is the normalized and demeaned 4 × 1 vector
(TCj ,Kj, THj, Urj) of counts/s at the jth pixel. In Figure 16.19b, the four components for the
distance calculation were taken from the PC images. For this example, K = 9 and the clusters in
the PC1-PC2 plane are more indicative of the potential economic targets than the channel clusters.
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UraniumThorium
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a) TC, Ur, Th, K) K means b) PC1 PC2 K Means

Figure 16.19: The K-Means algorithm is applied to the 4-channel recorded data and the
PC1 and PC2 data to give the K-means clusters in a) and b), respectively. Images from de
Lima and Marfurt (2018).

Sometimes the Mahalanobis distance is used for the similarity metric, where

dij =
√
(xi − xj)TC−1(xi − xj), (16.16)

where C = 1
N−1XXT is the data covariance matrix. Division by the data covariance matrix says

that the Mahalanobis distance is both unitless and scale-invariant, and takes into account the cor-
relations of the data set. However, in some codes the Mahalanobis distance is computed based on
the covariance matrix of the entire data, and thus is mathematically equivalent to the distance in
the principal component domain. Some numerical tests suggest that clustering using the distance
in the principal component domain gives a much better contrast in the final display, compared to
using the regular distance in the original attribute domain13. Tests also suggest that K-means does
not work well if the Mahalanobis distance per cluster is used compared to forming clusters in the
principal component domain of the entire data.

16.4 Kernel PCA

The PCA analysis is inappropriate if the components of the data points are not linearly cor-
related. For example, the sinuous point distributions in Figure 17.13b or concentric points in Fig-
ure 16.20a will not allow for a significant reduction in dimension by a PCA rotation of the coordinate
axis. In these cases, the correlation between different components is nearly zero so the PCA axes
will provide no useful purpose.

In these examples a non-linear PCA-like method can be used to reduce the dimension of the
original data. A popular approach is to apply a non-linear transform z = φ(x) to the data to
project it to a higher-dimensional space where the blue and red points in Figure 16.20a are now
linearly separated in Figure 16.20b using a Gaussian kernel. The kernel trick is used so that a
high-dimensional transform can be efficiently used, and is denoted as the kernel PCA (Schölkopf,
1998) method. Instead of finding a new coordinate system that maximizes the margin of labeled
points, kernel PCA finds the principal axes coordinate system in the higher-dimensional space that

13Communication from Thang N. Ha (ha7675@ou.edu)
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Figure 16.20: Middle image is the result of applying a kernel PCA to the data on the left.

maximizes the variance of unlabeled data along PC axes. Mathematical details for the kernel PCA
are described in Schölkopf (1998), Bishop (2006) and Appendix 16.9.

The fourth column of images in Figure 7.11 shows the results of using clustering and a kernel
SVM method. In this case a Gaussian kernel is used and correctly separates the two different classes
of points. The points in the kernel space can be clustered by a conventional clustering method
because they are more separated in this domain. These results are more accurate compared to
K-means clustering (Ezukwoke and Zareian, 2019).

16.5 Computational Costs

The computational task of PCA is to find the eigenvalues and eigenvectors of the covariance
matrix. If a direct method is used for inverting the N × N matrix XXT then the computational
cost is O(N3). If the dimension number N is too big then an iterative method is used to find
the eigenvalues and eigenvectors where the computational cost is O(KN2), where K is the number
of iterations. Two popular iterative methods are the Power and the stochastic gradient descent
methods (Wu et al., 2018).

The Power method uses the iterative formula

ak+1
1 = XXT āk1 , where āk1 =

ak1
||ak1 ||

, (16.17)

where āk1 is the kth iterative estimate of the normalized eigenvector ā1 with the largest eigenvalue.
This assumes that the eigenvalues are distinct from one another and XXT is positive definite. As
a simple demonstration of this iterative formula, assume x = ā1 +

∑N
i=2 αiāi, where āi is the ith

eigenvalue of XXT . In this case

XXTx = λ1ā1 +

N∑

i=2

αiλiāi = x1. (16.18)
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Multiplying XXT by x1 gives

XXTx1 = λ21ā1 +

N∑

i=2

αiλ
2
i āi = x2. (16.19)

Repeating this procedure K times gives

XXTxK = λK+1
1 ā1 +

N∑

i=2

αiλ
K+1
i āi,

≈ λK+1
1 ā1. (16.20)

because λK1 >> λKi i ∈ {2, 3, . . . , N}. If λ1 is slightly larger than λ2 then the convergence rate
is very slow. The vector λK+1

1 ā1 can be normalized to give ā1, the eigenvector of XXT with the
largest eigenvalue. This can be plugged into XXT ā1 = λ1ā1 to give its eigenvalue λ1.

If āk1 is computed, then the eigenvector ā2 with the second largest eigenvalue can be obtained
by applying the Power method to

ak+1
2 = [I− ā1ā

T
1 ]XXT āk2 where āk2 =

ak2
||ak2 ||

, (16.21)

and [I− ā1ā
T
1 ]XXT is positive semi-definite See Exercise 16.7.3.

The objective function for a single example x is

ǫ =
aTxxTa

||x||2 , (16.22)

which can be used to form the stochastic gradient descent formula (Oja and Karhunen, 1985; Wu et
al., 2018)

ak+1 = ak+1 + γ̃k∇ǫ,

= ak+1 + γk
(
xxT − |(a

k,x)|2
||ak||2 I

)
ak. (16.23)

Equation 16.23 can be used to find the eigenvector PC1 and its eigenvalue, where the iterations
proceed as a SGD with a batch size of 1 and one epoch is when all of the examples have contributed
to the estimate of a. Here, γk = 2γ̃k/||ak||2 and γk is the step length at the kth iteration (Wu et
al., 2018). Equation 16.21 can be used to get PC2 and this procedure repeated to get all of the PCs
and eigenvalues. Wu et al. (2018) discuss various tricks for good convergence properties, and Sanger
(1993) showed how an iterative algorithm can be used to find the singular values and vectors for
SVD. Finally, Fomel et al. (2002) presented an iterative algorithm to get an estimate of the model
covariance matrix, which can easily be adapted to getting the inverse to the covariance matrix.

16.6 Summary

Data sets are often composed of points in high-dimensional spaces, which are too complex to
understand by visual inspection. To reduce this complexity PCA is used to decompose the high-
dimensional points into a few subspaces, hopefully just a two- or three-dimensional subspace spanned
by the PC1, PC2, and PC3 vectors. This not only saves memory but also facilitates the detection
of hidden patterns in the data. The physical meaning of these subspaces can be ascertained by
projecting unit vectors of the original axes onto, for example, the PC1 and PC2 unit vectors.
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Principal component vectors associated with small eignevalues are usually associated with noise and
so principal component analysis can also be a denoising filter if the noise level is not too high.

A biplot vector for each Euclidean unit vector in the original data space provides a physical
interpretation of the points in the principal component subspace. In the gold example, the subspaces
were associated with certain combinations of elements, some of which are strongly correlated with
the presence of gold.

The problem with PCA is that the data components are assumed to be linearly correlated,
which is not always the case. If they are non-linearly correlated such as the point distributions in
Figure 17.13b or Figure 16.20a, then a simple rotation of the coordinate axis will not significantly
reduce the dimension of the data set. In this case a non-linear PCA analysis can be used such as a
neural network PCA (see Chapter 14) or Kernel PCA.

Another problem with PCA is that it cannot fully reconstruct the original data when the ob-
servations are corrupted by strong random noise (Candés and Tao, 2005; Candés and Romberg,
2007). An example of the deleterious effects of adding noisy outliers to the data is shown in Fig-
ure 16.6c-16.6d. The red circles in Figure 16.6c correspond to outlier points that prevent the PCA
from computing the PC1 axis which accounts for the linear trend of blue points. RPCA (Liu et al.,
2019a) can, however, recover low-rank data from the data contaminated by complicated but sparse
random noise.

A similar problem exists if the level of random noise is too high, as illustrated in Figure 16.21.
Here, there are 21 red points in Figure 16.21a that are strongly correlated along the red-dashed line,
but are surrounded by 180 randomly located points. In this case, the PCA failed to find the PC1
axis in Figure 16.21b that coincided with the red points.

16.7 Exercises

1. Prove that equation 16.21 gives the unit vector for PC2.

2. Show that the estimate of the sample variance σ̂2 is biased as

E[σ̂2] =
1

I

I∑

i=1

E[(xi − µ)2],

= E[x2i ]− 2E[xiµ̂] + E[µ̂2],

= σ2 + µ2 − 2(
I − 1

I
µ2 +

1

I
(σ2 + µ2)) + (

I2 − I
I2

µ2 +
I

I2
(σ2 + µ2)),

=
I − 1

I
σ2, (16.24)

where E[x] =
∫
P (x)xdx is the average over the random variable x governed by the probability

density function P (x), µ is the true mean and σ2 is the true variance. Explain why 1/(I − 1)
must be used in the above formula instead of 1/I to get an unbiased estimate of the variance14.

Recall, if xi and xj are independent random variables for i 6= j, then E[x2i ] = σ2 + µ2 and

E[xixj ] = E[xi]E[xj ] = µ2. (16.25)

Also, the sample estimates of the mean and variance are given by

µ̂ =
1

I

I∑

i=1

xi; σ̂2 = 1/I
I∑

i=1

(xi − µ̂)2. (16.26)

14https://towardsdatascience.com/why-sample-variance-is-divided-by-n-1-89821b83ef6d
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Figure 16.21: a) Linearly correlated points are in red (21 points) and the uncorrelated points
(180 points) are in blue. Applying PCA to these data gives the PC coordinate system in
b), which does not coincide with the red points. The red- and black-dashed lines in a) are
for reference, and are not rotated to be the dashed lines in b).
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Show that

E[µ̂] =
1

I

I∑

i=1

E[xi] = µ. (16.27)

and

E[xj µ̂] =
I − 1

I
µ2 +

1

I
(σ2 + µ2); E[µ̂2] =

I2 − I
I2

µ2 +
I

I2
(σ2 + µ2). (16.28)

3. Use the stochastic gradient descent method to solve for a using a simple 2 × 2 covariance
matrix and compare to the solution by the Power method. Here, the covariance matrix is
assumed to be symmetric positive definite.

4. Adjust the MATLAB code in Box 16.2.1 so that the first PC vector is plotted along the
horizontal axis.

5. Generate a random set of 200 points evenly distributed around a sphere, where the points are
very close to the circle. Compute the covariance matrix and show that the off-diagonal terms
are nearly zero. Find the eigenvalues of these data. Explain why they are nearly the same as
one another. Generate the scree plot.

6. The kernel PCA is applied to two sinuous curves shown in Figure 16.20. Duplicate their
results by downloading the MATLAB code15. Now apply a PCA to the data points in the
middle panel and replot the points in the PC1-PC2 coordinate system.

7. Generate two narrow ellipses of zero-mean, randomly distributed points. One of the ellipses
has a central axis along a line that goes through the origin at an angle of 45 degrees. The
other is along the line at an angle of 135 degrees from the horizontal axis. The plot of these
points appears as a cross, where the cross is rotated 45 degrees from the horizontal. Now
apply the MATLAB PC code to these points. Explain the ambiguous results. Hint: there is
a cloud of points whose x − y components are linearly correlated along the 45 degrees line,
and there is another cloud of points with x− y components linearly correlated along the 135
degrees line. Two clouds of linearly correlated points are not the same as a single cloud with
linearly correlated x− y components.

8. Apply a K-means clustering method for k = 2 to the points in the left and right panels in
Figure 16.20. Discuss which domain might be more appropriate for clustering and demonstrate
your claims with numerical results.

9. Download the Limestone PCA lab at the CoLab site16. Rerun the lab except compare the
PCA plot with and without demeaning and with and without normalization of the data.

10. Correlation biplot vectors preserve the correlations among the variables (expressed by the
angles between the loading vectors). However, there is some distortion of the distances among
the samples. Replot the limestone data except use the correlation, not covariance, matrix
to get the data in the PC1-PC2 plane. In this case the correlation matrix is computed by
dividing the data components by their standard deviation.

11. Read the truncated SVD documentation at the SciKit site17. Go to the CoLab and execute
the Python truncated SVD lab with the commands below.

15github.com/iqiukp/Kernel-Principal-Component-Analysis-KPCA
16https://colab.research.google.com/drive/1mLWN8TdIAMowLsbQ3UQASOeo6-

V0qLOz?usp=sharing#scrollTo=iF5JHUyZHmHR
17https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
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a)        Data      =  Signal       +    Noise           b)        Output of 
recreatePaperExperiment.m

Figure 16.22: Output of RPCA codes a) demo escalatorVideo.m and b) recreatePaperEx-
periment.m at https : //github.com/stephenbeckr/fastRPCA.

from sklearn.decomposition import TruncatedSVD

from scipy.sparse import random as sparse_random

X = sparse_random(100, 100, density=0.01, format=’csr’, random_state=42)

svd = TruncatedSVD(n_components=5, n_iter=7, random_state=42)

svd.fit(X)

TruncatedSVD(n_components=5, n_iter=7, random_state=42)

print(svd.explained_variance_ratio_)

print(svd.explained_variance_ratio_.sum())

print(svd.singular_values_)

12. Download the truncated SVD codes at the MATLAB18. site. Test them on the Yellowstone
data.

13. Go to the CoLab site19 and execute the Python code for classifying a small set of 2×1 vectors.
Use different input parameters for the SVM. Then apply PCA to these data in the PC domain.

14. Go to the github site https://github.com/stephenbeckr/fastRPCA and download the RPCA
MATLAB codes. Adjust codes so that a noisy section section is input from the RPCA code
rather than the picture of an elevator in Figure 16.22a. Adjust random noise level and explain
results. See Aravkin et al. (2014).

16.8 Computational Labs

1. Go to the K-means and PCA clustering lab in LAB1/Chapter.PCA/PCAlab.pdf and run
the PCA lab.

2. Go to the Yellowstone PCA lab in LAB1/Chapter.PCA/lab1.html and run the PCA lab.

3. Go to the lab in LAB1/Chapter.PCA/lab.html and run the PCA lab.

18https://www.mathworks.com/matlabcentral/fileexchange/47132-fast-svd-and-pca
19https://colab.research.google.com/drive/1dM7NgBe720HfCqRGh280CA5X6bs2jOIm?usp=sharing
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4. Go to the Limestone PCA lab at the CoLab site20. item Go to the MATLAB kernel PCA lab
at Appendix 16.10. The MATLAB code is described at the CoLab site21.

5. Go to the github site https://github.com/stephenbeckr/fastRPCA and download the RPCA
MATLAB codes. Adjust codes so that a noisy section is input into the RPCA code rather
than the picture of an elevator in Figure 16.22a. Adjust random noise level and explain results.

6. Download the truncated SVD codes at the MATLAB22. site. Test them on denoising seismic
data.

16.9 Appendix: Mathematics of Kernel PCA

We now provide the mathematical details for applying PCA to the M × 1 vectors φ(x(i)), i ∈
{1, 2, . . . , I}, where the N × 1 input vectors x(i) are in a lower-dimensional space (M > N) than
the φ(x(i)) vectors. The transformed space, i.e feature space, of φ(x(i)) for SVM (see Chapter 7)
was employed in order to transform a wiggly margin surface in x-space to a hyperplane in the φ(z)
domain. This is also useful because the points along a curved surfaces in x are linearly uncorrelated,
so the non-linear transform can map them to a line perpendicular to the PC1 axis in the φ(z)
domain. Thus the components of the transformed points φ(x) will be linearly correlated along the
PC1 axis.

Assume the N × 1 data vectors x(i) are demeaned so that the N × N covariance matrix C in
equation 16.4 can be represented by

C =
1

I − 1

I∑

i=1

x(i)x(i)T , (16.29)

where I is the number of data samples. Let the non-linear transformation to a higher-dimensional
space giveM×1 vectors z(i) = φ(x(i)) that are demeaned as well. Therefore, the higher-dimensional
M ×M covariance matrix is

C̃ =
1

I − 1

I∑

i=1

φ(x(i))φ(x(i))T , (16.30)

where M > N . The M eigenvectors of the M ×M matrix C̃ satisfy

C̃vk = λivk, k ∈ {1, 2, . . .M}. (16.31)

Plugging equation 16.30 into equation 16.31 gives

1

I − 1

I∑

i=1

φ(x(i))

α
(i)
k︷ ︸︸ ︷

[φ(x(i))Tvk] = λkvk, k ∈ {1, 2, . . .M}, (16.32)

20https://colab.research.google.com/drive/1mLWN8TdIAMowLsbQ3UQASOeo6-
V0qLOz?usp=sharing#scrollTo=iF5JHUyZHmHR

21See https://colab.research.google.com/drive/16 Jxp9K6caxF ZaR9JaY2u7pF8K33BWFV?usp =shar-
ing#scrollTo =hmQoAhO7RU9U

22https://www.mathworks.com/matlabcentral/fileexchange/47132-fast-svd-and-pca
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which says that the M × 1 eigenvector vk can be written as

vk =

I∑

j=1

α
(j)
k φ(x(j)), k ∈ {1, 2, . . .M}. (16.33)

Here,

α
(i)
k =

1

I − 1
φ(x(i))Tvk, (16.34)

is the ith component of the I × 1 vector αk for k ∈ {1, 2, . . . ,M}.

The kernel-PCA coordinate system is a new coordinate system in the z-domain that maximizes
the variance of unlabeled data; no labeled data are needed. This compares to the goal of kernel-SVM
which is to find the new coordinate system that maximizes the margin of the labeled data. For kernel
SVM, labeled data are required

New coordinate system that maximizes the variance of data components along the
principal component axes. Substituting equation 16.33 into equation 16.32 gives

1

I − 1

I∑

i=1

φ(x(i))

[Kαk]i︷ ︸︸ ︷

[

I∑

j=1

φ(x(i))Tφ(x(j))α
(j)
k ] = λk

I∑

j=1

α
(j)
k φ(x(j)), k ∈ {1, 2, . . .M} (16.35)

where the kernel of the I × I matrix K is k(x(i),x(j)) = φ(x(i))Tφ(x(j)). The kernel trick for SVM
forbids any explicit reference to φ(x(i)) and only gives expressions in terms of the easily computed
kernel k(x(i),x(j)). This can be accomplished by multiplying both sides of equation 16.35 by the
1×M vector φ(x)T to give

1

I − 1

I∑

i=1

κxi︷ ︸︸ ︷
φ(x)Tφ(x(i))[Kαk]i = λk

I∑

j=1

κxj︷ ︸︸ ︷
φ(x)Tφ(x(j))α

(j)
k , (16.36)

where κxi = φ(x)T φ(x(i). If x = x(i′) is evaluated at i′ ∈ {1, 2, . . . , I} then the above equation, after
multiplying by I − 1, becomes

K2αk = λk(I − 1)Kαk. (16.37)

which can be rearranged as

K[Kαk − λk(I − 1)αk] = 0. (16.38)

Here, κij represents the coefficient for the ith row and jth column of K. The solutions to this system
of equation are the eigenvectors of

Kαk = λk(I − 1)αk. (16.39)

Thus, the projection of an unknown data point x along the kth principal component vector can be
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found by

yk = φ(x)T
eqn. 16.33︷︸︸︷

vk =
∑

j

α
(j)
k φ(x)T φ(x(j)),

=
∑

j

α
(j)
k k(x,xj), (16.40)

where the examples of points (y
(i)
1 , y

(i)
2 ) in PC1-PC2 plane are depicted in Figure 16.20b.

For PCA to work, the data must be demeaned. Demeaning the data in the input domain does
not imply that they are demeaned in the z domain. Therefore, the z-domain data must be demeaned
as

φ̃(x(n)) = φ(x(n))− 1

I

I∑

i=1

φ(x(i)), (16.41)

where 1
I−1 ≈ 1

I for I >> 0. The corresponding Gram matrix elements are given by (Bishop, 2006)

k̃(x(i),x(j)) = φ̃(x(i))T φ̃(x(j)),

= φ(x(i))Tφ(x(j) − 1

I

I∑

l=1

φ(x(i))Tφ(x(l))

−1

I

I∑

l=1

φ(x(l))Tφ(x(j)) +
1

I2

I∑

n=1

I∑

m=1

φ(x(n))Tφ(x(m)),

= k(x(i),x(j))− 1

I

I∑

m=1

k(x(m),x(j))− 1

I

I∑

l=1

k(x(i),x(l)) +
1

I2

I∑

n=1

I∑

m=1

k(x(n),x(m)).(16.42)

This can be represented in matrix notation as

K̃ = K− 1IK−K1I + 1IK1I , (16.43)

where 1N is the matrix with all elements equal to 1/I. The matrix K̃ that should be evaluated to
determine the eigenvectors and eigenvalues in the z− domain.

The linear PCA can be applied to the points on the in the z-domain. However, if the PCA
representation of the points is approximated by a small sum of weighted eigenvectors, then the
PCA points cannot always map to the points in the original domain. This is because the principal-
component planes in the z−domain don’t necessarily lie on the manifold of points z(i) in this higher-
dimensional space (Bishop, 2006). In this case, projections of points z(i) onto a PC1-PC2 plane
don’t necessarily map back to one of the original points x(i). Techniques have been developed to
overcome this problem (Bakir et al., 2004).

16.10 Appendix: MATLAB Kernel PCA CoLab

The following is the explanation of the MATLAB code 23 for performing Kernel PCA on the
data sets in Figure 16.20a and 16.20a. This lab was modified from the original code at the GITHUB
repository24.

23colab.research.google.com/drive/16 Jxp9K6caxFZaR9JaY2u7pF8K33BWFV?usp=sharing#scrollTo=hmQoAhO7RU9U
24https://github.com/iqiukp/Kernel-Principal-Component-Analysis-KPCA
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There are two main classes are defined in the MATLAB code. The 1st is the ’kernelMatrix’ which
defines the type of kernel function (e.g. gauss, exponential, etc) being used and the 2nd is the main
’KernelPCA’ which performs tasks like Non-linear Dimensionality Reduction (and Reconstruction).
The details of these two classes are defined below (with details about the parameters they take as
inputs):

- ‘KernelMatrix‘:

Computes the kernel matrix using different kernel functions defined below.

kernel = Kernel(’type’, ’gauss’, ’width’, 2);

kernel = Kernel(’type’, ’exp’, ’width’, 2);

kernel = Kernel(’type’, ’linear’, ’offset’, 0);

kernel = Kernel(’type’, ’lapl’, ’width’, 2);

kernel = Kernel(’type’, ’sigm’, ’gamma’, 0.1, ’offset’, 0);

kernel = Kernel(’type’, ’poly’, ’degree’, 2, ’offset’, 0);

- ‘KernelPCA‘:

Performs non-linear dimensionality reduction (and reconstruction). An object is first defined using
this class specifying the application and parameter. e.g. ’kpca = KernelPCA(parameter);’. The
parameters take on several values defined below.

Structures Description of ’parameter’

application: dimensionality reduction (dr) or fault detection (fd)

dim: dimensionality

tol: tolerance for eigenvalues

alpha: hyperparameter of the ridge regression that learns

the reconstruction

explained: percent variability explained by principal components

kernel: kernel function

significanceLevel: significance level (fault detection)

theta: experience parameter of fault diagnosis

display: display the results

## Dimensionality Reduction (and Reconstruction)

The following are the steps to perform dimensionality reduction:

- We first have to load the dataset provided using the command:

% load data

load(’.\data\circle.mat’)

X = data(:, 1:2);

label = data(:, 3);

‘‘‘

The labels are just extracted to be used for visualization during plotting. The plot for the data is
shown in Figure 16.20a. The Kernel Function is next set using:
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‘kernel = Kernel(’type’, ’gauss’, ’width’, 0.5);‘

Here the type of kernel used is ”gauss”. The very first input to the class ’Kernel’ defines the variable
(i.e. ”type” in this case) and the input that follows it assigns the value to it (i.e. ”gauss”).

Other Kernel types can also be used and the ones supported are defined in the cell above.
Example of others can be polynomial (”poly”), Linear (”linear”), exponential (”exp”), etc.

The next step is to define the parameters to the main ”KernelPCA” class and define the object
which in turn will be used to perform PCA.

1. First parameters are defined using the command:

”parameter = struct(’application’, ’dr’, ’dim’, 2, ’kernel’, kernel);”

2. Here we have set the ”application” that we want to perform, i.e.”dr” (which stands for dimen-
sionality reduction). Then the dimensions are defined as ‘2‘ and finally we set the ”kernel”
defined in the previous step.

3. The object named ”kpca” is then defined and parameters set in the above step are passed to
it:

‘kpca = KernelPCA(parameter);‘

4. The final step is to train the KPCA model using the data and visualizing the results.

‘‘‘

% train KPCA model using given data

X_map = kpca.train(X);

% Visualize the mapping data

Visualization.map(X, X_map, label);

‘‘‘

5. Plot after performing KPCA is shown in Figure 16.20b.

6. Reconstruction can only be done to the above plotted dataset. It is done using the command
:

‘X_re = kpca.reconstruct;‘

Plot for the reconstructed data is shown in Figure 16.20c.

Similar dimensionality reduction can be done for the banana dataset by changing the load
data command to

’’load(’.\data\banana.mat’)’’

The results are shown in Figure 16.20.

% Examples for dimensionality reduction based on KPCA

% --------------------------------------------------------------------

clc

clear all

close all

addpath(genpath(pwd))
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% load data

load(’.\data\circle.mat’)

X = data(:, 1:2);

label = data(:, 3);

% set kernel function

kernel = Kernel(’type’, ’gauss’, ’width’, 0.5);

% parameter setting

parameter = struct(’application’, ’dr’, ’kernel’, kernel);

% build a KPCA object

kpca = KernelPCA(parameter);

% train KPCA model using given data

X_map = kpca.train(X);

% reconstruct the mapping data

X_re = kpca.reconstruct;

% Visualize the reconstruction

Visualization.reconstruct(X, X_map, X_re, label);

‘‘‘

Running the above code gives the output:

‘‘‘

*** KPCA model training finished ***

dimensionality = 122

time cost = 0.2822 s

‘‘‘



Chapter 17

Clustering Algorithms

Cluster analysis is the formal study of methods and algorithms for grouping, or clustering,
objects according to measured or perceived intrinsic characteristics or similarity (Jain, 2010). It
is similar to logistic regression in grouping data into different classes, except the input data do
not have to be labeled and there can be many different clusters. Thus, a clustering algorithm is an
unsupervised learning method that avoids the cost of supervised labeling of large data sets. It is often
applied to data in order to undercover hidden patterns within a dataset, such as the Yellowstone
data in Figure 17.1a that is segmented into the two clusters in Figure 17.1b and three clusters in
Figure 17.1c. A table of different unsupervised cluster methods in (Károly et al., 2018) is listed in
Figure 17.2.

One of the most widely used clustering algorithms is the K-means cluster method (see Fig-
ure 17.3) proposed more than 50 years ago (Steinhaus, 1956; Lloyd, 1982; Ball and Hall, 1965; and
MacQueen, 1965). It is simple and very effective in machine learning studies for simple point distri-
butions, and its weighted and regularized versions will be highlighted by geoscience examples in this
chapter. For more complex point distributions, other clustering algorithms such as density-based
spatial clustering (DBSCAN) and support vector clustering can be used.

17.1 Introduction

According to Jain (2010) there are more than a thousand different cluster algorithms, many of
them tailored to a different scientific algorithm. They differ in the choice of their definition of distance
between points, the objective function, the assignment of probability properties and heuristics. Many
of them are unsupervised, although some assign labeling to a small number of points to assist in
the final assignment of clusters. In this case this would be a semi- or weakly-supervised learning
algorithm.

What is the definition of a cluster of points? According to Jain (2010), we start with a set
of N points, each being a D-dimensional feature vector, and there are K groups of these points.
The points in any group have a measure of high similarity to one another, but have low similarity
to members outside that group. Similarity is an arbitrarily defined quantity, but the points in a
specified group in Figure 17.4 are similar, for example, in their close geographic distance to one
another.

There are two groups of clustering algorithms: hierarchical and partitional. In partitional clus-
tering, the user defines the fixed number K of clusters and the algorithm assigns to each point the
nearest cluster. The hierarchical algorithms seek to produce a hierarchy of clusters for a range of K
values of which the best one is selected.

The labeling of points was first introduced in early chapters on supervised learning. In this
case, a learning algorithm was used, such as SVM or logistic regression, to classify the points in

479
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b)  K-Means Yellowstone Dataset: K=2

c)  K-Means Yellowstone Dataset: K=3

a)   Yellowstone Old Faithful Dataset
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d)     Distortion vs Number of Clusters
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Figure 17.1: Yellowstone data a) as input and labeled by K-means clustering for b) K = 2
and c) K = 3. Plot in d) is the distortion (∝ RMS error) versus the number of clusters.
The duration time of the eruptions and the waiting time between eruptions are the variables
along the, respectively, horizontal and vertical axes in a), b) and c).
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Class of Cluster Method Cluster Method Reference

Distance Measure K means Clustering Chapter 17.2

Hierarchical Clustering Chapter 17.3, Karoly et al.

(2018)

Fuzzy Clustering Chapter 17.4

Support Vector Machines Chapter 17.7

Spectral Clustering Karoly et al. (2018)

Decision Trees Karoly et al. (2018)

Fuzzy Clustering Chapter 17.5

Information Weighted Clusters

DBSCAN Chapter 17.8

K Nearest Neighbor Clustering Chapter 17.9

Class of Cluster Method Cluster Method Reference

Neural Network K means Clustering Chapter 17.10

Autoencoders Chapter 14

Fuzzy Clustering Chapter 19.4

Generative Models Chapter 21

Spectral Clustering Karoly et al. (2018)

Decision Trees Karoly et al. (2018)

Self Organizing Map

Class of Cluster Method Cluster Method Reference

Statistical Expectation Minimization Chap. 21 & Karoly (2018)

Autoencoders Chapter 16

Neural Network Chapters 4 9

‘

‘

‘

‘

Figure 17.2: Classes of cluster methods. Table partly adapted from Károly et al. (2018).
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Figure 17.3: Usage of the word K-means plotted against calendar year. Courtesy of https :
//books.google.com/ngrams/.

Figure 17.4a. A semi-supervised learning algorithm for the data in Figure 17.4b could be devised so
that a few points in each cluster are already labeled so they can be used to automatically classify
the unlabeled points. For example, the unlabeled point is assigned the group identity of the nearest
labeled point. The points associated with a partially constrained clustering algorithm are depicted
in Figure 17.4c. Here, some points are known not to belong to certain groups so a constraint is
imposed that is honored by the clustering algorithm. For example, the distance between the points
in the dissimilar groups can be used as a soft threshold such that the distance between two points
in the same group should not exceed this soft threshold, otherwise its candidacy is assigned a lower
grade. Finally, we have the completely unsupervised clustering problem illustrated in Figure 17.4d.
In this case, the weighted distance between one point and another is used as a criterion for eligibility
in a separate cluster.

The problem shown in Figure 17.4d is the one that is largely addressed in this chapter: clustering
unlabeled points by unsupervised learning. Due to its simplicity, empirical success and its widespread
use in the machine learning community, this chapter emphasizes the K-means clustering algorithm.

17.2 K-means Clustering

A clustering strategy that is widely used for hierarchical or partitional clustering1 is K-means
clustering. It is very simple to use, the number of clusters should be specified by the user, and works
well if the clusters consist of points that are nearly uniform in density and are bounded by convex
boundaries.

Let xij be jth D × 1 feature vector associated with the ith cluster, where there are K clusters.

1Partitional clustering defines the number of clusters before running the algorithm. Hierarchical clustering
generates a suite of cluster maps during the iterations, each map typically consists of a different number of
clusters. The user selects the best after the algorithm is finished.
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Figure 17.4: Different groups of points: a) Supervised learning where points in different
clusters are labeled with different colored symbols, b) partially labeled where only a few
non-black points are labeled, c) partially constrained where the dashed red (solid blue)
lines forbid (enforce) the points to be in the same cluster, and d) completely unlabeled or
unconstrained points. Figure modified from Jain (2010).
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a) Euclidean norm b) Diagonal norm c) Mahalonobis norm 

Figure 17.5: Cluster shapes induced by the a) L2 norm and the Mahalanobis norm for b)
diagonal and c) fully-populated Σ−1 matrices. The Mahalanobis norm is the same as the

L2 norm except ||x||2 =
√
xTx is replaced by

√
xTΣ−1x, where Σ−1 is the inverse to the

covariance matrix. Figure modified from https://homes.di.unimi.it/ valentini/SlideCorsi/
Bioinformatica05/Fuzzy-Clustering-lecture-Babuska.pdf.

The mean centroid point Ci of the i
th cluster is defined as

Ci =
1

mi

mi∑

j=1

xij , (17.1)

where mi is the number of points in the ith cluster. The points xij in the ith cluster are defined as
having the smallest distance Lp distance2 between that point and Ci compared to any other centroid
point Cj for j 6= i. Typically K-means uses the L2 norm where p = 2, where the choice of the norm
index p and the norm weight can determine the shape of the cluster. For example, the L2 norm
tends to form circular clusters such as the one in Figure 17.5a while the Mahalanobis norm tends
to form ellipses with either horizontal or arbitrary orientations shown in Figure 17.5b-17.5c. If the
uncertainty, i.e. standard deviation σ >> 0, is high for a point then it will be downweighted by 1/σ
and so have little influence in shaping the elliptical contour of its associated Mahalanobis cluster.

The averaged sum of the squared distances between the ith centroid point Ci and the points in
the i cluster is given as

di =
1

mi

mi∑

j=1

||Ci − xij ||2. (17.2)

The goal is to find the optimal distribution of cluster points Ck such that the objective function ǫ
is minimized:

ǫ =
1

2

K∑

i=1

1

mi

mi∑

j=1

||Ci − xij ||2. (17.3)

There are four steps to the K-means clustering algorithm where the number of clusters is speci-
fied.

1. Select an initial configuration of K clusters. Compute the centroid point Ci for each cluster.

2The Lp distance between two points x = (x1, x2, . . . , xN)T and y = (y1, y2, . . . , yN )T is ||x − y||p =
(
∑N

n=1 |xn − yn|p)1/p.



17.2. K-MEANS CLUSTERING 485

2. Compute the distances ||Ci −xij ||, and reassign points to the nearest cluster. If the elements
in each feature vector have different units then they should be normalized, for example, by
their standard deviations.

3. Compute the new centroid points from the newly assigned points.

4. Repeat steps 2 and 3 until convergence. This procedure can be adapted to the hierarchical
approach where an outer loop can be added where the number of clusters is either increased
or decreased.

A problem with the above approach is that it can get stuck in a local minimum. Sometimes this
difficulty is remedied by using different starting configurations to determine if they converge to the
same answer. This same procedure is used to test for local minima problems with many non-linear
optimization methods. Another way to mitigate this problem is to specify different numbers of
clusters and choose the final cluster configuration that best suits our goal.

The K-means is a hard clustering method, which means that it will associate each point to one
and only one cluster. This does not allow any uncertainty in assigning points to a cluster. K-means
clustering usually works well when there are convex clusters of nearly equal size, but otherwise can
have difficulty. In addition, there is no uncertainty measure or probability that tells us how much a
data point is associated with a specific cluster. To remedy these problems, a soft clustering approach
such as Information Weighted Clustering in section 17.4, Fuzzy clustering in section 17.5 or Gaussian
Mixtures (Bishop, 2006) can be used. In addition, non-linear methods such as a Kernel PCA (see
Chapter 16) can be used to separate the data points, and a suitable clustering method can used in
the transformed space.

17.2.1 K-means Cluster Lab with Colab

The Python code for K-means clustering is in Box 17.2.1 is setup as a Colab exercise3 . The
Colab implements K-means clustering on a small set of 2× 1 training points and allows the user to
also test soft-margin regularization on the this data set. The Colab code is for the Yellowstone data
which must be downloaded4 and then uploaded to the Colab site.

3https://colab.research.google.com/drive/1WRYzkb0Wd5SYyYO OkBYnd7h1tab6N9X#scrollTo=V-
r159bWU5J1

4http://www.stat.cmu.edu/∼larry/all-of-statistics/=data/faithful.dat
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Code 17.2.1. Python Codea for K-means Clustering:

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import make_blobs

from sklearn.cluster import KMeans

# Configuration options

num_samples_total = 1000

cluster_centers = [(20,20), (4,4)]

num_classes = len(cluster_centers)

# Generate data

X, targets = make_blobs(n_samples = num_samples_total, centers = cluster_centers, n_features = num_classes,

center_box=(0, 1), cluster_std = 2)

np.save(’./clusters.npy’, X)

X = np.load(’./clusters.npy’)

# Fit K-means with Scikit

kmeans = KMeans(init=’k-means++’, n_clusters=num_classes, n_init=10)

kmeans.fit(X)

# Predict the cluster for all the samples

P = kmeans.predict(X)

# Generate scatter plot for training data

colors = list(map(lambda x: ’#3b4cc0’ if x == 1 else ’#b40426’, P))

plt.scatter(X[:,0], X[:,1], c=colors, marker="o", picker=True)

plt.title(’Two clusters of data’)

plt.xlabel(’Temperature yesterday’)

plt.ylabel(’Temperature today’)

plt.show()

ahttps://www.machinecurve.com/index.php/2020/04/16/how-to-perform-k-means-clustering-
with-python-in-scikit/

The results in Figure 17.1 show the a) Yellowstone data that can be labeled by K-means clustering
for b) K = 2 and c) K = 3. Clearly the K = 3 choice provides a mislabeling of the data. However,
the data clusters are distorted by the choice of the axes units, where the vertical axis extends over
a range of 60 minutes while the horizontal axis is over the range of only 4 minutes.

The plot of distortion (∝ misfit error) versus number of clusters is shown in Figure 17.1d.
According to the elbow method in section 17.6, the line (solid black line) drawn from the origin to
the nearest point of the elbow curve should indicate the optimal number of clusters of aroundK = 3.
However, in this example it leads to misclassification. This suggests that a trial-and-error approach
with visual examination is needed to estimate the optimal number of clusters from the elbow plot
in Figure 17.1d. Visual examination of point clusters in a low-dimensional space is easy, but it is
difficult in a high-dimensional space. In this case, a self organizing map, discussed in section 17.10,
can be used to reduce the points to a low-dimensional space.

17.3 Agglomerative Clustering

An effective bottom-up clustering strategy is the agglomerative clustering algorithm described
below.

• The bottom-up approach starts with each point being its own distinct cluster.

• At each iteration only two clusters are combined5 to be a bigger cluster as illustrated in
Figure 17.6. The two clusters to be merged are the pair where, for example, the two centroids
are closest to one another compared to any other pair of centroids. This is known as the
linkage criterion, but there can be many other types of linkage criteria6. For example, in

5This assumes that all clusters always have unequal distances between them, otherwise more than two
clusters can be combined at each iteration if they are equidistant from one another.

6https://en.wikipedia.org/wiki/Hierarchical clustering#Agglomerative clustering example
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single-linkage clustering the distance between two clusters is determined by a single pair of
points: those two points (one in each cluster) are the pair that are closest to each other7.
The first column of Figure 17.7 depicts the agglomerative cluster results for a single-linkage
clustering.

• The above step is repeated until all points are included into one super cluster. The user selects
the final number of clusters needed to solve the problem at hand with the partitioned cluster.

Scikit-learn8 has many different cluster programs written in Python, including agglomerative clus-
tering, DBSCAN and K-means. The scikit-learn Python code that applies agglomerative clustering
to a point distribution is shown in Box 17.3.1, where the four different linkages are defined as the
following.

1. Single Linkage: Two clusters are selected for merging where the two associated centroids are
closest to one another compared to any other pair of centroids in different clusters. For d(x,y)
being the distance between the points x and y and A being the set of points in cluster A and
B being in any other cluster B, we have the mathematical definition of the single-cluster
linkage9:

min(d(x,y) : x ∈ A,y ∈ B). (17.4)

2. Ward Linkage: Two clusters are selected for merging based on the pair with minimum variance.
That is, the formula is the same as for single linkage except the Euclidean distance is squared.

min(d(x,y) = ||x− y||2 : x ∈ A,y ∈ B). (17.5)

3. Weighted Average Linkage:

1

|A||B|
∑

x∈A

∑

y∈B

d(x,y). (17.6)

4. Centroid Linkage: The cluster pair with the minimum distance between their associated
centroids is selected for the next merging of clusters.

5. Complete Linkage: The link between two clusters contains all element pairs, and the distance
between clusters equals the distance between those two elements (one in each cluster) that are
farthest away from each other. The shortest of these links that remains at any step causes the
merging of the two clusters whose elements are involved (https://en.wikipedia.org/wiki/Complete-
linkage clustering).

max(d(x,y) : x ∈ A,y ∈ B). (17.7)

7https://en.wikipedia.org/wiki/Single-linkage clustering
8https://en.wikipedia.org/wiki/Scikit-learn
9https://en.wikipedia.org/wiki/Hierarchical clustering#Linkage criteria
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Figure 17.6: Bottom-up clustering of points where, initially, there is one centroid at each
point of the input data (upper left plot). At each iteration the number of clusters decreas-
es by one. Note, the horizontal axis is about three times longer than the vertical scale.
Illustration from Miller (2020).
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Figure 17.7: Final cluster results for different linkages used for agglomerative clustering.
Each row corresponds to a different type of point distribution while each column is for a
different linkage. Illustration from Miller (2020) and images computed from the Python
code in Box 17.3.1.
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Code 17.3.1. Python Codea for Agglomerative Clustering:

print(__doc__)

from time import time

import numpy as np

from scipy import ndimage

from matplotlib import pyplot as plt

from sklearn import manifold, datasets

X, y = datasets.load_digits(return_X_y=True)

n_samples, n_features = X.shape

np.random.seed(0)

def nudge_images(X, y):

# Having a larger dataset shows more clearly the behavior of the

# methods, but we multiply the size of the dataset only by 2, as the

# cost of the hierarchical clustering methods are strongly

# super-linear in n_samples

shift = lambda x: ndimage.shift(x.reshape((8, 8)),

.3 * np.random.normal(size=2),

mode=’constant’,

).ravel()

X = np.concatenate([X, np.apply_along_axis(shift, 1, X)])

Y = np.concatenate([y, y], axis=0)

return X, Y

X, y = nudge_images(X, y)

#----------------------------------------------------------------------

# Visualize the clustering

def plot_clustering(X_red, labels, title=None):

x_min, x_max = np.min(X_red, axis=0), np.max(X_red, axis=0)

X_red = (X_red - x_min) / (x_max - x_min)

plt.figure(figsize=(6, 4))

for i in range(X_red.shape[0]):

plt.text(X_red[i, 0], X_red[i, 1], str(y[i]),

color=plt.cm.nipy_spectral(labels[i] / 10.),

fontdict={’weight’: ’bold’, ’size’: 9})

plt.xticks([])

plt.yticks([])

if title is not None:

plt.title(title, size=17)

plt.axis(’off’)

plt.tight_layout(rect=[0, 0.03, 1, 0.95])

#----------------------------------------------------------------------

# 2D embedding of the digits dataset

print("Computing embedding")

X_red = manifold.SpectralEmbedding(n_components=2).fit_transform(X)

print("Done.")

from sklearn.cluster import AgglomerativeClustering

for linkage in (’ward’, ’average’, ’complete’, ’single’):

clustering = AgglomerativeClustering(linkage=linkage, n_clusters=10)

t0 = time()

clustering.fit(X_red)

print("%s :\t%.2fs" % (linkage, time() - t0))

plot_clustering(X_red, clustering.labels_, "%s linkage" % linkage)

plt.show()

ahttps://scikit-learn.org/stable/auto examples/cluster/plot digits linkage.html#sphx-glr-auto-
examples-cluster-plot-digits-linkage-py
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17.4 Information Weighted Clustering

The clustering algorithm can be recast as an iterative optimization problem where the regularized
objective function is given by

ǫ =
1

2

K∑

i=1

1

mi

mi∑

j=1

||Ci − xij ||2 +
λ

2

K∑

i=1

||Ci − C̄i||2, (17.8)

where λ > 0 is the damping parameter and the D × 1 vector C̄i is a desired centroid point that
should be near our final cluster point Ci. The gradient of this objective function is

∇Ci
ǫ =

∂ǫ

∂Ci
=

1

mi

mi∑

j=1

(Ci − xij) + λ(C
(k)
i − C̄i),

= Ci −
1

mi

mi∑

j=1

xij + λ(C
(k)
i − C̄i), (17.9)

where

∂ǫ

∂Ci
= (

∂ǫ

∂Ci1
,
∂ǫ

∂Ci2
, . . . ,

∂ǫ

∂CiD
)T , (17.10)

and Cil is the l
th component of the ith cluster vectorCi. The corresponding steepest descent formula

for updating Ci is given by

C
(k+1)
i = C

(k)
i − α

∂ǫ

∂Ci
,

= C
(k)
i − α

1

m
(k)
i

m
(k)
i∑

j=1

(C
(k)
i − x

(k)
ij )− αλ(C(k)

i − C̄i),

= (1− α)C(k)
i + α

Average of Points in ith Cluster︷ ︸︸ ︷
1

m
(k)
i

m
(k)
i∑

j=1

x
(k)
ij −αλ(C(k)

i − C̄i), (17.11)

where k is the iteration index in the superscripts of (C
(k)
i ,x

(k)
ij ,m

(k)
i ).

The iterative cluster algorithm described by equation 17.11 can be made more robust by applying
a weight wij to each point in the ith cluster (Chen, 2018a-b). The weight wij can be based on the
information content of that point, e.g., points with large-amplitude values in a migration image
contain more important information than low-amplitude points in it. The importance of points
based on their amplitude values Aij can be given a soft-max weighting such that

wij =
eAij

∑mj

j=1 e
Aij

where

mj∑

j=1

wij = 1. (17.12)
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Therefore the information-weighted clustering (IWC) formula is

C
(k+1)
i = (1− α)C(k)

i + α

Weighted Average of Points in ith Cluster︷ ︸︸ ︷
1

m
(k)
i

m
(k)
i∑

j=1

wijx
(k)
ij −αλ(C(k)

i − C̄i). (17.13)

The numerical examples section 17.11 tests the effectiveness of both the standard and regularized
cluster algorithms on synthetic data and field data from the Gulf of Mexico.

17.5 Fuzzy Clustering

The weighting term in equations 17.12-17.13 can be considered as special weights for fuzzy
clustering (Dunn, 1973; Peizhuang, 1983; Moya-Albor et al., 2017), where the weight µkj indicates
the degree of membership of the point xj in the kth cluster. In K-means clustering the fuzzy weight
is binary, it indicates that the point xj either belongs to the kth cluster, that is µkj = 1, or it doesn’t
where µkj = 0. If the degree of membership is fuzzy, each point belongs to a cluster but with fuzzy
weights 0 ≤ µkj ≤ 1.

The objective function of the fuzzy clustering algorithm is given by (Bezdek, 2013; Károly et
al., 2018)

ǫ =
1

2

K∑

k=1

N∑

j=1

µm
kj ||xj −Ck||2, (17.14)

where m is a coefficient to control fuzziness. Cano et al. (2021) specifies m = 2 so that the weight
is defined as

µkj =
||xj −Ck||−2

∑K
k′=1 ||xj −Ck′ ||−2

, j ∈ {1, 2, . . . , N}, k ∈ {1, 2, . . . ,K}. (17.15)

Similar to equation 17.12, the weight in equation 17.15 satisfies the constraint

K∑

k=1

µkj = 1, (17.16)

for all values of j and 0 ≤ µkj ≤ 1 (Cano et al., 2021) and is derived in Appendix 17.15. The fuzzy
weight µkj becomes stronger as the point becomes closer to the centroid, and weaker the greater the
separation distance.

Similar to the weighted-average-of-points term in equation 17.13, the centroids will also be
weighted-point averages:

Ck =

∑N
j=1 µ

m
kjxj

∑N
j=1 µ

m
kj

; k ∈ {1, 2, . . . ,K}. (17.17)

Implementation of this algorithm requires the initial specification of the number of clusters, the
coefficient of fuzziness, typically m ≈ 2, and an initial degree of random membership for all points.
The iterative procedure is similar to that for K-means clustering.
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17.5.1 Arrival Time Picking and Fuzzy Clustering

One of the applications of unsupervised fuzzy clustering is to pick arrival times of events in
seismic data. This avoids the need to have a labeled seismic data set for training, as required by
a supervised neural network (Ross et al., 2018) or SVM (Akter et al., 2015). A successful use of
fuzzy clustering for picking P- and S-wave arrivals in microseismic data was implemented by Cano
et al. (2021) using (Chen, 2020) the fuzzy c-means clustering method (FCM). Cano et al. (2021)
successfully tested the FCM on both synthetic data and three-component traces recorded in a well
monitoring a hydraulic fracturing experiment (see Figure 17.8a). In their case, they used the 3× 1
feature vector x(i) = (M(i), P (i), Q(i))T for each time sample i ∈ {1, 2, . . . , N} of the trace given by
d(i). Elements of the feature vector x(i) for all time samples i in a trace are illustrated in Figure 17.8b
and are defined below.

• M(i) is the mean of the absolute value of the amplitude defined as

M(i) =
1

N

i+w∑

i−w

|d(i)|, (17.18)

at time sample i and the half-width window length w.

• P (i) is the peak power spectral density:

P (i) = max(|D(i, ω)|2), (17.19)

where |D(i, ω)| is the modulus of the discrete short-time FFT of d(i).

• Q(i) is the short-time-arrival/long-time-arrival (STA/LTA) ratio defined as

Q(i) =
STA

LTA
=

1

SW
∑i+SW

j=i |d(j)|
1

LW
∑i

j=i−LW |d(j)|
, (17.20)

where SW and LW are the lengths of the short- and long-time windows, respectfully. The
dominant period Tdom of the arrival is estimated from the data, which is used to estimate
w ≈ 0.5× Tdom, SW ≈ 1.5× Tdom and LW ≈ 5× SW .

There are 4 steps in the Cano et al. (2021) method as illustrated by the workflow in Figure 17.9.

• Signal Detection in Analysis Windows. Identify coherent events in previously windowed
seismic traces using the FCM. Multiple signal intervals (if present) are identified in the analysis
windows. The FCM is used to compute the ith sample’s degree µm

ij of membership in a cluster.
Only two clusters will be allowed, one for noise and the other for a coherent signal. A threshold
level β is set for µm

ij that determines if the ith sample is part of a coherent event (j = 2) or
noise (j = 1). Cano et al. (2021) state that ”Any continuous interval where µm

ij is greater than
β for at least 1.5× Tdom duration is considered to contain a possible wave arrival; therefore,
the other remaining intervals are deemed noise and are discarded from further analysis”. They
set β to be between 1.0 and 2.0 times the mean value of µm

i2 . For three-component data the
values of µm

i2 for all three components are averaged to give a final membership score used
to identify the signal intervals. An example of the membership scores for three components
recorded at a single level is shown in Figure 17.8c, and the averaged or stacked result is shown
in Figure 17.8d.

• Wave-type Classification of Events. Polarization analysis of three-component data is
used to identify the type of event in a signal interval: S wave, P wave or unidentified signal.
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Figure 17.8: Results from the traveltime picking workflow of Cano et al. (2021).
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Figure 17.9: Workflow of Cano et al. (2021) method for picking P- and S-wave events in
microseismic data.
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Figure 17.10: Seismic trace plotted in a) 3D feature coordinates and in b) time where
the signals are marked in yellow. c) depicts the signal membership function with the
horizontal dashed line representing the amplitude threshold between noise (red zone) and
signal. Figure adapted from Eduardo Cano’s PPT presentation.

A linearity analysis is used to determine if an event is a P or S arrival. For example, particle
motion perpendicular (parallel) to the angle of incidence can be classified as S (P) events after
rotation of the axes so that one axis is along the angle of incidence. The rotated components
and labeled events (red indicates an S arrival) are shown in Figure 17.8e.

Note that the signals represented by the signal cluster index of k = 1 can be separated in time.
This is illustrated in Figure 17.10b where both the P- and S-arrivals in yellow are separated
in time but are part of the same k = 1 signal cluster in 3D feature space. The features of
the trace in b) are illustrated by the wiggly-line drawing in a), which is plotted w/r to the
3D feature coordinates (F1, F2, F3) = (M(i), P (i), Q(i)) described in equations 17.18-17.20.
It is obvious in this space that the P- and S-arrivals are bunched together with the largest
amplitude-like features and are far from the origin in the signal cluster denoted by k = 1. In
contrast, the trace’s noise cluster, denoted by k = 0, are clumped together near the origin. In
summary, points in the same cluster can be separated from one another in the time domain,
but they are clumped together in the feature space. This concept is also true for points
originally plotted in spatial coordinates, but if the distance metric contains non-geographical
coordinates then the earthquakes from the same cluster class can be geographically separated
from one another, as shown in Figures 17.36-17.37. Another example is the seismic horizon
map in Figure 21.14, where clusters with the same color are geographically separated from
one another.

• Arrival Time Picking. The arrival time of the signal is picked using the Akaike information
criterion (Akaike, 1973). The AIC algorithm is applied to the P (S) interval on the p (s)
components to pick the P-wave (S-wave) arrival time, as illustrated in Figure 17.8f. The AIC
picked arrival times in the S interval are averaged for the two perpendicular components, and
the time associated with the minimum AIC value is the picked arrival time of a coherent event.

• Unidentified Pick Classification. A semblance-like criterion is used to estimate the move-
out pattern of the unidentified picks as either that of P or S arrivals. The moveout patterns
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Figure 17.11: P (blue bars) and S (red bars) arrivals picked by the a) Cano et al. (2021),
b) STA/LTA and c) Chen (2020) methods. Figure from Cano et al. (2021).

of P and S arrivals are obtained from a database of known events.

An example of their picking results for the hydraulic fracturing data is shown in Figure 17.11 where
the P- and S-arrivals are picked by the a) Cano et al. (2021), b) LTA/STA and c) Chen (2020)
methods. The blue bars denote the picks for P arrivals and the red ones denote the picks for the
S arrivals. For these data, the Cano et al. (2021) method picks the P and S arrivals much more
accurately than the STA/LTA or Chen (2020) methods.

17.6 Elbow Method for Determining the Number of Clusters

The number of clusters is sometimes determined by using the elbow method (Thorndike, 1953;
Goutte et al., 1999).

1. Define the initial number of clusters as K = 2 and the initial two centroid points.

2. Use equation 17.13 to recompute the new cluster centroids Ci from the old centroids. If there
are k clusters, determine the number of points mk

i in the ith cluster. Then find the sum of
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Figure 17.12: Average sum of squared distances (ASSD) plotted against the number of
clusters. The elbow cannot always unambiguously determine the correct number of clusters
(https://en.wikipedia.org/wiki/Elbow method (clustering) ).

the squared distances SSDk
i between the centroid of the ith cluster and the mk

i points in that

cluster. Compute the average of the variances SSDk
i as ASSDk =

∑k
i=1 SSD

k
i /m

k
i .

3. Plot ASSDk against k as shown in Figure 17.12.

4. Increase the number of centroids by one and repeat steps 2-3 until enough points are computed
to show an elbow in the curve. The choice of the new centroid is up to the user, but setting
it to be the average point of the computed centroids is one strategy. The first few clusters
show a large change in ASSDk with respect to a change in the number k of clusters, and will
segregate data over a wide range of values. The decrease in ASSDk value will diminish with
an increase in iteration number and the number of clusters, leading to a flattened curve. The
number of clusters is chosen at this point of flattening, hence the ”elbow criterion”. The point
at which the curve starts to flatten is often the point closest to or near the origin, as shown
in Figure 17.12. Instead of plotting average variance one can plot the percentage of variance.
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a) Groundtruth Variable Density Data b) K=3 K Means Cluster of Variable Density Data

c) Groundtruth Globular Data d) K=2 K Means Cluster of Globular Data

Figure 17.13: Point distributions with variable densities of points with different classes
in a) will confuse a K-means clustering algorithm to give the clusters in b). The same
problem exists with points of different classes that form sinuous patterns in the second row
of figures. These sinuous patterns indicate a non-linear correlation among the components of
the data vector, which violates the linearity assumption of PCA analysis (See Chapter 16).
Illustration adopted from Ben-Hur et al. (2001).

17.7 Support Vector Clustering

The problem with K-means clustering is that it doesn’t work well when the data types are
distributed with different densities as in Figure 17.13a. In this case, K-means clustering will fail as
seen in Figure 17.13b where the two balls of red points on the right are incorrectly labeled because
they are close together compared to the other labeled points. If the data points of different types
are distributed as sinuous and non-convex shapes as illustrated in Figure 17.13c, then K-means
cluster will also fail and label according to how close the points are to one another as shown in
Figure 17.13d. More generally, non-convex clusters of points will not always be accurately clustered
by K-means clustering. Finally, if the dimensionality of the data is too high then the expense of K-
means clustering can become unaffordable. In this case principal component analysis in Chapter 16
can be used to reduce the dimensionality of the data prior to K-means clustering.

To mitigate the problems of variable point density and non-convex clusters, Ben-Hur et al.
(2001) developed unsupervised support vector clustering (SVC). The SVC method attempts to find
hidden structure in unlabeled data (Ben-Hur et al., 2001) and is partly based on the kernel SVM
method except no labeled data are needed. The output consists of clustered points with distinct
labels. Its advantage over K-means clustering is that the data points of one type do not have to be
evenly clumped together, but can be distributed over a large extended region such as the non-convex
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a) Data                        b) Loose Fit Sphere       c) Tight Sphere              d) SVC Labeled Data

Minimize R2 subject to || x a ||2  R2 for i=1,2,…,N

Figure 17.14: Steps for unsupervised support vector classification of points in a) to the
different classes in d). Illustration adopted from Ben-Hur et al. (2001).

globs in Figure 17.13.
There are six steps to unsupervised SVC (Ben-Hur et al., 2001; Statnikov et al., 2011).

1. Input the data with, for example, three unlabeled classes as indicated by the stars, dots, and
diamonds in Figure 17.14a.

2. Transform the data x to a higher dimensional feature space by Φ(x) such that there is a
hypersphere at the center a′ with the radius R′ that loosely encloses all of the points z = Φ(x).
See Figure 17.14b.

3. Define the Primal problem as finding the tightest fitting hypersphere with the smallest radius
R∗ that tightly fits all of the points Φ(x(i)), i.e.,

(R∗, a∗) = argmin
R,a

||Φ(x(i))− a|| ≤ R2, (17.21)

where a∗ is the center of the optimal hypersphere. The support vectors associated with
the primal problem are computed by solving the reduced dual problem using a Gaussian
kernel K(x(i),x(j)) = exp(−||x(i) − x(j)||2/σ2). The reduced dual problem with soft-margin
constraints is given by

min
α
L = min

α
[
∑

i

αiK(x(i),x(i))−
∑

i

∑

j

αiαjK(x(i),x(j)) ],

subject to 0 ≤ αi ≤ C, (17.22)

where the number of allowable errors is controlled by the value of C. The value of σ will
determine the number of clusters. Smaller values of σ will lead to fewer clusters, while larger
values will lead to a larger number of clusters.

4. Schölkopf et al. (1999, 2001) and Tax and Duin (1999) showed that the solution to equa-
tion 17.21 can characterize the support vectors of a high-dimensional distribution. The con-
tours enclosing these data points can be used to define their class, which is interpreted as
the cluster boundaries by Ben-Hur et al. (2001). These support points lie on the surface
of the tightest fitting hypersphere, which also define the support vectors that delineate the
cluster boundaries in data space, as illustrated by the yellow symbols in Figure 17.14c and
Figure 17.14d.

5. We know that the support vectors lie on the hypersphere’s surface, but we don’t know which
cluster they belong to. To determine their membership, Ben-Hur et al. (2001) use a geometric
approach involving the tightest-fitting radius R∗, based on the following observation: given a
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b) q=20

d)                           q=48

a) q=1

c)                                   q=24

Figure 17.15: Unsupervised clustering of points for a) q = 1, b) q = 20, c) q = 24, and
d) q = 48, where q = 1/σ2 in the Gaussian kernel and C = 1. Illustration adopted from
Ben-Hur et al. (2001).

pair of data points that belong to different clusters, any path that connects them must exit
from the hypersphere in feature space. Such a path contains a segment of points y such that
R(y) > R∗, where R(y) is measured from the center at a∗ to y. Therefore, if the points
between the original pair of points jump outside the hypersphere with radius R∗ then this
indicates that the pair of points belong to different clusters. They will be labeled as such in
both feature space and the final output domain in Figure 17.14d. This test is done for many
pairs of points until they are all labeled with the correct class.

To facilitate this labeling of points they created the N×N adjacency matrix A. Each element
Aij denotes whether the pair of points xi and xj belong to the same class in feature space.
That is, Aij = 1 indicates that xi and xj belong to the same class if all points between the line
connecting xi and xj are within or on the optimal sphere with radius R∗. Otherwise Aij = 0.

6. The yellow points in Figure 17.14c can be inverse transformed by Φ(x(i)∗)−1 to get the support
vectors x(i)∗ in the data domain. These support vectors are indicated as yellow symbols in
Figure 17.14d and so the margin boundaries can then be computed. Each closed margin
boundary defines a separate class of points.

As an example, the two rings of points in Figure 17.15a are clustered by the SVC procedure described
above. For q = σ−2 = 1, the Gaussian kernels have a wide width so only one cluster is detected in
Figure 17.15a. As q gets larger the Gaussian kernel becomes narrower and more localized around a
few points so the SVC will detect more clusters as illustrated in Figures 17.15b-17.15d.
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17.8 DBSCAN

Density-based spatial clustering (DBSCAN) groups together points that are closely packed to-
gether (Ester et al., 1996). It excludes points, denoted as outliers, that lie alone in low-density
regions. The DBSCAN cluster is a contiguous region of dense data points separated from other
clusters by a region with a low density of data points, such as the three clusters in Figure 17.15c. It
is able to find arbitrary shaped clusters and clusters with noise (i.e. outliers) and, unlike K-Means
clustering, the number of clusters is determined by the algorithm.
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xr = directly-reachable 

points

xc = core points

xo = outlier point

xe = edge 

point

a) 4 Types of DBSCAN Points                  b) Cluster Creation

A B C

If B is reachable from A, and C is 

reachable from B, then A, B, and C are in 

the same cluster

Figure 17.16: a) For Nminpts = 4, all red points are core points because the circle
surrounding these points in an ǫ radius contain at least 4 points (including the point
itself). b) All the red and black points are ǫ−reachable from one another, so they for-
m a single cluster. The edge points in a) are edge points but not core points because
they are ǫ−reachable to at least three neighbors. The blue point in a) is neither a
core point nor directly-reachable and so does not belong to the cluster in b). See http-
s://commons.wikimedia.org/w/index.php?curid=17045963.

Three classes of points in Figure 17.16a are defined for DBSCAN: core points, directly-reachable
points and outliers (https://en.wikipedia.org/wiki/DBSCAN).

• A point xc is a core point if at most Nminpts points are within the distance ǫ of it (including
xc), as indicated by the red points in Figure 17.16. The user defines the values of ǫ and
Nminpts.

• A point xr is defined as a directly-reachable point from xc if point xr is within distance ǫ from
the core point xc. Points are only said to be directly reachable from core points. Both the black
and red points in points in Figure 17.16a are directly reachable points, aka density-reachable
points.

• If two core points xA and xB in Figure 17.16b are directly-reachable (neighbors), and if xB

and xC are directly-reachable (neighbors), then xA, xB and xC belong to the same cluster.
This concept is called density connectivity. By this approach, the algorithm creates a cluster.
Each cluster contains at least one core point; non-core points can be part of a cluster, but
they form its ”edge” (see black points in Figure 17.16a), since they cannot be used to reach
more points.

• All points not reachable from any other point are outliers or noise points.

Unlike a K-means clustering algorithm, DBSCAN will be able to properly cluster the blue, black
and light-blue points in Figure 17.15c if the correct values of Nminpts and ǫ are selected.

As an example, Figure 17.17a depicts three clusters of points, and Figure 17.17b-17.17d are the
DBSCAN results for different values of ǫ. Figure 17.17c is the correct choice of ǫ and larger values
starts to inappropriately blend different groundtruth clusters together. The DBSCAN algorithm
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a)         Synthetic Data: Three Clusters b)     Synthetic Data: = 0.15 & # Clusters=4      

c)     Synthetic Data: = 0.2 & # Clusters=3                      d) Synthetic Data: = 0.35 & # Clusters=2  

Figure 17.17: a) Groundtruth points grouped into three clusters, and DBSCAN results for
b) an estimate of four clusters (ǫ = 0.15), c) three clusters (ǫ = 0.2) and d) two clusters
(ǫ = 0.35).

a)                 Yellowstone Data                b) DBSCAN Clusters: e=0.15 & # Clusters=4            c) DBSCAN Clusters: e=0.35 & # Clusters=2    
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Figure 17.18: a) Yellowstone data and DBSCAN results for an estimate with b) four clusters
(ǫ = 0.15) and c) two clusters (ǫ = 0.35).

can be summarized with the following steps10.

1. Specify values for ǫ and Nminpts.

2. Find the points in the ǫ neighborhood of every point, and identify the core points with more
than Nminpts neighbors.

10https://en.wikipedia.org/wiki/DBSCAN
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3. Find the connected components of core points that are within a distance of ǫ from one another,
ignoring all non-core points except edge points.

4. Assign each non-core point to a nearby cluster if the cluster is an ǫ neighbor, otherwise assign
it as outlier noise.

The benefits of DBSCAN are that its computational complexity can be as low as O(N logN) and
as high asO(N2) depending on how the algorithm is implemented (https://en.wikipedia.org/wiki/DBSCAN).
Here, N is the number of data points. There is no need to assign the number of clusters. The DB-
SCAN algorithm is often robust to noise or outliers in the data. If the proper ǫ value is selected
for the Yellowstone data in Figure 17.18, the DBSCAN algorithm performs as well as the K-Means
algorithm. This assumes that the K-means method chose the correct number of clusters.

A liability of DBSCAN is that the resulting clusters depend on the distance measure used as
well as the values of ǫ and Nminpts. DBSCAN can have difficulty defining clusters with differ-
ent densities and with high dimensionality datasets that suffer from the curse of dimensionality
(https://en.wikipedia.org/wiki/Curse of dimensionality).



506 CHAPTER 17. CLUSTERING ALGORITHMS

17.8.1 DBSCAN Lab with Colab

The Python code for DBSCAN clustering is in Boxes 17.8.1 and 17.8.2.

Code 17.8.1. Python Codea for DBSCAN:

# #############################################################################

# Generate sample data

centers = [[1, 1], [-1, -1], [1, -1]]

X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,

random_state=0)

# Preprocessing data

X = StandardScaler().fit_transform(X)

# plot the clusters

plt.scatter(X[labels_true == 0,0],X[labels_true == 0,1], color=’green’, label=’Cluster 1’)

plt.scatter(X[labels_true == 1,0],X[labels_true == 1,1], color=’orange’, label=’Cluster 2’)

plt.scatter(X[labels_true == 2,0],X[labels_true == 2,1], color=’blue’, label=’Cluster 3’)

plt.legend(scatterpoints=1)

plt.title("Concentric synthetic data")

plt.show()

# #############################################################################

# Compute DBSCAN

db = DBSCAN(eps=0.3, min_samples=10).fit(X)

core_samples_mask = np.zeros_like(db.labels_, dtype=bool)

core_samples_mask[db.core_sample_indices_] = True

labels = db.labels_

# Number of clusters in labels, ignoring noise if present.

n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)

n_noise_ = list(labels).count(-1)

print(’Estimated number of clusters: %d’ % n_clusters_)

print(’Estimated number of noise points: %d’ % n_noise_)

print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))

print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))

print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))

print("Adjusted Rand Index: %0.3f"

% metrics.adjusted_rand_score(labels_true, labels))

print("Adjusted Mutual Information: %0.3f"

% metrics.adjusted_mutual_info_score(labels_true, labels))

print("Silhouette Coefficient: %0.3f"

% metrics.silhouette_score(X, labels))

a

https://colab.research.google.com/drive/1l OLxY73G1T6GsZkIu-SxMowPsQ6zTzt?usp=sharing#scrollTo =m-
b1E2iAIQb4l
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Code 17.8.2. Python Code (https://colab.research.google.com/drive /1l OLxY73G1T6GsZkIu-

SxMowPsQ6zTzt?usp=sharing#scrollTo=mb1E2iAIQb4l) for DBSCAN (cont.):

% Below is the output from previous commands

% Estimated number of clusters: 3

% Estimated number of noise points: 18

% Homogeneity: 0.953

% Completeness: 0.883

% V-measure: 0.917

% Adjusted Rand Index: 0.952

% Adjusted Mutual Information: 0.916

% Silhouette Coefficient: 0.626

# plot the clusters

plt.scatter(X[labels == 0,0],X[labels == 0,1], color=’green’, label=’Cluster 1’)

plt.scatter(X[labels == 1,0],X[labels == 1,1], color=’orange’, label=’Cluster 2’)

plt.scatter(X[labels == 2,0],X[labels == 2,1], color=’blue’, label=’Cluster 3’)

plt.scatter(X[labels == -1,0],X[labels == -1,1], color=’black’, label=’Noise’)

plt.legend(scatterpoints=1)

plt.title("Concentric synthetic data")

plt.show()

# #############################################################################

# Plot result

import matplotlib.pyplot as plt

# Black removed and is used for noise instead.

unique_labels = set(labels)

colors = [plt.cm.Spectral(each)

for each in np.linspace(0, 1, len(unique_labels))]

for k, col in zip(unique_labels, colors):

if k == -1:

# Black used for noise.

col = [0, 0, 0, 1]

class_member_mask = (labels == k)

xy = X[class_member_mask & core_samples_mask]

plt.plot(xy[:, 0], xy[:, 1], ’o’, markerfacecolor=tuple(col),

markeredgecolor=’k’, markersize=14)

xy = X[class_member_mask & ~core_samples_mask]

plt.plot(xy[:, 0], xy[:, 1], ’o’, markerfacecolor=tuple(col),

markeredgecolor=’k’, markersize=6)

plt.title(’Estimated number of clusters: %d’ % n_clusters_)

plt.show()

17.9 K-Nearest Neighbors Algorithm

One of the simplest classification and regression methods is the K-nearest neighbors algorithm
(K-NN). It is a supervised method that interrogates, for example, the classes of the k neighbors near-
est to the test point, and assumes the class of the majority (Altman,1992; https://en.wikipedia.org/wiki/K-
nearest neighbors algorithm). The training set consists of the points previously labeled or assigned
numbers in the case of regression. For example, if the k = 7 nearest neighbors consisted of 2
democrats, 1 socialist, and 4 republicans, then the test point assumes the identity of the majority
class, a republican. If k = 1 then the test point assumes the identity of the nearest neighbor. The
Euclidean distance metric is most often used to measure distance, but if other metrics are used then
the units must be normalized (Piryonesi and El-Diraby, 2020; Hastie et al., 2001) for optimal results.

If the input points are characterized by a property value, instead of a class type, the property
value of the test point is the average property value of the k-nearest neighbors. Weights can be
assigned to the contributions of the neighbors, so that the nearer neighbors contribute more to the
average than the more distant ones. A common weighting scheme is to assign the weight as 1

d , where
d is the distance to the neighbor, similar to linear interpolation.

A problem with K-NN is an unbalanced data set where there are many more members of one
class than another (Coomans and Massart, 1982). To overcome this problem, one can incorporate
(or create) more data to balance the number of points in each class. Another possible remedy is to
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weight the class (or value, in regression problems) of each of the k nearest points by the inverse of
the test-neighbor distance 1

d .

If the number of components is too large then a gradient method can suffer from the curse of
dimensionality (https://en.wikipedia.org/wiki/Curse of dimensionality) when a Euclidean distance
metric is used for the objective function. This is also a problem for K-NN. That is, the volume of
a high-dimensional space grows exponentially with dimension but the distance between neighbors
grows much less. In fact, as the dimension grows the distance to the nearest neighbor approaches
that to the farthest neighbor (Beyer et al., 1999; Durrant, R. and A. Kabán, 2009). Beyer et al.
(1999) show an example where the distinction between the farthest and nearest neighbors blur with
as few as 15 dimensions. This means that an objective function or nearest neighbor metric with an
L2 distance metric will not compute large differences between distant neighbors in a high-dimension
data space. This can slow down convergence with a gradient optimization method or result in poor
clustering with K-NN. In this case the data should be skeletonized to a smaller set of data and/or
model. This is called feature selection in the ML community.

17.10 Self-organizing Map

A self-organizing map (SOM ) is an unsupervised learning algorithm that produces clusters
from a high-dimensional data set and maps these clusters onto a lower dimensional space, such as
a 2D map (https://en.wikipedia.org/wiki/Self-organizing map). Unlike K-means and DBSCAN for
high-dimensional input vectors, a SOM can produce the clustered points in a convenient 2D space
that can be easily inspected for its effectiveness in separating points from different clusters. This
reduction in dimension is similar to the goal of a non-linear PCA where high-dimensional data are
approximated by a low-dimensional representation of the data. The SOM was originally developed
by Kohonen (1982) and has a variety of implementations in the geosciences (Roy et al., 2011,; Roy
et al., 2013; Hussein et al., 2020; Hussein et al., 2021; Ramdani, 2022).

Some key ideas associated with the SOM algorithm are illustrated in the Figure 17.19a exam-
ple, where several solar systems surround three newly-arrived asteroids. These asteroids are in a
transitory state but will eventually be captured by one of the solar systems. Which solar system
will gravitationally attract which asteroid? This question can be answered intuitively by an alter-
nating variables approach: freeze the gravitational pull of all the solar systems except a randomly
selected one such as solar system A. In this example, the distance rA1 of asteroid #1 is closest to
A and it is pulled more closely to A while the neighboring asteroids #2 and #3, with distances
rA1 << rB2 < rC1, are barely nudged towards A. This is the first iteration of the alternating
variable procedure that leads to the configuration in Figure 17.19b. The longest white arrow in
Figure 17.19b indicates that asteroid #1 moved the farthest compared to the other ones after the
first iteration.

The next iteration in Figure 17.19c freezes the gravitational attractions of A and C, and activates
that ofB. The asteroids are then pulled towardsB with a force inversely proportional to the square of
their distance from B. Again, the configuration of asteroids becomes readjusted so that the asteroid
#2 closest to B moves more than the others. This freezing and unfreezing of the gravitational
attractions of the solar systems is repeated, as in Figure 17.19d, until the asteroids are captured by
their closest solar systems. The captured asteroid in each system is used to classify it as belonging
to the greediest solar system. This clustering procedure is similar to the SOM workflow presented
below.

1. The first step of the SOM method is to define the number N of neurons w(n) for n ∈
{1, 2, . . . , N} that will be used to identify the number of clusters in the M input points
x(m) for any m ∈ {1, 2, . . . ,M}, where typically M >> N . The components of w(n)

are given random values, and the dimension of w(n) is the same dimension as the input points
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Figure 17.19: Configurations of a) initial state of the asteroids #1, #2, #3 and later
configurations of these asteroids after the b) first, c) second and d) third iterations. At each
iteration, the gravitational pull of only one of the solar systems is briefly activated.

x(m). The neuron weights w(n) are analogous to the positions of the asteroids in Figure 17.19,
but in general the components of w(n) characterize the different features of the input data.

The initial positions of w(n) can be on a semi-uniform grid of points in data space as shown
by the filled-black circles in Figure 17.20a. Other options are to assign random locations to
the neurons, which is discouraged by Kohonen (2005). A viable alternative is to apply a PCA
to the input data and only select a few dominant eigenvectors to be the initial vectors of the
neurons (Kohonen, 2005).

2. Compute the distance between all of the neurons and a randomly selected input point x(m):

dnm = ||w(n) − x(m)|| for n ∈ {1, 2, . . . , N}. (17.23)

Select the neuron w(n∗) which is closest to x(m):

n∗ = argmin
n

dnm. (17.24)

This neuron is denoted as the winning neuron, or winner at this iteration.

3. Move the winning neuron w(n∗) and its close neighbors w(n) toward the mth point x(m) using
the update formula

∆w(n) = η(t)Tn∗,n(t)(x
(m) −w(n)), (17.25)

where η(t) is the step length, aka the learning-rate factor, defined as

η(t) = η0 exp(−
t

τ
); 0 < η(t) < 1. (17.26)

Here, t is the iteration index and the Gaussian neighborhood function Tn∗,n(t) (Kohonen,



510 CHAPTER 17. CLUSTERING ALGORITHMS

b) Later Iteration

c) Much Later Iteration d) Ideal Last Iteration

a) Initial Neuron       Configuration

Figure 17.20: 2D configurations of a) initial state, b) later iteration, c) much later iteration
and d) ideal final iteration of the neurons w(n) denoted as black-filled circles. The input
points x(m) in data space are denoted by red-filled circles. The proximity of the input
points to the bunched neurons at the final iteration determines their class type. Pictures
adapted from the movie in https://en.wikipedia.org/wiki/Self-organizing map#cite note-
KohonenMap-1 .

2005) is defined as

Tn∗,n(t) = exp(−||w
(n∗) −w(n)||2
2σ(t)2

), (17.27)

where

σ(t) = σ0 exp(−
t

τ0
). (17.28)

The Gaussian neighborhood function Tn∗,n(t) plays a role that is similar to the gravitational
force exerted by the solar system in Figure 17.19. For example, if the neighboring neuron
w(n) is extremely close to the winning neutron w(n∗), then Tn∗,n(t) ≈ 1 so that the neighbor
neuron w(n) is pulled with the same force towards x(m) as the winning neuron w(n∗). On the
other hand, if the neighbor is far from the winning neuron, then Tn∗,n(t) ≈ 0 and the nth

neuron does not move at that iteration. Being far from the winning neuron also means that
is much farther from the target data point x(m) and so it is not pulled to it.

The hyperparameters (τ0, σ0, η0) are determined by trial and error, where σ0 determines the
width of the neighborhood around the winner at w(n∗) where its neighbors will move towards
the selected input point. For example, if σ >> 0 then all neighbors will move towards the
selected input point, just like the solar system example.

4. The newly computed neurons are then used to iteratively repeat steps 2-4 until acceptable
convergence. The neurons w(i) iteratively change location with each iteration in the SOM
method.
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Figure 17.21: High-dimensionality of neurons w(n) can be reduced by computing the Eu-
clidean lateral distance ∆nn′ = ||w(n) −w(n′)|| between nodes w(n) and w(n′). These nodes
can then be plotted on a 2D plane such that they are separated by the lateral distance
∆nn′ . The dimension of the data point x can be reduced in the same way except it must be
located a distance ∆nx from the nth node and a distance ∆n′x from the n′th node. Partly
adapted from https://www.youtube.com/watch?v=g8O6e9C CfY .

5. For ease of inspection, the high 3D dimension of the neurons are projected to an appropriate
2D plane. More generally, the final neurons w̄(n) with arbitrary high dimension can be mapped
to a 2D plane by computing the lateral distance

∆nn′ = ||w̄(n) − w̄(n′)||, (17.29)

between the n and n′ neurons. These nodes are placed in the 2D plane in Figure 17.21 such that
they are separated by their lateral distance. Similarly, the lateral distance ∆xn = ||w̄(n) − x̄||
between the x data point and the w̄(n) neuron is also computed. Then, x is located at the
distance ∆xn from the w̄(n) neuron and the distance ∆xn′ from the w̄(n′) neuron.

Kohonen (2005) suggests the following batch computational scheme for efficient execution of the
SOM .

• Set the number of neurons and initialize the values of their components.

• For each neuron, collect a list of the input samples x(m), which belong to its neighborhood.
Move the neurons towards this mean vector. Compute, for each new neuron vector, the mean
over the respective list.

• Repeat step 2 a few times.

The pseudo-code for SOM is shown below.
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1. Get M data points x(i) for the input

2. Define number N of neurons w(n) and their distribution.

3. Define the neighborhood function T(n*,n)

4. Initialize w(j)

5 for iter=1:niter

for i=1:M

n*=argmin(||x(i)-w(n)||^2)

for n=1:N

w(n) = w(n) + alpha T(n*,n) (x(i)-w(n))

end

end

end

17.10.1 MATLAB SOM Examples

Three examples will be used to illustrate the application of a SOM to simple data.

Ten 4× 1 Input Vectors

The first MATLAB example (see https://www.mathworks.com/help /deeplearning/ug/irs-clustering.html)
demonstrates the clustering capability of a SOM applied to the ten input 4× 1 vectors shown in the
top row of Figure 17.22. The input 4 × 1 vectors are plotted in the x1 − x2 − x3 volume shown in
Figure 17.22a, where the 4th dimension is not shown. Pairs of points are clustered around one of the
three vertices (1, 0, 0, 0), (0, 1, 0, 0), and (0, 0, 1, 0); and four points are clustered around (0, 0, 0, 1).
The starting configuration of four neuron vectors w(n), each with dimension 4×1, are defined as the
round circles in b), and after 200 iterations the weights are clustered around, not surprisingly, the
data-space vertices (red circles) in d). Figure 17.22c indicates the number of input points associated
with each of the four neurons w(n).

After 200 iterations, the neuron’s weights take on their final form as shown in Figure 17.22e-
17.22h. As expected, the final neuron vectors are roughly proportional to (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), and (0, 0, 0, 1). The MATLAB code that generated these images is below

% Solve a Clustering Problem with a Self-Organizing Map

% Script generated by Neural Clustering app

% Created 21-May-2021 10:15:01

%

% This script assumes these variables are defined:

%

% irisInputs - input data characterizes different flowers.

load iris_dataset

% irisInputs - 4x1 input data characterized by points clustered around vertices

irisInputs=10*[1 1 0 0 0 0 0 0 0 .002; ...

0 .0001 1 1 0 .0001 0 0 0 .002;...

0 .0001 0 0 1 .9 0 0 0 0;...

0 -.0001 0 0 0 .001 1 1.0001 1 1]

x = irisInputs;
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Figure 17.22: MATLAB results for applying the SOM algorithm to the ten 4 × 1 input
vectors x(i) for i ∈ {1, 2, . . . , 10} shown in the top row. Six input points x(i) are plotted in
the x1 − x2 − x3 domain in a), and the other 4 (not shown) are clustered around the point
x = (0, 0, 0, 1). We assign four 4× 1 neurons w(i) for i ∈ {1, 2, 3, 4} with unknown weights,
where the 2D SOM topology of the 4 neurons is shown in b); each blue circle denotes the
location of a neuron. c) denoted the number of input points x(i) that are captured by
each neuron; there are 4 input points (denoted by the red highlight in the top row) that
form a cluster around the upper-right neuron after 200 iterations. After training with 200
iterations, the four 4× 1 neuron vectors w(i) are plotted in e)-h).
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% Create a Self-Organizing Map

dimension1 = 2;

dimension2 = 2;

net = selforgmap([dimension1 dimension2]);

% Train the Network

[net,tr] = train(net,x);

% Test the Network

y = net(x);

% View the Network

view(net)

% Plots

% Uncomment these lines to enable various plots.

figure, plotsomtop(net)

figure, plotsomnc(net)

figure, plotsomnd(net)

figure, plotsomplanes(net)

figure, plotsomhits(net,x)

figure, plotsompos(net,x)

1D Map Space

A simple example of a SOM with a 1D map space is shown in Figure 17.23. There are 6
nodes in the one-dimensional map space in Figure 17.23e. The neighborhood function is defined as
Tn,n′ = exp (−||w(n) −w(n′)||2)−0.4, which means Tn,n′ could be negative. The locations of the six
neuronal nodes are indicated by the colored dots in Figure 17.23a. At the first SOM iteration, x(1) is
the target data point and so we find the nearest neuron as w(n∗). Equation 17.25 is used to update
all the nodes as shown by the move vectors in Figure 17.23b and the new positions of the neurons
in Figure 17.23c. After updating the neurons, x(2) in Figure 17.23c is the new target data point
and Figure 17.23d shows the final neuronal configuration after a sufficient number of iterations. To
classify a new input point, simply find its nearest neuron w(n) and it will adopt its class.

To visualize the six neurons of the SOM , a U-matrix is used, which is defined as Un =∑
neighbors ||w(n) − wneighbor ||2. In Figure 17.23g, we define Un = ||w(n) − w(n+1)||2 where there

are valleys and peaks. Valleys represent a closely-packed distribution of neurons, where the number
of valleys help us decide the number of clusters in data space. In contrast, the peaks represent low
density of neurons, so it marks the boundaries of different clusters, which are used to extract texture
information in the images. This visualization procedure can be used for a 2D or higher-dimensional
SOMs.

2D Map Space

The input data consist of 150 4×1 vectors, where each vector component characterizes a certain
feature of an iris-like flower. The SOM goal is to identify the different classes of iris-like flowers.

Applying a SOM with 25 neurons to this data set gives the hit map shown in Figure 17.24a, where
the two lower-left neurons are surrounded by at least 20 input data points. The final configuration
of the 25 neurons is depicted by the red dots in c) after 200 iterations. The SOM neighbor distances
are plotted in b), which suggest that the boundary separating two clusters is described by the dashed
black lines in b) and c). The boundary obtained from the neighbor distance plot is similar to the
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Figure 17.23: Example of the SOM procedure for a 1D map space. a) Black dots represent
data points x(i) and the colored dots are neuron vectors w(n) that represent the colored
node points in the 1D map space shown in e). b) Update directions of all the nodes w(k)

in data space are indicated by arrows when selecting x(1) as the first target point. After
updating, the locations of feature vectors w(k) are shown in c) and a new data point x(2) is
selected for the next iteration. After many iterations, the distribution of w(n) for the SOM
is shown in d). f) displays the shape of the neighborhood function T2,n and g) depicts the
U-matrix for the well-trained SOM in d).
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Figure 17.24: Results of a SOM applied to the Iris data set. The input data (blue dots in
c) consisted of 150 4× 1 vectors. The lower row of plots depicts each component wi of the
25 neuron vectors which characterizes a specific feature of an Iris-like flower. These 4 × 1
neuron vectors are mapped to the red dots in the 2D space shown in c). The black dashed
lines in b) and c) roughly delineate the 2D boundary between different clusters, similar to
the U-matrix boundary in Figure 17.24g.

U-matrix boundary in Figure 17.23g.

17.11 Numerical Examples

Four examples of applying clustering to geophysical data are presented. The first applies K-
means clustering with softmax weighting for automatic picking of the stacking velocity from sem-
blance panels (Yilmaz, 2001). The centroids of each cluster are then connected to form the stacking
velocity curve. The second estimates the layers associated with velocity models generated by VAE.
The third example applies DBSCAN to earthquake locations in order to identify the location of
faults. The final example shows how a self-organizing mapping method can be used to extract the
important microporosity parameters measured in borehole specimens.

17.11.1 Picking Stacking Velocities by K-means Cluster Analysis

Seismic data generated by a single shot (see Figure 27.6a) are most often too noisy to be used
for imaging the subsurface properties. In particular, the primary reflections are degraded by both
random and coherent noise. To increase the SNR level of the primaries, primary reflections from
the same subsurface reflection point at x = (xo, z) are generated by shots at different locations. The
traces where the midpoints of the sources and receivers have the same midpoint coordinate11 xo
are assembled into a common midpoint gather (CMG) as illustrated in Figure 27.6b. The common

11For pedagogical convenience, we assume a 2D survey geometry and a layered medium where the sources
and receivers are along a line on a horizontal free surface.
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midpoint reflections from the same reflector are shifted in time so they all align with one another
(see Figure 27.6c), and then they are stacked together to get the stacked trace in Figure 27.6d with
an increased SNR. This alignment time is the two-way zero-offset time To of a zero-offset primary
reflection reflecting at x; here, zero-offset refers to the fact that the separation between the source
and receiver has zero offset and both are located at (xo, 0) on the horizontal free surface. This
assumes a layered medium and we use semblance analysis (Yilmaz, 2001) to find the best way to
time shift and stack the traces to get the primary reflection with the best SNR.

As illustrated in Figure 17.25, the goal of semblance analysis is to find the stacking velocity
Vstack as a function of two-way zero-offset traveltime To such that the hyperbola

t(x, Vstack) =

√
x2

V 2
stack

+ T 2
o , (17.30)

best fits the reflections in a common midpoint gather. Here, the midpoint coordinate is xo =
(xr − xs)/2 and the offset between the source and receiver is x = xr − xs. The primary reflections
in each trace d(x, t) approximately follow the traveltimes in equation 17.30 for the correct values of
Vo and To, so the stacking procedure uses the semblance equation given by

S(Vstack, To) =

∑
x d(x, t(x, Vstack))∑
x d(x, t(x, Vstack))

2
, (17.31)

where S(Vstack, To) is the semblance panel associated with the midpoint coordinate xo = (xr−xs)/2.
To generate a smooth semblance panel, the trace amplitudes are typically stacked together along
a half-period wide strip centered about the moveout curve described in equation 17.30. The black
curve in Figure 17.25 joining the peak values of the semblance energy is picked as the best estimate
of the stacking velocity Vstack(To) as a function of zero-offset traveltime To. This optimal stacking
velocity produces the optimal ”stacked” trace at zero-offset, where optimal corresponds to reflection
events with the highest signal-to-noise ratio.

The problem with picking the semblance curve in Figure 17.25 is that it can easily get confused
by strong noise or by free-surface multiples that stack incoherently. In this case, semblance curves
must be manually picked by hand which can be extremely time consuming for large 3D data sets.
To mitigate this expense, (Chen, 2018a-b) proposed a bottom-up method for K-means clustering to
automatically group the large energy events in S(Vstack, To) into different clusters.

Chen proposed the following algorithm.

1. Set the initial number of clusters K=4. Assign the centroid point of the k cluster to be

(V
(k)
o , T

(k)
o ). TheseK points are selected at equi-spaced To intervals along an initial semblance

curve.

2. Apply K-means clustering for several iterations until a stable group of K clusters has emerged.

3. Increment the value of K by 1 and repeat step 2. The value of K is incrementally increased
until the residual misfit in equation 17.3 does not decrease by a significant amount.

4. The centroids of the final cluster are used to form the final semblance curve.

As an example, the bottom-up K-means algorithm is applied to the common midpoint gather (CMG)
in Figure 17.26a. Here, the data are computed for a five-layer velocity model and the semblance
spectrum is shown in Figure 17.26b. The bottom-up K-means clustering algorithm is used to pick
the clusters for 1 ≥ K ≥ 10, and the centroids are used to pick the points for the semblance curve.
Six clusters, with centroids denoted by the red dots in Figure 17.27a, were found to be optimal
before the decrease in the L2 residual became negligible in b). These centroids are connected by the
dashed magenta line, which agrees with the one manually picked from the semblance plot.
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Figure 17.25: a) Common midpoint gather of traces assembled from traces recorded by
a seismic reflection survey. For a dense survey, a shot can be located at each source po-
sition. The traces in a) are summed and weighted along different hyperbolas (e.g., the
red dashed curve) described by equation 17.3 for different values of Vstack and To to get
the semblance plot shown in b). The black line in b) describes the stacking velocity
curve that is used to estimate the velocity as a function of depth. Images extracted from
http : //www.ahay.org/RSF/book/geo384s/hw3/nmo/Fig/cmp700.png.
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Figure 17.26: a) Common midpoint gather (CMG) for a 5-layer velocity model and b)
semblance spectrum (Chen, 2018a-b).

A more challenging example is to estimate the semblance curve from data generated from the
Marmousi model in Figure 17.28a. In this case, there are 100 traces in most of the common midpoint
gathers, and the semblance curve is shown in Figure 17.28c. Here, the number of clusters was selected
to be K = 12 because this represented the largest cluster number before the error decrease became
small. A plot of misfit values against cluster numbers is shown in Figure 17.28d.

A final example is for the field data shown in Figure 17.29a. The semblance spectrum by the
K-means algorithm is shown in Figure 17.29b and agrees well with the one estimated by a human
interpreter. The misfit error plotted against K in Figure 17.29c and the elbow criterion suggests
that K = 5 is the optimal number of clusters, although K = 12 was selected for to provide a
high-resolution final semblance curve.

One of the problems with semblance analysis for marine data is that free-surface multiples can
contribute to strong semblance energy at stacking velocities near that of the water velocity. In this
case constraints should be imposed to steer the K-means picking algorithm away from choosing the
semblance curve associated with multiples. See Exercises 2-3.

The information weighted clustering (IWC) algorithm described in equation 17.13 is now ap-
plied to the GOM data. The starting cluster points are shown as 15 red dots along the lines in
Figure 17.30b and 17.30d. The IWC algorithm converged to the red dots intersecting the black
curves in Figure 17.30b and Figure 17.30d. These auto-picked curves ignored the multiples at the
lower semblance velocity because the IWC algorithm weighted the clusters points with the amplitude
of the semblance values in Figure 17.30b and 17.30d. The semblance values for the primaries appear
to be much larger than those for the perceived multiples.
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Figure 17.27: a) Final cluster configuration where the centroid of each cluster is marked
by a red dot. The red stars are the initial starting model and b) denotes the sum of the
squared residuals plotted against the number of clusters K (Chen, 2018a-b).
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Figure 17.28: a) Marmousi model, b) common-midpoint gather, c) semblance spectrum
with centroids picked by the K-means algorithm, and d) plot of L2 norm of residuals vs K
(Chen, 2018a).
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a) A 2D Slice of Time Migration Cube
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Figure 17.29: a) A 2D slice of the time migration cube of Gulf of Mexico (GOM) data at
X = 1 km and b) semblance spectrum with the semblance curve picked from the centroids
of the final cluster configuration. c) Misfit error plotted against K, the number of clusters
(Chen, 2018a).

17.11.2 Generating Models with Sharp Impedance Contrasts

The variational autoencoder (VAE) is a generative model that can generate the observation and
target (x,y), or the observation x given the target y. It can learn the probability distribution of
a training set of images, and then generate thousands of never-before-seen images that are similar,
but more blurry (see Chapter 14 and Berthelot et al. (2018)).

A geophysical application of a VAE is to generate new velocity models from a training set
of realistic velocity models. These new velocity models can then use a seismic forward modeling
code to generate a never-before-seen set of seismic data for purposes of full waveform inversion (see
Chapter 26.1.2). Unfortunately, the new velocity models obtained by VAE are smooth velocity
models that are missing sharp velocity contrasts. Such contrasts are needed in order to render
realistic velocity models.

To overcome this problem we can use VAE to generate smooth velocity models by training
with velocity models having sharp interfaces. The VAE generated models are then passed through
a K-means clustering algorithm to generate velocity models with sharp interfaces. The VAE and
clustering workflow is shown in Figure 17.31, where the training set consisted of 2036 velocity models
from the F3 Interpretation dataset (Silva et al., 2019). The number of epochs for the VAE was 50
epochs with an MSE loss of 0.577. Figure 17.32 depicts a seismic section and an interpreted velocity
model from the F3 data (Silva et al., 2019).

After training, the VAE is used to generate an additional 8000 velocity models. Figure 17.33
depicts some of these training models. The output models from the VAE are shown as the first
column of panels in Figure 17.34a-c. These VAE velocity models are characterized by very low
resolution, as if a low-pass filter was applied to the original velocity model with sharp interfaces.

To mitigate this problem Gautam used K-means clustering to generate the VAE+cluster models
shown in the right column of panels in Figure 17.34a-c. The clustering algorithm clearly delineated
the sharp velocity boundaries to generate more realistic velocity models with sharp interfaces. How-
ever, if the VAE model is too complex with non-convex boundaries then the clustering algorithm
can produce an unrealistic layered model, similar to the problems seen in Figure 17.13b and 17.13d.
In this case a DBSCAN or SVC algorithm might be more appropriate if the layer boundaries form
non-convex surfaces.
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Figure 17.30: Common midpoint gathers and (right column) semblance images picked by
the IWC algorithm where the large red points along a line are the initial cluster points
and the black line is through the final red cluster points (Chen, 2018b). Note, there are 15
initial cluster points and the final number is 14.
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Figure 17.31: VAE+clustering workflow.

17.11.3 DBSCAN Applied to Earthquakes

Mapping earthquake epicenters and identifying their associated faults that break the surface is
one of the fundamental tasks of earthquake monitoring stations throughout the world. Accurate
assessment of a fault’s geometry, gaps, growth rate, and properties can be used to update the
hazard analysis of a region. The more accurate this assessment the more reliability in the prediction
of hazard analysis12. One of the methods for delineating different faults from one another is the use
of a clustering method applied to epicentral locations. For example, Setyorini et al. (2017) used
K-means clustering to classify earthquakes along the coastline of Sumatra. They tested a different
number of clusters and selected the one with the greatest variance change of the distance function.
In their distance function they used both geographic distance between pairs of earthquakes and the
difference in magnitudes as well.

Unfortunately, many earthquakes cluster along long sinuous faults, so they don’t satisfy the ideal
K-means conditions where points from different clusters should have nearly the same density and
form round-like clusters of points. For example, many strike slip faults in California are located
along linear fault scarps and have a low density of earthquakes around the non-fault areas and a
high density along the fault scarps. In this case, DBSCAN is a more suitable clustering method.

To demonstrate this approach, Shi, Jiang, and Ning from Peking University used DBSCAN to
cluster earthquakes around the Sichuan and Yunnan provinces in China. They first used DBSCAN
clustering to separate epicenters associated with different fault zones, and then used DBSCAN again
to cluster different faults in the same cluster. In the second DBSCAN test, they incorporated wave-
form information into the distance metric so that earthquakes from faults with different orientations
could be separated.

12https://earthquake.usgs.gov/
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Figure 17.32: Examples of a (left) seismic section and (right) velocity model from the F3
data set (Silva et al., 2019).

The pseudo-code of the DBSCAN method is shown in Figure 17.35. Here, they used the geo-
graphic distance between the epicenters of two earthquakes for their distance metric:

d(Eq1, Eq2) =

√
(x

(1)
1 − x

(2)
1 )2 − (x

(1)
2 − x

(2)
2 )2, (17.32)

where x(i) = (x
(i)
1 , x

(i)
2 , x

(i)
3 ) is the location of the ith earthquake and d(Eq1, Eq2) is the geometrical

distance between their locations.

The second metric also uses the cross-correlation information:

d(Eq1, Eq2) =

√

(x
(1)
1 − x

(2)
1 )2 − (x

(1)
2 − x

(2)
2 )2 + α2

∑
i[1− Corr(R

(1)
i , R

(2)
i )]2

Ns
)2, (17.33)

where α is the weight balancing the physical distance and cross-correlation metrics. R
(k)
i is the trace

of the k = 1, 2 earthquake recorded at station i, and Ns is the number of stations which record both

earthquakes. The normalized zero-lag correlation of these two traces is given by Corr(R
(1)
i , R

(2)
i ).

For the following examples, the earthquake catalog contains 60,000 earthquakes which are located
with the IASP91 earth model. The earthquake detection method is called Array-assisted Phase
Picker.
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Figure 17.33: Some examples of the VAE training set. Figures from Tushar Gautam.

VAE Output after Clustering
a) 4 Layer Model b) 9 Layer Model c) Fast Velocity Anomaly

0 250 0 250 0 120 0 120 0 120 0 120

0

250

0

250

0

120

0

120

km/s km/s km/s

VAE VAE+Cluster VAE VAE+Cluster VAE VAE+Clusterkm/s km/s km/s

Figure 17.34: Some VAE and VAE+Clustering results. Figures courtesy of Tushar Gautam.

DBSCAN 1

There are many possible faults in Figure 17.36, but the faults are obscured by too many points.
Therefore, we need to apply another clustering of the points within the large cluster. In this case,
trial and error testing suggests that the DBSCAN1 algorithm should use the values ǫ = 10 and
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Figure 17.35: Pseudo-code for DBSCAN.

ǫ = 20.

DBSCAN 2

A second DBSCAN method is applied to the points in the largest cluster in Figure 17.36 to
give the results in Figures 17.37-17.39. Points within the green oval of Figure 17.37 are displayed in
Figure 17.38. In this case, equation 17.33 is used to calculate the distance metric of DBSCAN. Here
the following constraints are used:

α = 5 if |x(1) − x(2)| < 15 km;

α = 0 if |x(1) − x(2)| ≥ 15 km. (17.34)

Although some clusters appear to contain related fault scarps such as the one in Figures 17.39, the
biggest cluster does not completely isolate entire fault systems. A third round of clustering was
performed but this did not work well.

DBSCAN 2 with Crosscorrelation

In this cluster, there are only about 8,000 events where the computational cost is much lower
than processing 20,000 events. So we add information of full waveform rather than only P- and
S-wave traveltimes. We choose the weights as:

α = 3 if |x(1) − x(2)| < 10 km;

α = 0 if |x(1) − x(2)| ≥ 10 km (17.35)

The DBSCAN parameters are set to be ǫ = 5 km and MinPts = 10, and the results are shown
in Figure 17.40. The biggest cluster is shown in Figure 17.41. There is an earthquake gap in
Figure 17.41b, where there are a few shallow events. Along AA′ there are many fault branches near
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Figure 17.36: DBSCAN result after clustering 60000 earthquakes with 88 clusters, including
a noise cluster. The purple oval is the first cluster which has 23575 earthquakes, the green
oval contains 8856 earthquakes and the cyan oval contains 2231 earthquakes. The light blue
oval could contain many faults, and the black lines are the observed faults.
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Figure 17.37: Second DBSCAN result after applying DBSCAN to the largest cluster in
Figure 17.36. There are 55 clusters and the green oval is the biggest cluster that clusters
13236 events, and the purple oval indicates a possible fault. Here, ǫ = 5 km and MinPts =
10.
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Figure 17.38: Points within the green oval of Figure 17.37. a) Distribution of all epicenters,
where the colors indicate hypocentral depths between 10 km to 50 km; b) slice of line AA’.
All events are displayed that are within 10 km from AA’. The red points are events from
the North, and the blue points indicate from the South. c) slice of line BB’. All events are
displayed that are within 10 km from BB’, where the red points are events from the West,
and the blue points are from the East.
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Figure 17.39: Epicenters within the small purple oval (just below the large green oval) in
Figure 17.37.



532 CHAPTER 17. CLUSTERING ALGORITHMS

Figure 17.40: Second DBSCAN result of green oval in Figure 17.36, where there are 18
clusters. The colored thick lines are used to mark different regions of this fault zone by a
human interpreter, which mostly agree with this result.

the Earth’s surface, and only a few in the middle part. So most of the earthquakes are in the middle
and are related to the main fault, which is deeper.

In summary, DBSCAN can be used to approximately delineate faults from epicentral locations in
earthquake catalogs. It can be sequentially applied to first discover large clusters of many earthquake
epicenters, then each cluster can be further divided into sub-clusters that can delineate the fault
patterns. It is demonstrated that the waveform information can be used to assist in separating
different faults from one another.

17.11.4 Self-Organized Maps and Classification of Porosity in Rocks

Rock porosity is defined as the volume of pore space divided by the total volume in the rock.
The pore space can be filled with a combination of gases and fluids, and so porosity is a valuable
property that is used to assess the economic viability of gas and oil reservoirs. For carbonates,
microporosity is the metric used to characterize their pore size.

Characterizing pore sizes in carbonates is not as straightforward as that in clastics. This is
because carbonate pore geometries range from macro to sub-micron sizes (Lucia 2007, Hasiuk et
al 2016, Vahrenkamp et al, 2014). Unfortunately, the lowest resolution limit of specific image-
acquisition methods is used to characterize microcrystals in carbonates (Baechle et al, 2008; Kacz-
marek et al, 2015). As an example, Choquette and Pray (1970) defined 62 µm pore diameter as the
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Figure 17.41: Points associated with the biggest cluster in Figure 17.40.

upper limit of measurable microporosity. In contrast, Baechele et al (2008) defined microporosity as
rocks with a pore diameter of less than 6 µm because of the limits of his imaging method. Others
(Cantrell and Hagerty, 1999; Lonoy, 2006) defined microporosity as porosity with a pore diameter
of less than 10 µ.

This non-uniform definition of microporosity can lead to incorrect characterization of carbonate
reservoirs with microporosity (Ehrenberg et al, 2008; Baechle et al 2008; Farouk et al., 2014), even
though they are typically characterized by low permeability and high-water saturation in wireline
log measurements (Ehrenberg et al, 2008; Baechle et al 2008; Vanorio and Mavko, 2011; Deville de
Periere et al, 2011). Therefore, a more uniform definition of microporosity and their relationships
with petrophysical properties are important for an accurate description of the reservoir.

Characterization of Microporosity by SOM

To provide a more objective measure of microporosity in carbonate rocks, we use the unsuper-
vised method of self-organizing maps (SOMs) to extract the important microporosity parameters
measured in borehole specimens. The SOM method is a type of artificial neural network method13

that is trained with unsupervised learning to produce a low-dimensional representation of the high-
dimensional input data. It was introduced by Kohonen (1982) to create low-dimensional views of
high-dimensional input data. The low-dimensional representations can be used as input to unsu-
pervised clustering methods (Ultsch, 2007) to classify data according to a sparse set of important
parameters. The full description of the SOM is in section 17.10.

The SOM method is applied to data from the Upper Jubaila Formation outcrop in Riyadh,

13https://en.wikipedia.org/wiki/Self-organizing map
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Figure 1. (1A) The roadcut in Riyadh, Saudi Arabia, which exposes approximately 26 m thick 3 

part of the Upper Jubaila Formation as an analogue to the lower part of the Arab-D 

Figure 17.42: a) Roadcut in Riyadh, Saudi Arabia, which exposes an approximately 26 m
thick part of the Upper Jubaila Formation as an analogue to the lower part of the Arab-D
reservoir (Jacquemyn et. al., 2018). b) Generalized lithostratigraphy and chronostratigra-
phy of the Late Jurassic sedimentary deposits in Saudi Arabia (left). The red dashed box
represents the studied interval in the Upper Jubaila Formation, (right) which is equivalent
to the lower part of the Arab-D reservoir. Figures modified from Al-Mojel et al. (2020) and
Jacquemyn et al. (2018).

Saudi Arabia (Figure 17.42). This outcrop is an analogue for the lower part of the petroliferous
Late Jurassic Arab-D reservoir (Jacquemyn et al, 2018). Based on the result of mercury injection
capillary pressure data (Figure 17.43), this outcrop is dominated by porosity with pore diameter
distribution of less than 10 µn. Cantrel and Hagerty (1999) defined 10 µm as the upper limit of
microporosity in their subsurface microporosity study of the Arab Formations. Thus, this outcrop
pore system is dominated by microporosity and a suitable analogue to investigate the correlation
between microporosity with petrophysical properties.

The aim is to establish a SOM methodology that links micrometer-scale morphology of micro-
crystals in carbonates with macro-scale petrophysical properties in the well. These results can be
used for upscaling microporosity to the reservoir grid scale (Ramdani, 2022).

SOM Results

The main dataset for this study consist of 106 cylindrical core plugs from a 35 m-long core
that was drilled behind the outcrop cliff (Figure 17.44). Petrographic observations for lithofacies
identification were performed on the thin sections made from the trim end of the core plugs, and
used the modified Dunham classification (Embry and Klovan, 1971) to describe depositional textures
of the investigated thin sections. Micrometer-scale petrographic observations were performed using
Scanning Electron Microscopy (SEM) on 37 selected core plug samples. The SEM imaging strategy
in Deville de Periere et al (2011) and the microtexture classification of Kaczmarek et al (2015)
are used to characterize the microcrystals that host microporosity. Two quantitative parameters
modified from microtexture classification of Kaczmarek et al (2015) and Deville De Periere et al
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Figure 2. Mercury injection capillary pressure data from the studied outcrop shows that this 13 

Figure 17.43: Mercury injection capillary pressure data from the studied outcrop shows
that this outcrop is dominated by porosity with a pore diameter distribution of less than
10 µm (Finkbeiner et. al., 2018).

(2011) were also determined: roundness index and fuse index. The roundness index determines
how close each individual microcrystal is to a perfect circle. This parameter uses the aspect ratio-
corrected circularity method by Takashimizu and Iiyoshi (2016) to approximate the Krumbein-Sloss
roundness chart (Krumbein and Sloss, 1963). An angular-shaped microcrystal will be assigned a
roundness index of close to 0 and a spherical one will have a roundness index value of 1. The
fraction of granular microcrystals in the investigated SEM image is defined as fuse index. A fuse
index value equal to 1 means all microcrystals are granular while 0 says that all microcrystals are
indistinguishable and fused together.

Spectral gamma ray measurements were also performed to measure the percent of K (Potassium),
ppm of U (Uranium) and ppm of Th (Thorium) of the whole intact core. Total gamma ray counts
in API units were calculated using Luthi’s (2001) empirical formula. Helium porosimetry and gas
permeametry were used to measure grain density, bulk density, porosity and permeability of the
core plugs. Powder X-ray diffraction was performed to obtain the mineral composition of the plugs,
from which four main mineral constituents were defined: calcite, dolomite, clay minerals (kaolinite
and montmorillonite), and quartz. Ultrasonic P-wave velocity measurements (300 kHz) under non-
saturated (dry) and unconfined condition were also performed to the core.

The self-organizing map (SOM ) is used to perform unsupervised classification by reducing the
ten-dimensional space of petrophysical properties to a smaller dimension. The ten petrophysical
properties of each sample in the well are the following: porosity, permeability, gamma ray, bulk
density, grain density, P-wave velocity, calcite fraction, dolomite fraction, quartz fraction, and clay
minerals fraction. Four discrete SOM classes are identified from this process. Since there was no
explicit external supervision nor a priori information imposed to run the SOM, the four classes
identified in this process were based on the natural grouping tendencies of the input dataset.

The result of thin section analysis, SEM imaging, lab-scale petrophysical measurements and
SOM classes from the well is displayed in Figure 17.45. The SOM classes are shown to be supe-
rior compared to the classical depositional-texture based rock typing for petrophysical properties
characterization. This claim is validated in the crossplot in Figure 17.46 which shows the weakness
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Figure 3. Core drilling operation behind the outcrop cliff. The core penetrates 35 m into the 30 

Figure 17.44: Drilling rig next to the carbonate outcrop (Ramdani, 2022). The core pene-
trates 35 m into the Upper Jubaila Formation in this outcrop.

of the standard classification method. Here, the median values of roundness index with fuse index
color-coded by depositional texture are plotted. A linear correlation coefficient of 0.87 is observed
between the roundness index and fuse index, and implies a positive relationship between sphericity
and granularity of microcrystals. Angular microcrystals tend to be more fused/fitted while rounded
microcrystals tend to be more granular. However, no apparent arrangement can be seen between
microtexture and depositional texture. All depositional textures are dispersed almost equally in
granularity-angularity space which implies that both sphericity and granularity of microcrystals are
independent of depositional texture.

Figure 17.47a shows a crossplot between the roundness index and the fuse index color-coded by
the SOM classes. In contrast to depositional texture, the SOM clusters the input data into four
classes and these four classes have a strong correlation with microtexture. Class 1 is located at
the highest roundness index and fuse index region which corresponds to median roundness index of
> 0.6 and a fuse index of > 0.8. Class 3 is located at the lowest value of roundness index and fuse
index space which corresponds to a median roundness index value < 0.2 and fuse index < 0.4. The
majority of the data falls in Class 2 and Class 4 with some minor overlap between them. Class 2
corresponds to a median roundness index of 0.6 - 0.4 and a fuse index of 0.8 - 0.4 while Class 4
corresponds to a roundness index of 0.5 - 0.2 and a fuse index of 0.6 - 0.4. The SEM images of
microcrystals of these SOM classes are shown in Figure 17.47b. The SOM classes 1 and 2 tend to
be more rounded and granular, class 3 tends to be more subhedral to anhedral, and class 3 tends to
be more anhedral and tight-fitted. These results suggest that the four SOM-derived classes can be
utilized as a proxy for texture of microcrystals.

Figure 17.48 shows the porosity-permeability crossplots color-coded by SOM class a) and deposi-
tional facies b). Porosity-permeability crossplot in this study is relatively predictable with relatively
straight-forward log-linear relationship. Porosity-permeability also shows a better arrangement when
sorted by SOM classes as opposed to depositional texture. Class 1 is located at the highest porosity
and permeability space (porosity 12% and permeability > 1mD). Class 2 occupies the upper half of
porosity and permeability space (porosity 8% - 12% and permeability 0.1 mD - 1 mD). Classes 3
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Figure 4. Compiled results of depositional texture, microtexture parameters, lab-scale petrophysics measurements, and Self-Organizing Map 

Figure 17.45: Compiled results of depositional texture, microtexture parameters, lab-scale
petrophysics measurements, and Self-Organizing Map (SOM) clusters of the well (Ramdani,
2022).

and 4 occupy the lower part of porosity and permeability space. Class 3 corresponds to the porosity
< 8% and permeability < 0.05 mD while Class 4 corresponds to the porosity of < 10% and perme-
ability < 0.2 mD. In contrast to SOM class, this data clustering characteristics cannot be seen if we
sort porosity-permeability to depositional texture. Most of the depositional texture are dispersed
in all range of porosity and permeability. Porosity and permeability have a better correlation with
microtexture and SOM class rather than depositional texture.

Sorting granularity and sphericity into depositional facies resulted with little to no apparent
control of initial depositional texture to the texture of microcrystals. The sphericity of microcrystals
is associated with granularity but almost independent of depositional texture. On the other hand,
the SOM clustered all lab-measured properties into four discrete classes. The arrangement of these
four classes has a strong association with sphericity and granularity, even though these four classes
were generated purely from lab-measured petrophysical properties without any external supervision
or forced input.

Based on the SOM classes, we interpret that granularity and sphericity are the principal com-
ponents and/or the dominant controlling variables over all lab-measured properties in this well.
This suggests that machine-learning based unsupervised classification might be used as a proxy for
microtexture in the subsurface microporous reservoirs.

The influence of granularity and sphericity to the reservoir quality is apparent and can be seen
clearly in Figure 17.48 where the SOM classes (as a proxy to microtexture) cluster the data better
than depositional texture. A simple log-linear relationship between porosity and permeability follows
the trend of microcrystals granularity and sphericity. Moreover, this log-linear relationship by-passes
multiple depositional texture in a way so that it is possible to represent multiple depositional facies
with a single continuous log-linear porosity-permeability relationship. SOM classes 4 and 3 represent
tight (lower porosity-permeability) microcrystals while Class 1 and Class 2 represents porous (higher
porosity-permeability) microcrystals. Discounting two obvious outlier points, the majority of the
dataset belongs to Class 2 and Class 4 where the bulk of log-linear relationship between porosity
and permeability is formed. Class 1, which represents the roundest and contains the most granular
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Figure 5. Crossplot between median value of “roundness index” with “fuse index” color

Figure 17.46: Crossplot between median values of roundness index with fuse index color-
coded by depositional texture from samples with SEM images. The symbols of any color
are largely distributed all along the line instead of clumping around a small portion of the
line (Ramdani, 2022).

microcrystals, is noticeably located at the highest porosity and permeability space. The porosity
range of Class 1 is relatively similar with the upper member of Class 2 but with significantly higher
permeability. This makes Class 1 a higher permeability continuation of Class 2. Class 3, which
represents the most angular and contains the most tight/fused microcrystals, resides in the lower
permeability space of Class 4. They have a similar porosity range with mid-to-lower membership
in Class 4 but with a lower permeability value. These results demonstrate the applicability of
using SOMs as a method for linking multi-dimensional petrophysical properties with the texture of
microcrystals.

17.11.5 Self-Organized Maps and Classification of Seismic Horizons

Another SOM example is that by de Matos et al. (2010) where they used both 1D and 2D SOM
procedures to detect geological patterns in horizon slices of seismic data. The horizon slice is that
of instantaneous amplitudes taken from a series of 2D seismic sections, one of which is shown as the
inset in the upper right of Figure 17.49. This horizon, marked by the black arrow in Figure 17.49,
is over a subsurface reservoir. They used a SOM to compute a large number of SOM classes and
mapped each class to an HSV color model. Displaying these colors on a map allowed them to
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Figure 6. (A) Crossplot between median value of “roundness index” with “fuse index” color-

Figure 17.47: a) Crossplot between median value of roundness index with fuse index color-
coded with the Self-Organizing Map (SOM) class from samples with SEM images. The
SOM classes show a data grouping that follows microtexture. b) Medical CT and SEM
photomicrograph images from Finkbeiner et al (2018) from the same core data used in this
study. The three SEM photomicrographs show the tendencies of rounded microcrystals to
be more granular and angular microcrystals to be tighter/fused (Ramdani, 2022).

conclude ”...that the channel is clearly delineated and the relationship among waveforms in the 2D
SOM colorbar helps to interpret the geology.”.

17.11.6 Self-Organized Maps and Fault Detection

Another application of SOM is for fault detection in seismic records. Hussein et al. (2020)
identified 8 combinations of 16 seismic attributes for useful fracture and fault detection. However,
this large number of attributes and their combinations are impractical for fault detection by an
interpreter. To remedy this problem, Hussein et al. (2020) used SOM and PCA analysis to reduce
the fault features to one classification volume. They showed that the SOM volume provided efficient
and noticeably more accurate detection of faults compared to conventional interpretation techniques.

17.12 Summary

Unsupervised cluster methods group, or cluster, objects according to measured or perceived
intrinsic characteristics or similarity among the input points. There are over a thousand such
methods, but K-means is one of the most popular for simple point distributions. More sophisticated
clustering methods such as SVC or DBSCAN can be used if the point distributions are too irregular
or are bounded by non-convex boundaries.

The advantage of unsupervised clustering is there is no manual labeling of the data prior to
clustering. As demonstrated by the semblance examples, this approach can avoid manual labor in
estimating the initial velocity model from semblance panels. For semblance analysis, any final choice
of stacking velocity curves should be vetted by a skilled interpreter.
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If the data have strong coherent noise then the clustering algorithm can erroneously pick the
wrong velocity models. In this case constraints can be imposed to avoid the characteristic low
velocities of free-surface multiples. Another possibility is a semi-supervised clustering algorithm
because a few labeled data serve as groundtruth anchors that can steer the algorithm away from
incorrect cluster memberships. The IWC algorithm can weight each cluster point with a weight that
is proportional to the information content of that point. This is a type of Fuzzy clustering.

The fuzzy clustering method for traveltime picking has the following advantages over other
methods in that it is robust by exploiting the different characteristics of signal and noise as exposed
by the trace features, is flexible, and is straightforward to implement. The method only requires an
estimate of the signal’s dominant period to compute the trace features and a membership threshold
to separate signal from noise. Moreover, the user can define different features depending on the
target signal.

A drawback of fuzzy clustering is that it requires an analysis window it partitions the trace into
signal and noise intervals. Further work is required to determine the type of detected signal (e.g., P
or S waves). An extra burden is that a picking method is required to determine the onset times of
events, since fuzzy clustering only defines a suitable window for picking.

Self-organizing maps are another approach to clustering, except they present the clustered points
in a lower-dimensional space, typically two or three dimensions. This makes it much easier to
visualize the separability of the cluster geometries compared to examining many 2D slices of the
clusters for points in high-dimensional spaces.

A different geoscience problem might require a clustering algorithm tuned to that problem. In
that case, one of the many other variations of cluster algorithms might provide the algorithm most
suited for solving your problem.

17.13 Exercises

1. Download the semblance NMO and clustering program14. Now run ”K-means.m” for different
numbers of clusters and find the best number of clusters that give the most accurate semblance
curve.

2. Devise a regularization procedure that uses the semblance curve picked from the previous
CMG to constrain the semblance curve for the new CMG. Show the results.

3. Devise other features in addition to amplitude, time and VNMO that might increase the
accuracy of the picked semblance curve. Implement them in the MATLAB code and show
results.

4. Devise the MATLAB code for fuzzy clustering and compare results using softmax clustering.
Show results.

5. Download the DBSCAN code (Ester et al., 1996) in Python15 and compare its performance
against the K-Means clustering code for clustering Yellowstone data.

6. Execute the SOM MATLAB code in section 17.10 after loading the iris flower data using the
command load iris dataset. Use different numbers of clusters and discuss the meaning of the
resulting plots. What is the minimum number of clusters in this data set?

7. Why are there only three red circles in Figure 17.22d when there are 4 neurons assigned in
Figure 17.22a? What happened to the missing neuron? Try using the MATLAB code with
only three neurons for the starting number of neurons to come up with an answer.

14LAB1/Chapter.Book.Cluster/Chapter.Cluster1/lab.html
15https://www.kaggle.com/fazilbtopal/popular-unsupervised-clustering-algorithms
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17.14 Computational Labs

1. Download the Python code in Box 17.3.1 and insert the Yellowstone data as the input. Com-
pare its performance against that of K-means clustering.

2. Download the semblance NMO and clustering program16 and execute the MATLAB code for
finding the semblance curves. Follow the instructions.

3. Same as previous exercise except adjust the clustering procedure to incorporate a robust
regularization constraint that is updated with each new CMG. The adaptive constraint is the
priori semblance curve that is the average of a select number of previously computed curves.

4. Same as the first computational exercise except incorporate new features in finding the best
semblance curve. Use some relevant textures17 as new features.

5. Break DBSCAN. Go to the Colab for DBSCAN https://colab.research.google.com/drive/1l OLxY73G1T6GsZkIu-
SxMowPsQ6zTzt?usp=sharing#scrollTo=mb1E2iAIQb4l and change the point distribution so that DBSCAN
fails. Validate the claim that suggests DBSCAN does not work well when clusters have very different point
densities.

6. Arrival time picking by Fuzzy Clustering. Go to the site https://github.com/evcano/fcm-aic_arrival_picker
and test the sensitivity of the Fuzzy Clustering picker by using different values of hyperparameters such as
window length, dominant period and the coefficient m that controls the degree of fuzziness.

17.15 Appendix: Derivation of the Fuzzy Clustering Weight

The formula is now derived for the weight given in equation 17.15. The starting point is the
objective function in equation 17.14, except the constraint in equation 17.16 is accounted for by a
Lagrange multiplier term

ǫ =
1

2

K∑

k=1

N∑

j=1

µm
kj ||xj −Ck||2 −

N∑

j=1

λj(1−
K∑

k=1

µkj), (17.36)

where λj is the Lagrange multiplier for the jth point.

Setting the gradient ∇Ck
ǫ of equation 17.36 to zero gives

∇Ck
ǫ =

N∑

j=1

µm
kj(xj −Ck) = 0. (17.37)

Solving for Ck provides the formula for the weighted mean
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1
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m
kj

N∑

j=1

µm
kjxj . (17.38)

Setting the gradient ∇λk
ǫ of equation 17.36 to zero yields

∇λj
ǫ = 1−

K∑

k=1

µkj = 0, (17.39)

16LAB1/Chapter.Book.Cluster/Chapter.Cluster1/lab.html
17https://arxiv.org/ftp/arxiv/papers/1904/1904.06554.pdf
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or rearranging gives the constraint

K∑

k=1

µkj = 1. (17.40)

Finally, the weights can be determined by setting the gradient ∇µkj
ǫ of equation 17.36 to zero to

get

∇µkj
ǫ = mµm−1

kj ||xj −Ck||2 + λj = 0. (17.41)

or by rearranging we get
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kj = −λj

m
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. (17.42)

Taking each side to the 1/(m− 1) power gives
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λ
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. (17.43)

Summing both sides over the index k and using the constraint in equation 17.40 gives

K∑

k=1

µkj = −
λ
1/(m−1)
j

m1/(m−1)

K∑

k=1

1

(||xj −Ck||2)1/(m−1)
,

= 1. (17.44)

Defining

αkj =
1

(||xj −Ck||2)1/(m−1)
, (17.45)

where the dependency of αkj on m is silent, and solving for λ
1/(m−1)
j gives

λ
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. (17.46)

Inserting equation 17.46 into equation 17.43 gives
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,

=
(||xj −Ck||−2)1/(m−1)

∑K
k′=1 (||xj −Ck′ ||−2)1/(m−1)

. (17.47)

Setting m = 2 gives equation 17.15.
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Figure 7. Porosity-permeability crossplot color-coded by SOM class (A) as a proxy for 

microtexture and depositional facies (B). Porosity-permeability is better clustered
Figure 17.48: Porosity-permeability crossplots color-coded by SOM class a) as a proxy for
microtexture and b) depositional facies. Porosity-permeability is better clustered if the
dataset is sorted with SOM classes rather than depositional facies (Ramdani, 2022).
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Horizon Slice 2D Seismic Section

Horizon

Figure 17.49: 2D seismic section as inset in upper right, and the 1D SOM of the horizon
amplitudes, marked by the arrow in the inset, with 256 classes. Each class is mapped to a
different color in the color scale on the right. Figure adapted from de Matos et al. (2010).



Chapter 18

Generative Adversarial Networks

Generative Adversarial Networks (GANs) are generative algorithms composed of two neural
networks, one is called a generator and the other is a discriminator. The GAN goal is to create
realistic and unique images by learning the important features of real ones. The discriminator
judges whether an input image is realistic or not, and the generator creates fake images that will
eventually, with sufficient training, fool the discriminator into thinking they are realistic images.
After sufficient training, the generated fake images appear to be real and so, for example, can be
used as augmented training data for a supervised learning algorithm. GANs can be used for many
other applications such as transforming coarsely sampled images into more highly resolved images,
interpolating seismic data, and translating seismic sections into attribute sections.

18.1 Introduction

The GAN was originally developed by Goodfellow et al. (2014) as a means for generating a huge
number of realistic images for later use in, for example, a supervised learning algorithm. It created
unique images similar to the ones in a large training set of sample images. After adequate training,
believable images were characterized by a probability distribution similar in shape to the training
data. A fake image is often characterized by a smooth blend of features from several training images.
The original GAN implementation used multiperceptrons (Goodfellow et al., 2014), but now many
implementations are with CNNs.

A simple schematic for a GAN is shown in Figure 18.1, where one of the neural networks is
labeled as the discriminator and the other as the generator. The goal is to compute the generator’s
weights which can generate realistic images that fool the discriminator into judging these to be real
images. By real, we mean that the generated images G(z) in Figure 18.1b have important features
similar to those in the batch of real images x in Figure 18.1a. The input z to the generator is the
random noise image in Figure 18.1c, which is transformed by the generator into the fake image G(z)
of a seismic fault in Figure 18.1b.

Shortly after its introduction, the Facebook director Yann Lecun claimed ”Generative Adver-
sarial Networks is the most interesting idea in machine learning in the last ten years” (Singh, 2018).
The original application of GANs was to develop unique plausible renderings of numerals from the
MNIST data set, and also to create new faces from a training set of faces. The multiperceptron
algorithm was plagued by uncertain convergence, blurry outputs and image size limitations, but such
problems were mitigated by later improvements such as using a deep CNN (Radford et al., 2015),
regularization (Che et al., 2017), incorporating conditional data into the input of the generator (Isola
et al. 2018; Reed et al., 2018), feature matching (Salimans et al., 2016) and a multiscale approach
where low-resolution features are used for training at the early iterations, and then higher resolution
images are generated at the later iterations (Karras et al., 2017).

545
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Figure 18.1: Schematic diagram for the GAN architecture where the generator’s produces
outputs that the discriminator judges to be either fake (Y = 0) or real (Y = 1). The
probability distributions are plotted for the a) real image x, b) generator output G(z) and
c) noise z images. Successful GAN training, where x belong exclusively to true images, will
reshape the probability distribution of the generator’s output images in b) to be nearly the
same as that of the training data in a).
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Figure 18.2: Different GANs and their characteristics. Table from Hitawala (2018).

Later, Karras et al. (2018) developed a style-based GAN that leads to an automatically learned,
unsupervised separation of high-level attributes of a human face and its stochastic variations of, for
example, uncombed hair or eyebrows. It also allows for intuitive control of which features are to be
mixed as well as interpolation of images by interpolation of the latent space.

There are now dozens of GAN architectures and applications (Hussain, 2020; Alqahtani et al.,
2021), some of which are described in Figure 18.2 and Appendix 18.8. The rapid developments of
GANs by the computer science community are now being tested for their effectiveness in solving
geophysical problems. Navarro et al. (2020) used a deep convolutional GAN (DCGAN) to trans-
form seismic amplitude sections into seismic attributes (Chopra and Marfurt, 2006). They used
supervised training to train the GAN and then applied the trained GAN model to new seismic data.
Figure 18.3 depicts their DCGAN architecture, where the seismic section on the upper left conditions
the generator to produce accurate attribute (i.e., energy, coherence, phase) sections on the upper
right. They found that this procedure was more than an order-of-magnitude faster compared to the
traditional method for converting amplitude sections into seismic attributes.

GANs were also used to improve seismic resolution (Wang et al., 2017; Zhang et al.,2019),
interpolation of seismic traces (Wang et al., 2018c), and noise attenuation (Si et al., 2019). De-
tails for improving resolution and seismic-to-attribute translation are provided in section 18.5. A
comprehensive review of GAN architectures is in Alqahtani et al. (2021).

The next sections presents the mathematical formulation of a GAN and a pseudo-code for its
implementation. Numerical examples of applying GANs to seismic data are then provided, and a
summary finally concludes this chapter.

18.2 Theory of GANs

The theory of a GAN is now described for the architecture illustrated in Figure 18.1. The next
three subsections present the mathematical details for the discriminator, generator and objective
functions. An excellent video description of GAN by Ganapathy Krishnamurthi is at https://
www.youtube.com/watch?v=MKedB9qOHi4.

For a GAN, D(x) and G(z) are probability functions so they can only take on values between 0
and 1. A high-probability value of D(x) ≈ 1 means that the discriminator judges the input image
x to be real, consequently lnD(x) = ln 1 = 0 is maximized. If the input to the discriminator is the
generated image G(z), then a high-probability value for the discriminator D(G(z)) ≈ 1 means that
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Generator

Discriminator

Figure 18.3: Architecture for DCGAN used by Navarro et al. (2020) for mapping seismic
sections (upper left) to attribute sections (upper right). The seismic section is the input
constraint that conditions the supervised generator to produce accurate attribute sections.

ln[1−D(G(z))] ≈ ln 0 = −∞ is minimized. In this case, we can say that the generator produced an
image that has fooled the discriminator into thinking it is real.

18.2.1 GAN Objective Function and Minimax Algorithm

The objective function for a GAN is the sum of the objective functions for the discriminator and
generator:

ǫ = Ex∼p(x)data
lnD(x) + Ez∼pz(z) ln(1−D(G(z))), (18.1)

where the optimal coefficients are found by a minimax1 procedure:

{w∗
D,w

∗
G} = argmin

wG

argmax
wD

[

ǫ︷ ︸︸ ︷
Ex∼p(x)data

lnD(x) + Ez∼pz(z) ln(1−D(G(z)))]. (18.2)

Here, Ez∼P (z) (Ex∼pdata(x)) indicates the average of sampling from the probability distribution P (z)
(pdata(x)). Typically, pz(z) is selected to be a Gaussian distribution of much lower dimension than
the N ×N images x and G(z). This minimax formulation is commonly known as the vanilla GAN
solution (Farni and Ozdaglar, 2020).

As will be shown below, there will be two steps to the iterative minimax algorithm. The first
step is maximization of ǫ w/r to the wD weights so that the discriminator correctly identifies the
data images x as true images, i.e. D(x) ≈ 1, and any images G(z) produced by the generator to
be false, i.e. D(G(z)) ≈ 0. The second step is the adversarial step, where the weights wG of the
adversarial generator are trained to produce images G(z) that fool the discriminator into judging
them to be true images, i.e. D(G(z)) ≈ 1. That is, the discriminator thinks the true images only

1Minimax is a decision rule used in game theory, AI etc. for minimizing the possible loss for a worst case
(maximum loss) scenario (https://en.wikipedia.org/wiki/Minimax). Later, we will replace the generator’s
cost function minwG ln[1 −D(G(z))] with its equivalent maxwG lnD(G(z)), but still refer to the algorithm
as a minimax method.
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originate from the data batch governed by px∼pdata
(x) yet it can be fooled, e.g. D(G(z)) ≈ 1, by

counterfeit images D(G(z)) produced by a smart generator.
Computing the optimal weights in equation 18.1 consists of three steps in the iterative minimax

procedure.

1. Train the Discriminators D(x) and D(G(z)) → wD. The weights wG for the discrimi-
nators D(x) and D(G(z)) are trained by a gradient ascent method using the update formula
with a positive sign in front of the gradient:

wD = wD + α∇wD

ǫ︷ ︸︸ ︷
1

M

M∑

m=1

{lnD(x(m)) + ln[1−D(G(z(m)))]}, (18.3)

where M is the number of samples and ǫ is interpreted as

ǫ =
1

M

M∑

m=1

{lnD(x(m)) + ln[1−D(G(z(m)))]},

≈
D(x)≈1 recognizes x authentic︷ ︸︸ ︷

Ex∼Pdata
lnD(x)︸ ︷︷ ︸

so lnD(x) is maximized

+

D(G(z))≈0 recognizes G(z) as fake︷ ︸︸ ︷
Ez∼P (z) ln[1−D(G(z))]︸ ︷︷ ︸

so ln[1−D(G(z))]≈ln 1 maximized

. (18.4)

Training the discriminator in this step requires a maximization of both terms on the rightside
of equation 18.3 in order for the discriminator to recognize images drawn from Pdata to be
authentic and G(z) images to be fake.

2. Train the Generator G(z)→ wG. The wG must now be adjusted so that the discriminator
D(G(z)) ≈ 1 gets fooled and thinks the generated image G(z) is as authentic as the input
images x. In this step, wD is fixed from the previous step and the optimal wG minimizes the
objective function ǫ in equation 18.4 so that the discriminator is fooled. The lnD(x) term
in equation 18.4 will not contribute to the gradient w/r to wG because it is not a function
of wG. Therefore the update procedure for wG is a steepest descent method where there is a
negative sign in front of the gradient, i.e.,

wG = wG − α
M∑

m=1

∇wG

D(G(z(m)))≈1fools the discriminator︷ ︸︸ ︷
ln[1−D(G(z(m)))]︸ ︷︷ ︸

so ln[1−D(G(z(m)))] minimized

, (18.5)

because D(G(z)) ≈ 1 indicates that the discriminator foolishly thinks G(z) is an image as
authentic as x.

3. Repeat steps 1 and 2 using a new batch of x and z samples until the fake images appear to be
realistic renderings indistinguishable from the real images. This is now a well-trained GAN
that can be used to generate huge numbers of realistic images by drawing from Pz(z).

Minimizing ln[1−D(G(z))] w/r to wG is equivalent to maximizing lnD(G(z)) w/r to wG, i.e.,

argmin
wG

Ez∼P (z) ln[1−D(G(z))] = argmax
wG

Ez∼P (z) lnD(G(z)), (18.6)

because D(G(z)) = 1 minimizes the leftside expression as well as maximizing the rightside one.
In practice, the rightside expression is preferred when computing updates for wG in equation 18.5
because it leads to a more robust convergence (Goodfellow, 2016). In this case there will be two
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gradient ascent loops for carrying out the minimax procedure of equation 18.1: the outer loop
will update the weight wG, and the inner loop will update the weight wD, as will be described in
Code 18.3.1.

This is known as a gradient optimization method that alternates between updating two different
sets of parameters, similar to that used for the AAE in Chapter14. Goodfellow et al. (2014) claim
that ” This results in D being maintained near its optimal solution, so long as G changes slowly
enough.”. They also recommend a variation of the algorithm: Rather than training G to minimize
ln(1−D(G(z))) we can train G to maximize lnD(G(z)). This objective function results in the same
fixed point of the dynamics of G and D but provides much stronger gradients early in learning.”. To
achieve stable convergence, the DCGAN architecture of Radford et al. (2015) is recommended.

18.3 Pseudo-Code for a GAN

The minimax pseudo-code (Goodfellow et al., 2014) for a GAN is given below.

Code 18.3.1. Minimax Pseudo-code for a GAN

for i = 1 : iter.global (Global Loop over the GAN)

for id = 1 : iter.discrim (Discriminator Ascent Loop)

Sample minibatch of M noise samples

{z(1), z(2), . . . , z(M)} from pG(z)

Sample minibatch of M noise samples

{x(1),x(2), . . . ,x(M)} from pdata(x)

wD = wD +
α

M
∇wD

M∑

m=1

[lnD(x(m)) + ln(1−D(G(z(m)))]

end

for id = 1 : 1 (Generator Ascent Loop)

Sample minibatch of M noise samples

{z(1), z(2), . . . , z(M)} from pG(z)

wG = wG +
β

M
∇wG

M∑

m=1

lnD(z(m))

end

end (18.7)

where the last do loop replaced both ln[1−D(G(z(m)))] in equation 18.5 and the associated
steepest descent algorithm with, respectively, lnD(z(m)) and the steepest ascent algorithm.
Many practical types for implementing a GAN are in Goodfellow (2016).

Remarks:

• Convergence. Goodfellow et al. (2014) show that the global minimum of the objective
function is reached when pg(x) = pdata (see Exercise 18.7.6). The gradient algorithm can
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pDisc. pdata
pG

a) Starting Iteration    b) Intermediate Iteration       c) Later Iteration               d) Final Iteration  

Figure 18.4: Probability distributions plotted against the domain for the true data images
pdata (dotted black lines), the generator’s images pG (green lines), and the discriminator’s
output pDisc. (blue dashed lines) for early to later iterations of the minimax method. The
probability distributions are plotted for the a) early, b)-c) intermediate, and d) final itera-
tions, while the lower horizontal line is the domain from which z is sampled. The axis for x
is the domain for the training images. After several iterations, G and D will be optimized
where pG = pdata in d), i.e., the discriminator is unable to differentiate between the two
distributions, i.e. D(x) = D(G(z)) = 1/2. Figure adopted from Goodfellow et al. (2014).

also converge to the global minimum if both G and D have enough capacity. The condi-
tion pg(x) = pdata makes sense because generating a suite of believable models is equivalent
to generating a probability distribution pG(x) (see Figure 18.1b) for the generative images
that approximately matches the probability distribution pdata(x) of the actual images in Fig-
ure 18.1a. At the initial iterations of the GAN, these probability distributions are strongly
mismatched as illustrated by the green and black curves in Figure 18.4a-18.4b. The later
iterations in Figure 18.4c-18.4d show a much closer in agreement, which suggests that the
generator’s images are now believable by the discriminator. In practice, stable convergence of
GANs is still one of its biggest challenges of GANs (Alqahtani et al., 2021).

• The generator’s goal is to create a fake image G(z) in Figure 18.1b from a random vector
input z so that the discriminator judges D(G(z)) ≈ 1 to be a realistic output. But this is
a contradiction because G(z) is always fake, i.e. it is not from the training set of images
x. This is a zero-sum adversarial game similar to that of an art counterfeiter trying to fool
the art inspector. For example, if the batches of x only contained images of masterpieces by
Van Gogh, then the discriminator should be trained to recognize input images as true Y = 1
paintings if they contain the post-impressionist style of Van Gogh. If the generator is also well
trained by a GAN then it will generate images of unique paintings that appear to be realistic
renderings of paintings with the van Gogh style.

• Nash Equilibrium. GAN training searches for the Nash equilibrium point for a two-player
non-cooperative game (Salimans et al., 2016). The discriminator seeks to maximize its cost
function ǫdiscrim. = lnD(x) + ln[1 −D(G(z))] w/r to the weights wD in equation 18.7 while
the adversarial generator minimizes it cost function ǫgen. = ln[1−D(G(z))] w/r to the weights
wG. GANs are designed to reach a Nash equilibrium at which each player cannot reduce their
cost without changing the other players’ parameters.

The Nash equilibirum is a point (w∗
D,w

∗
G) such that the objective function in equation 18.1
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Figure 18.5: Plots of the cost functions for the green discriminator D(y) = a ln y, blue
generator G(y) = b ln(1− y) and total cost function f(y) = a ln y + b ln(1− y).

achieves the following condition (Farnia and Ozdaglar, 2020):

ǫ(wD,w
∗
G) ≤ ǫ(w∗

D,w
∗
G) ≤ ǫ(w∗

D,wG), (18.8)

where ǫdiscrim. is at a maximum with respect to variations in wD and ǫgen. is at a minimum
with respect to variations in wG.

Figure 18.5 demonstrates a simple example of the 1D cost function

f(y) = a ln(y) + b ln(1 − y), (18.9)

where the discriminator D(y) = a ln(y) and generator G(y) = b ln(1 − y) compete to find
the stationary point at y = a/(a + b) (see Exercise 18.7.7). At this point, a move to the
right increases the value of the green discriminator curve but it decreases the value of the blue
generator curve. However this moves points downhill from the stationary point at y = a/(a+b).
There is only one variable y here so only the lower bound portion of equation 18.8 is applicable.

The conditions in equation 18.8 describe that for a 2D function f(x, y) with a saddle point,
as shown in Figure 18.6 for f(x, y) = xy. Starting from the saddle point at (0, 0) and moving
along a line slanted at the azimuthal angle 45o w/r to the x-axis decreases the function value
f(x, y) = xy; but moving along a line at angle −45o increases the function value. This satisfies
the conditions for the Nash equilibrium point at (0, 0) if x is wg and y is wD.

Unfortunately, finding Nash equilibria is a very difficult problem, and 1st-order gradient opti-
mization methods often fail to converge to the stationary point, as demonstrated in Figure 3.4.
Algorithms exist for specialized cases, but Farnia and Ozdagler (2020) claim that the Nash
equilibrium point might not exist for GANs. However, there are successful modifications to
GANs that allow them to get useful results. This is usually the case when the GANs are
regularized by, for example, batch normalization or spectral normalization of the generator,
or by adding a regularization term to the objective function (Farnia and Ozdagler, 2020).
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Figure 18.6: Plot of the cost function f(x, y) = xy which plots out as a saddle with a saddle
point at (0, 0).

• Convolutional GAN. Early tests showed that a GAN (Goodfellow, 2014; Salimans et al.,
2016) can sometimes fail to converge to a believable generated image2. This motivated the
development of partial remedies to improve the quality of GAN images (Denton et al., 2015;
Radford et al., 2015; Che et al., 2016; Springenberg, 2016; Salimans et al., 2016; Reed et
al., 2016; Arjovsky et al., 2017; Ghoash et al., 2018; Isola et al., 2018; Karras et al., 2017).
Radford et al. (2015) achieved excellent generated images (see Figure 18.7) by using a DC-
GAN (see the generator shown in Figure 18.17), where fully connected layers, pooling and
unpooling are eliminated. Pooling layers are replaced with strided convolutions. They also
used ReLU functions in the generator except for a Tanh in the last layer, leaky ReLUs in the
discriminator, batch normalization with mini-batches of input data, and an Adam optimizer
with a stochastic gradient descent . Batch normalization stabilizes learning by normalizing
the input to each unit to have zero mean and unit variance. Radford et al. (2015) reported
that batch normalization applied to all the layers resulted in sample oscillation and model
instability. This was avoided by not applying batchnorm to the generator output layer and
the discriminator input layer. Results from their tests showed that the manifold G(z) of the
generator varied smoothly between interpolated images of a bedroom in Figure 18.8.

Salimans et al. (2016) introduced a new objective function ||Ex∼pdata
D(x)−Ez∼pz

D(G(z))||22
that requires the generator to generate data that matches the statistics of the real data.
In this case, the discriminator is forced to honor the statistics that are worth matching.
Their empirical results demonstrated that this could sometimes lead to convergence when the
standard GAN failed.

• Mode Collapse. Mode collapse is characterized by the output of the generator collapsing
to a single oscillating mode as the iterations proceed. Radford et al. (2015) partly mitigated
this mode collapse problem with DCGAN, which includes batch normalization.

2Radford et al. (2016) states that ’Generative Adversarial Networks (Goodfellow et al., 2014) generated
images suffering from being noisy and incomprehensible.’.
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Figure 18.7: a) GAN schematic for interpolating MNIST numerals and b) Groundtruth,
GAN and DCGAN images of MNIST numerals computed by Radford et al. (2015). The
GAN images are computed using fully connected neural networks for the generator while a
CNN is used for the DCGAN images. Schematic partly adapted from GAN Youtube video
https://www.youtube.com/watch?v=MKedB9qOHi4 by Ganapathy Krishnamurthi.
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Figure 18.8: Interpolation of the input vectors z(1) and z(10) resulted in believable and
smoothly varying images G(z). Radford et al. (2015) denoted this interpolation exercise as
walking through the manifold of latent space.
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Simple Example: Dipping Faults & Noise
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Figure 18.9: a) Seismic section showing an image of a dipping fault (dashed line) skeletonized
into a 2× 2 approximation. The true fault and noise images are shown in b), where darker
(brighter) intensity values correspond to higher (lower) gray-level values.

18.4 Simple Fault Example

A simple seismic fault example is used to illustrate the steps in applying a GAN to seismic data.
Figure 18.9a depicts a 45o dipping fault skeletonized into a 2 × 2 image of the fault. Examples of
skeletonized faults and noise are shown in Figure 18.9b. There are three steps in training a GAN to
produce believable 2× 2 renderings of actual dipping faults.

1. Generator. The NN for the generator is assumed to have one hidden layer with four nodes
as shown in Figure 18.10. Here, the 4× 1 weight matrix is wG = (1,−1,−1, 1)T and the bias
vector is bG = (1, 0.4,−1, 1)T . In this case, the output of the generator is the 4 × 1 output
vector

y = σ(wGz + bG) = σ(1.7,−0.3,−1.7, 1.7)T , (18.10)

where z = 0.7 is the scalar input value from the random number generator. The component
values of y are mapped to the pixels in the 2 × 2 image on the right of Figure 18.10. The
dark gray colors in the image correspond to large numbers that are nearly 1 and the light
shading corresponds to numbers that are almost 0. The generated image produces a reasonable
rendering of a 45o dipping fault. If the output did not appear to resemble a 45o dipping fault
then the gradient descent method will adjust the coefficients to form a more believable fault.

2. Discriminator. The architecture of the discriminator is shown in Figure 18.11, where the
2 × 2 input images represent the a) true and b) fake faults. In this example, the NN weights
wD = (1,−1,−1, 1) and bD = (−1) are correctly tuned to distinguish the true fault (σ(wT

Dx+
bD) = 0.73) from the false fault σ(wT

Dx+ bD) = 0.15).

3. GAN. Combining the discriminator with the generator is the GAN model shown in Fig-
ure 18.1. The NN weights are adjusted until a stationary point of the objective function in
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Figure 18.11: Simple discriminator architecture with one hidden layer that produces a)
σ(wDx + b) = 0.73 for a true fault input x and b) σ(wDx + b) = 0.15 for a false fault
input. In this case the discriminator predicts with a high probability of 0.73 that x in a)
is a true fault (i.e. Y = 1) and b) is likely a false fault (i.e. Y = 0) with probability
1− 0.15 = 0.85.
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equation 18.1 is found.

18.5 GAN Examples in Geoscience

Several examples of applying a GAN to seismic data are now presented. The first one is for
transforming seismic sections into attribute sections (Navarro et al., 2020) and the second one is for
increasing the resolution of seismic images by a GAN.

18.5.1 Seismic-to-Attribute Sections by a GAN

Navarro et al. (2020) used a DCGAN architecture to transform seismic sections to attribute
sections. This is somewhat similar to the DCGAN that translates images from one scene to another,
as done with the conditional GAN for day-to-night translations, and black-and-white photos to color
photos and image-to-image translation (Reed et al., 2018; Isola et al., 2018; Alqahtani et al., 2021).
Navarro et al. (2020) used supervised training to train the GAN and then inserted new seismic data
into the trained model for real-time translation.

Figure 18.3 depicts the DCGAN architecture of Navarro et al. (2020), where the seismic section
on the upper left is the input to the generator to produce accurate attribute (e.g., coherence, phase,
or energy) sections on the upper right. The following attributes are used for the attribute sections:

• Coherence: This attribute can be used to detect discontinuities along horizons (see sec-
tion 5.8).

• Energy: Squaring the amplitude of each sample in a seismic trace and summing over a
small-time interval gives the energy as a function of time. This attribute can highlight lateral
changes and detect geologic objects in the sections.

• Instantaneous Phase: The instantaneous phase as a function of time can be computed by
taking the Hilbert transform of the trace (Yilmaz, 2001). This attribute enhances spatial
continuity and readily reveals the discontinuity of reflections across a fault.

Attributes are features in the seismic data that highlight important geology that are otherwise
hidden in the recorded traces.

The goal of Navarro et al. (2020) is to replace the direct transformations of seismic sections to
attribute sections with real-time DCGAN calculations. They used the multiscale strategy of Wang
et al. (2017) where the scale of the generators G = (G1, G2) and discriminators D = (D1, D2, D3)
transition from coarse-to-fine. The generator is designed to promote aggregation between the global
and local information during the image synthesis task, while the discriminator D aims to distinguish
real attributes from generated ones. Their GAN will be a supervised one where the kth training pair
(s(k), a(k)) k ∈ {1, 2, . . . ,K} consists of the seismic s(k) and attribute a(k) sections. They trained
this DCGAN using the objective function in equation 18.1 except the generator’s input is the seismic
section rather than a random vector.

Navarro et al. (2020) state the following: To differentiate real and synthesized images, the dis-
criminator needs a large receptive field. This leads to deeper networks with larger convolution kernels,
which may promote overfitting . To deal with this problem, three discriminators with identical net-
work structures are used. Each discriminator operates in different lower-resolution scales, improving
the ability of final discriminator to distinguish real and synthesized samples.. A well-trained DCGAN
should be able to take input seismic sections s and quickly produce accurate attribute sections a.

Generator

The generator at the top of Figure 18.3 consists of the global generatorG1 and the local enhancer
G2. The input to the residual blocks in G2 is the element-wise sum of the feature maps from G2 and
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a) Input              b) Real                c) Synthetic

Figure 18.12: Results of a DCGAN trained to compute Semblance (top), Instantaneous
Phase (middle) and Energy (bottom) seismic attributes. The overall image structure is well
captured. Local features present minor differences in expanded regions of interest (right
panels). Figure from Navarro et al. (2020).

the last feature map from G1. This produces an effective blending of the global and local information
in the seismic section.

Discriminator

The discriminator at the bottom of Figure 18.3 needs a large receptive field in order to differ-
entiate real and synthesized images. Thus, deeper networks are required with larger convolution
kernels, which might lead to overfitting . To mitigate this problem, three discriminators with iden-
tical network structures are employed. Each discriminator is associated with a different scale, which
improves the performance of the final discriminator (D1, D2, D3) to distinguish real and synthesized
samples.

Results

Navarro et al. (2020) applied their DCGAN procedure to seismic sections such as those shown
in Figure 18.12. The results are shown in the DCGAN attribute images in Figure 18.12c, which are
compared to the groundtruth attribute sections in Figure 18.12b. They found that the differences
between the GAN attribute sections and the groundtruth sections are minor. They also found that
their results were superior to those from Geng et al. (2019) who used a U-Net CNN architecture in
a traditional supervised learning role. In this case, Navarro et al. (2020) claimed better performance
for the objective of translating seismic sections to attribute sections. After training, they found that
this procedure was more than an order-of-magnitude faster compared to the traditional method for
converting amplitude sections into seismic attributes.
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18.5.2 Seismic Resolution Enhancement by GANs

Zhang et al. (2019) used a GAN to enhance the seismic resolution of 3D field data. Their
goal was to use training examples from 64% of the recorded seismic data as the labeled data for
higher resolution. Figure 18.13 depicts the architecture of the DCGAN where the input data to the
generator consist of low-resolution seismic sections. The generator’s output consists of the seismic
sections that might be equivalent to those processed by a traditional high-resolution method. The
role of the discriminator is to judge the output of the generator as either a true or false high-resolution
image.

Zhang et al. (2019) used two objective functions for training their GAN: the pre-training ob-
jective function ǫpre is for pre-training the generator’s weights separate from the standard GAN
training. The pre-training objective function is

ǫpre =

typical generator loss︷ ︸︸ ︷

−
K∑

k=1

lnD(G(x
(k)
low res)) +

mean−square error︷ ︸︸ ︷
K∑

k=1

||G(x(k)
low res)− x

(k)
hi res||2, (18.11)

where there are K training examples and x
(k)
low res is the kth training example at low resolution as

depicted by the input images in the upper left images in Figure 18.13. The high-resolution image

x
(k)
hi res that the generator must produce is depicted on the upper-right of Figure 18.13. This is a

regularizer that prevents mode collapse3 (Srivastava et al., 2017; Hong, 2019; Pei et al., 2021). The

mean-square error term in ǫpre encourages the generator’s output image G(x
(k)
low res) to be closest to

the high-resolution groundtruth image x
(k)
hi res in the L2 norm sense. Since training pairs of output

and input images are needed then this is a supervised GAN. Once the generator is pre-trained, then
an alternating gradient method is used to solve for the minimax solution of equation 18.2.

The trained GAN was then applied to 36% percent of the field data to enhance their resolution.
These images were then compared to the ones computed by a conventional resolution-enhancement
method. The results in Figure 18.14 show comparable enhancements in resolution, but the GANs
was able to recover higher frequency details as suggested in the third column of Figure 18.14. A
standard resolution enhancement procedure was used to increase resolution for the b) images, and
the c) images were those enhanced by the GAN procedure. Zhang et al. (2019) claim the GAN
images contained higher-frequency details.

Figure 18.15 shows the spectral comparisons among the raw, standard resolution-enhanced, and
GAN-enhanced traces. The enhanced traces show significant widening, but both the GAN and
conventional resolution methods show similar widening of the bandwidth. A benefit of the GAN
might be that it is computationally more efficient in implementation once proper training is done.
These results are somewhat consistent with those of Christian et al. (2017) who achieved higher
resolution in photographs by a similar GAN procedure.

18.6 Summary

The theory of GANs is presented. At each cycle of iterations, the discriminator D(x) undergoes
a small number of iterations to adjust its weights to correctly classify as Y = 1 a mini-batch of real
data examples x(k) k ∈ {1, 2, . . . ,K}; the task of D(x) is to also classify fake images G(z) as fake
images. Then the generator is allowed 1 or 2 iterations to update its weights to produce a fake image
G(z) that hopefully fools the discriminator into thinking it is real. The input z to the generator is
a small random vector compared to the large-dimension output image, so G can be thought of as

3Mode collapse often results in generated images being significantly similar, even though their corre-
sponding latent vectors are quite different (Hong, 2019).
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Figure 18.13: Conditional GANs architecture to transform a) low-resolution input images
on the left to high-resolution sections on the right. The discriminator in b) is used to make
sure these transformations are valid. Figure from Zhang et al. (2019).
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Figure 18.14: Top row contains vertical seismic sections’ from the original data and bottom
row contains depth slices a) before resolution enhancement, b) after conventional resolution
enhancement, and c) GANs enhancement. Figure from Zhang et al. (2019).
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Figure 18.15: Frequency spectra associated with traces from the (black) raw seismic sec-
tion, (blue) processed by a conventional resolution enhancement procedure, and c) (orange)
processed by GANs. Figure from Zhang et al. (2019).

a decoder. The discriminator is rewarded for correct classifications and the generator is rewarded
for generating examples that fooled the discriminator. The next cycle of the game, denoted as
alternating SGD, repeats until believable fake images are created.

The computer science community is largely responsible for the development of GANs and the
geoscience community is testing its effectiveness in solving geoscience problems. The biggest problem
with GANs is robust convergence in trying to solve an adversarial optimization problem, where the
objective functions of the generator and discriminator are fighting one another to achieve a stationary
solution. Some successful remedies that mitigate the convergence problem are DCGAN, conditional
GANs, and adding regularization terms such as proximal operator to the Value function. The result
is that there are many applications of GANs in computer vision (Brownlee, 2019b) such as generating
photographs of human faces, background scenes and objects. There are also GANs for image-to-
image translation of, e.g., day scenes to night scenes for training AI driving systems, text-to-image
translation, interpolation and editing of incomplete images, poor-to-high resolution of photographs,
aging faces of young people, and 2D-to-3D object generation. Successful examples in geoscience
include transforming seismic sections into attribute sections, interpolation of seismic data, and the
calculation of high-resolution seismic images.

The advantages of a GAN over standard supervised training networks and generative modelers
are the following (Alqahtani et al., 2021).

• No need for standard data augmentation methods such as rotation, scaling or stretching. The
GANs images are, ideally, seamless blends of those in the training set.

• There is no need to define the shape of the probability distribution for the generator. This
shape gradually emerges after a number of iterations to adopt the shape of the training
set. Also, the computation of GANs can easily be adapted to parallel computers because it
produces data all at once, not pixel by pixel as autoregressive models. (Alqahtani et al., 2021).

• GANs does not need to approximate the likelihood or requires assumptions about the prob-
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ability distribution. Instead, GAN plays an adversarial game between the generator and the
discriminator, and aims to find fake models with the same probability distribution as seen in
the training data.

• GANs produce images with much sharper detail than VAEs. The generator tries to fool the
discriminator to recover the real data distribution, and this includes generating high-frequency
parts to deceive the discriminator.

The disadvantages of GANs include the following.

• Training of GANs are typically not very robust (Hitawala, 2018; Hussain, 2020). Decreasing
the discriminator’s cost function can cause an increase of the generator’s cost function and
vice versa. Thus, iterative solutions of a vanilla GAN can often fail to converge to a stable
solution unless proper regularization is implemented.

• Mode collapse prevents the GANs from generating believable images. It is characterized by
the output of the generator collapsing to a single oscillating mode as the iterations proceed.
Radford et al. (2015) partly mitigated this mode collapse problem with DCGAN, which
includes batch normalization. Other partial remedies include a new objective function or
adding different components to the GAN model (Che et al., 2016; Ghosh et al., 2018; Farnia
and Ozdaglar, 2020). Arjovsky et al. (2017) proposed using a Wassertesin distance metric
rather than a KL-based divergence or energy-based one and multiple GANs were suggested to
cover the different modes of the probability distributions (Tolstikhin et al., 2017). However,
mode collapse still remains a major problem and is a current topic of research.

• The optimizer of GANs can lie on a saddle point and 1st-order gradient methods cannot
converge to such points (Lee et al., 2016).

18.7 Exercises

1. The geophysicist often faces the problem of finding a model that minimizes both a least-
squares data misfit function ǫdata and a model penalty function ǫpenalty based on a priori
information about the surrounding geology, such as constraints from a well log. In this case
the goal is to find a model that minimizes the hybrid cost function

ǫ = ǫdata + λǫpenalty , (18.12)

where the scalar λ > 0 determines the degree of importance in honoring the model penalty
term. The a priori model is somewhat different than the actual model, so if λ is too large then
there will be too large of a L2 data misfit error in order to reduce the value of the penalty
term. Thus, there is an adversarial relationship between these two cost functions. Derive a
least squares cost function similar to equation 18.12 for the problem solved by a GAN, where
one of the cost functions seeks to minimize the error in generating an authentic version of the
true image x. Discuss how the optimal value of λ can be determined. Outline the benefits
and liabilities of solving the GAN problem by an iterative least squares method compared to
the minimax method.

2. Same as previous question except use a L1 data misfit rather than a L2 data misfit function.

3. For joint inversion, the misfit function is a sum of two different data misfit functions, such as
the joint inversion of gravity and magnetic data in Astic and Oldenburg (2018) or seismic and
electromagnetic data in Columbo and Rovetta (2018). To encourage structural consistency
between the two different models, such as the seismic velocity model and the electromagnetic
parameter model, Columbo and Rovetta (2018) added to the data misfit functions two types
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of structural regularization terms; one of them is the standard cross-gradient and the other
is a summative gradient. These regularization terms rewarded seismic and electromagnetic
models with similar spatial gradients. Devise a GAN objective function with a structural
regularization term that rewards fake images with similar structural features as the actual
images. Discuss how to optimize the value of the weight for the structural regularization
term.

4. Test the effectiveness of a GAN on the MNIST data set using Colab at https://colab.research.google.com/
github/pytorch/xla/blob/master/contrib/colab/DC-GAN.ipynb. Add the structural regular-
ization term to the objective function and test different strategies for finding the optimal value
of the structural weight.

5. The simple cross-entropy loss function for supervised learning is given by

ǫ = y ln g(x) + (1 − y) ln(1− g(x)), (18.13)

where g(x) is a sigmoid function and y ∈ {0, 1}. Equation 18.13 appears to be similar to a
simplified version

ǫ = lnD(x) + ln[1−D(G(z))], (18.14)

of the GAN objective function in equation 18.1. However, equation 18.13 does not require a
minimax solution appropriate for adversarial training. Explain why this is true.

6. Analytically show that the stationary point y∗ of f(y) in equation 18.9 is y∗ = a/(a+ b).

7. From Goodfellow et al. (2014), prove

D∗
G(x) =

Pdata(x)

Pdata(x) + PG(x)
. (18.15)

Show how this is equivalent to constraining the probability distribution of the final image to
be the same as that of the data. This idea is illustrated in Figure 18.4.

8. Determine the Hessian matrix H associated with f(x, y) = xy. What are the eigenvalues of
H at the stationary point (0, 0). Is this a positive definite matrix?

9. Use one of the gradient descent algorithms in Chapter 3 to find the stationary point for
f(x, y) = xy. Then use the proximal regularized Value function

V (x, y) = max
ỹ∈y

V (x, y)− ||ỹ − y||2 (18.16)

in Farnia and Ozdaglar (2020) to test for improved convergence. Comment on the effectiveness
of regularization in finding the stationary point.

10. Repeat the above exercise except now compare the convergence of Wassertein GAN, f-GAN
and the second-order Wasserstein GAN (see Farnia and Ozdaglar, 2020) in finding the Nash
equilibrium point for f(x, y) = xy.

11. Write a DCGAN code in MATLAB to generate 4 × 4 images of faults. Compare the perfor-
mance with and without batch normalization.

18.8 Appendix: GAN Examples

Some applications of GANs are listed below.
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Figure 18.16: Columns of faces where the leftmost column contains images of males with
glasses and the third column is of females without glasses. Training by a GANs can extract
the glasses and insert them onto the images of females. Figure from Radford et al. (2015).

1. Data Augmentation GANs. One of the problems in training a CNN is that there is
sometimes not enough examples to train on, and each example must be carefully labeled.
A traditional data augmentation technique takes images from the original training set and
distorts them in various ways, such as stretching, scaling and/or rotation, to create new
training images. This type of augmentation is not fully effective because it does not account
for the entire universe of possible input images and the distorted images are still strongly
characterized by identifiable parts from the original images. In contrast, GANs blend features
from many different images to give unique images that appear to be real. In fact, it is often
difficult for a human observer to be able to pinpoint which training images contributed to the
GANs image.

Unfortunately, early versions of GANs suffered from stability and convergence problems. To
partly mitigate these problems, Radford et al. (2015) replaced the multiperceptron archi-
tecture with strided convolutional layers for the discriminator and fractional striding for the
generator. They also introduced batch normalization in the hidden layers and used ReLU
activations in the generator and LeakyReLU functions in the discriminator. Radford et al.
(2015) also developed an image arithmetic so that features from different images can be com-
bined to give an output image with the targeted features. Figure 18.16 shows results of a
DCGAN where the common feature of glasses in the leftmost column of male images can be
added to the 3rd column of glassless females to get the rightmost matrix of female images
with glasses. The architecture of a DCGAN model is illustrated in Figure 18.17.

In a related work, Makhzani et al. (2015) proposed an Adversarial Autoencoder (AAE) that
consists of two networks, one of them is a traditional autoencoder and the other one is an
autoencoder that matches the posterior distribution of the latent representation to an arbitrary
prior distribution. Chapter 14 provides more details on the AAE.

Denton et al. (2015) proposed a sequence of coarse-to-fine convolutional networks within
a Laplacian pyramid framework. This approach, denoted as Laplacian GAN (LAPGAN)
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G(z) D(x)

Figure 18.17: DCGAN architectures for the generator and discriminator models. Figure
partly adapted from Radford et al. (2015).

in Figure 18.2, allowed them to exploit the multiscale structure of natural images, building
a series of generative models with their characteristics listed in Figure 18.2. Each of the
generative models in the Laplacian pyramid captures the image structure at a particular
level.

2. Image-to-Image-Translation and Conditional GANs. Isola et al. (2018) developed an
image-to-image translation using a conditional GANs (CGANs). Goodfellow (2017) states
Using labels in any way, shape or form almost always results in a dramatic improvement in
the subjective quality of the samples generated by the CGAN model.

Some CGAN applications include translation of aerial photos into Google maps, transforming
skeletonized street scenes with cars into realistic photos (Reed et al., 2018), and translating
hand-drawn sketches into realistic photographs of objects. The CGANs conditions the gen-
erator and discriminator models with extra information such as a vector c of class labels of
the input, so CGANs can be used as a supervised learning algorithm, or as a semi-supervised
learning method (Springenberg, 2016) if only some of the training examples are labeled with
different classes. The input to the conditioned discriminator takes both the reference image
vectors x as well as extra information vectors c to identify true examples for each class. The
conditioned generator takes in both the latent vector z and an information vector c as well.

3. Text-to-Image-Translation. Zhang, et al. (2016) and Reed et al. (2016) developed a
GANs that translates text into scenes described by the text.

4. Super-resolution Images. Ledig et al. (2017) present a GAN that upscales input images by
a factor of 4. In their super-resolution GANs (SRGANs), they use a perceptual loss function
which consists of an adversarial loss and a content loss. The discriminator network is trained
to differentiate between the super-resolved images and original photo-realistic images. The
content loss emphasizes perceptual similarity instead of similarity in pixel space.

Karras et al. (2017) also introduced a multiscale procedure where the starting images were
of low resolution. Starting from a low-resolution model and input images, new layers with
higher-resolution capabilities are added to the model as training progresses. This increases
the convergence speed in transforming a low-resolution image into a super-resolution image.

There are many applications for SRGANs, but an example developed by Bin et al. (2017)
created photos of human faces. This procedure is used in a multi-scale workflow (Wang et
al., 2018b) where lower resolution images are upgraded to slightly high-resolution ones, which
could be used as the starting image for the next higher resolution image.

5. GANs Interpolation. Interpolating images corrupted by missing data or information is also
denoted as inpainting. Pathak et al. (2016) filled in missing parts of photographs by a GANs
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procedure. This type of interpolation can be used for interpolating geophysical data recorded
by a sparse distribution of sensors.

6. Other Variants of GANs. Incorporating autoencoders into the GANs model tends to
stabilize the iterative solution and prevent mode collapse (Alqahtani et al., 2021). In the
standard GANs, the starting point for the generator is to feed a latent space vector with
a small dimension into the generator. Thus, the GAN sometimes finds it difficult to find a
network model that maps the output images with a much higher dimension x back into z.
However, an autoencoder can effectively learn the model coefficients for both decoder p(z|x)
and encoder p(x|z) operations, and so combining it with a GAN might mitigate the problem of
mode collapse. Donahue et al. (2016) and Dumoulin et al. (2016) both introduce autoencoder-
like models into the GAN architecture to develop, respectively, the Bidirectional Generative
Adversarial and Adversarially Learned Inference Networks. New GANs architectures and
applications are still being rapidly developed, so Figure 18.2 (Hitawala, 2018) is only a partial
listing of them.
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Chapter 19

Sampling a Probability
Distribution

The main motivation for developing efficient sampling strategies of a probability distribution is
that Bayesian analysis of a problem often requires plugging in different models into the posterior
probability distribution p(m|d) ∝ p(d|m)p(m) (see Chapters 28 and 20). If enough samples m are
used then the contours associated with p(m|d) can be used to estimate the optimal model m∗ that
maximizes p(m|d) for a given d. These contours also provide the associated mean and variance
of m∗. For multidimensional models, the sampling is prohibitively expensive unless an efficient
sampling strategy is employed.

A probability distribution is given in either analytic, e.g. Gaussian density function, or numerical
form. The goal is to efficiently draw samples from this distribution such that the frequency of drawn
samples around some point honors the occurrence probability from the given distribution. For
example, flipping an unfair coin, i.e. p(heads) = 0.7 and p(tails) = 0.3, and sampling from the
probability distribution will tend to give the correct probability distribution as the number of coin
flips increases. This is illustrated in the Figure 19.1 example where the normalized histogram of coin
flips tends to the correct probability with an increase in the number of trials. In this case, a uniform
distribution U(0, 1) is approximated by a random number generator in MATLAB, and any number
x ∼ U(0, 1) drawn between 0.0 and 0.7 is assigned a heads, otherwise it is a tails. In this case, 20
random numbers are sequentially generated to give Figure 19.1a, which is an unacceptable accuracy
in drawing numbers that approximate the actual p(x). If the experiment is rolling an unfair dice,
then the values of x are assigned to one of 6 unique intervals between 0 and 1, with the length
of each non-overlapping interval equal to the probability p(x). For more complicated multivariate
PDFs, this sampling strategy cannot be easily employed so we now present the more sophisticated
sampling methods that are used to sample multivariate probability distributions.

19.1 Sampling a Probability Distribution

Sampling a probability density function fX(x) is defined as drawing independent samples x from
a given probability distribution fX , i.e. x ∼ N (µ, σ) for a Gaussian distribution. For example, the
inverse transform (Chapter 1 in Gillespie, 1992) specifies the probability value fX(x) = 2/9 at the
red star in Figure 19.2a and estimates the value x = 1 at the green star.

Sampling is needed when the geoscientist is given, for example, the PDF of measured rock
parameters m = (φ, γ) for, as an example, the porosity φ and γ values of a rock type in Figure 20.15.
This PDF is then used to design statistically appropriate rock models so that synthetic geophysical
data d = G(m) can be forward modeled to compute realistic seismic data. To insure accurate

569
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Figure 19.1: Normalized histograms for the results of flipping an unfair coin a) 20, b) 200,
c) 300 and d) 400 times. The actual PDF of the coin flip is p(x = 1) = 0.7 for heads and
p(2) = 0.3 for tails.
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Figure 19.2: Sampling a PDF by an inverse transform. a) PDF fX(x) with the most likely
sampled green points associated with the highest probability and b) cumulative probability
distribution with a 1-1 mapping between points on vertical axis mapped to points on hori-
zontal axis. c) Inverse sampling strategy where points u uniformly sampled along vertical
axis are mapped by FX(u)−1 to points x along the horizontal axis.
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modeling, the distribution of the model parameters m = (φ, γ) must be consistent with the PDF of
the recorded rock data. Therefore, sampling a PDF to generate a cloud of points m is the reverse
process of GMM, which generates weighted combinations of Gaussians that fit a cloud of points.
Sampling is also needed for estimating the parameters that maximize the posterior PDF in Bayes’
formula. Proper and efficient sampling of the parameters also provide an accurate estimate of the
posterior PDF.

Two simple sampling strategies for a PDF fX(x) are the inverse transform and the acceptance-
rejection sampling methods (Chapter 1 in Gillespie, 1992). In practice, a combination of the two
methods can be used for realistic PDFs. Later we will introduce the Markov chain methods that
are more efficient for sampling high-dimensional distributions.

19.2 Sampling a PDF by the Inverse-Transform

The inverse transform can be used when a simple PDF is defined so that an analytic cumulative
probability distribution (CDF) can be derived. Figure 19.2a depicts a simple linear PDF fX(x) =
2x/9 and its CDF

FX(x ≥ X) =

∫ x

0

fX(x0)dx0,

=

∫ x

0

2x0
9
dx0,

= x2/9. (19.1)

is shown in Figure 19.2b. Defining u = FX(x ≥ X) = x2/9 allows for the inverse mapping to be
x = 3

√
u, where non-negative values of x are inadmissable. This inverse mapping allows a uniform

sampling u ∼ U(0, 1) of red points along the vertical u axis in Figure 19.2b to have a 1-1 mapping1

to the CDF curve in Figure 19.2c. The intersection of the red dashed lines with the blue CDF curve
can be projected downward along the green dashed lines to give the sampled green points along x
in Figure 19.2c.

As expected, the greatest densities of green points in Figure 19.2a and Figure 19.2c are associated
with the highest values of the probability density function fX(x). In general, if the CDF of fX(x)
has an analytic inverse then fX(x) can be sampled in this way so that the distribution of sampled
points is consistent with the PDF.

19.3 Sampling a PDF by Acceptance-Rejection

Many PDFs can be too complicated to easily get analytic inverses of their CDFs. For these
cases, the adaptive acceptance-rejection (AR) method can be used. The AR method is described in
Figure 19.3 for the 1D PDF fX(x), where there are two steps.

1. Define the red box in Figure 19.3a that encloses the blue PDF denoted as fX(x). This PDF
does not need to be normalized.

2. Randomly N assign points (xi, zi) in the red box using a uniform distribution U(0, 1) for both
the x and z coordinates. Only accept the points that are at or fall below the blue PDF curve,
as illustrated by the yellow points in Figure 19.3b. Note that the highest density of accepted
points are the ones with the highest probability.

1Points along the vertical axis do not have a 1-1 mapping to a Gaussian PDF curve, but they do have a
1-1 mapping to its CDF.
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Figure 19.3: Acceptance-rejection method. a) shows the red box that contains the Gaussian
PDF and a random distribution of blue and yellow points. b) depicts the accepted yellow
points (xi, zi) that are at or fall below the PDF curve fX(xi) ≥ zi. The blue crosses in
b) represent the horizontal components of the yellow accepted points. c) depicts the red
triangle where many fewer random points are enclosed, and d) depicts the scaled green tri-
angle which integrates to 1. See Jan Dufek’s Youtube at https://youtu.be/p9EHmdtaBBA
viewed 11/01/2021.

For example, choose a point xi from a uniform distribution U(0, 1), say xi = 0.7. Then roll
the dice again; that is, select a number from a uniform distribution and assign it to zi, say
zi = 0.2. Accept xi = (xi = 0.7, zi = 0.2) if fX(xi) ≥ zi = 0.2, otherwise reject xi.

In summary, N numbers are generated along the horizontal xi ∼ U(0, 1); i ∈ (1, 2, ...N) axes
from U(0, 1). For each xi another number zi is drawn from U(0, 1) and the accepted values for xi
satisfy the following conditions for i ∈ (1, 2, ...N):

xi =

{
if zi ≤ fX(xi) accept
if zi > fX(xi) reject

}
. (19.2)

The disadvantage of this method is that there is a large area of rejection (denoted by the
slanted red lines in Figure 19.3b) above the low-probability part of fX(x). This means that a large
number of random points is required in order to sufficiently sample a number of points x with
low probability. In high dimensions it can be computationally too costly to evaluate fX(x) for a
large number of reject points. If N is the number of random points in the 2D plane for acceptable
sampling, then O(ND) random vectors must be generated and evaluated with fX(x) for points x
in an N-dimensional space. This cost of cursed dimensionality is computationally prohibitive for
sampling high-dimensional PDFs.

To reduce this cost, the size of the rejection zone in Figure 19.3a can be adaptively reduced by
enclosing the PDF within the red triangle function ch(x) in Figure 19.3c, where c ≥ 1 is a constant.
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The triangle function ch(x) is not a PDF because it has an area greater than 1. To force it to have
a unit area, we divide ch(x) by c to give the scaled PDF h(x) illustrated by the green triangle in
Figure 19.3d where c is defined as

c =
1∫∞

−∞ h(x)dx
= 1. (19.3)

The CDF HX(x) of hX(x) and its inverse HX(x)−1 can now be analytically generated by the inverse
transform method because each line segment of the green triangle hX(x) has an invertible CDF (see
Figure 19.2). More complicated PDFs can be enclosed by adaptively linking together a series of
piecewise lines to enclose fX(x).

The uniformly generated points zi along the vertical axis, starting at z = 0 and ending at
the apex of the green triangle, are mapped by HX(zi)

−1 to the corresponding points xi along the
horizontal axis. These points (xi, zi) are then used to compare the scaled version czi to fX(xi) for
either acceptance or rejection, as summarized below.

1. Define the green triangle chX(x) that closely encloses the PDF fX(x) s.t.

fX(x) ≤ chX(x) ∀ x, (19.4)

where c ≥ 1 and c = supx[fX(x)/hX(x)].

2. Divide chX(x) by c to get the green triangle function hX(x) in Figure 19.3d.

3. Calculate the analytic CDF HX(x) and its inverse transform

HX(

z︷ ︸︸ ︷
HX(x))−1 = x. (19.5)

4. Uniformly sample N points along the vertical axis to get zi ∼ U(0, zupper) for i ∈ {1, 2, ..., N}.
Here, zupper is the height of the green triangle. These zi values are used to get the xi =
HX(zi)

−1 samples along the horizontal axis.

5. At each xi, we use the acceptance criterion

zich(xi) ≤ fX(xi), (19.6)

otherwise we reject xi. For high-dimensional points, knowledge of the green triangle’s bound-
ary ch(xi) and zi avoids having to expensively evaluate fX(xi) for a large number of rejectable
points xi.

An example of the acceptance-rejection method is shown in Figure 19.4, where the PDF is the
Gaussian function in Figure 19.4a, and the green points (x, z) in Figure 19.4b are randomly obtained
from a 2D uniform distribution. The points which satisfy the acceptance condition fX(x) ≥ z are
displayed in Figure 19.4c and the associated histogram is in Figure 19.4d with the scaled Gaussian
function. The red points along the horizontal axes in a) and d) are the horizontal coordinates of the
accepted points.

The efficiency of the acceptance-rejection method is evaluated by the formula

∫
fX(x)dx∫
ch(x)dx

=
1

c
, (19.7)

which is the area of the original PDF divided by the area of triangular PDF ch(x). Since c ≥ 1 then
the optimal triangular PDF that is a close approximation to fX(x) should have c ≈ 1.
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Figure 19.4: a) Gaussian PDF fX(x) described by the blue curve, b) green points (x, z) taken
from a 2D uniform distribution, c) accepted points (xacc, zacc) from b) s.t. fX(x) ≥ z, and
d) histogram of accepted points. The red points in a) and d) are the horizontal coordinates
xacc of the accepted points (xacc, zacc) in c).
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19.4 Markov Chain

A Markov chain is a stochastic model that that describes a sequence of stochastic events where
the probability of the event at time t + 1 only depends on the state attained at the previous time
t (https : //en.wikipedia.org/wiki/Markov chain). For example, assume that the probability
of tomorrow being sunny p(St+1) depends on a weighted combination of probabilities for today’s
weather being sunny p(St) and rainy p(Rt):

p(S|S)p(St) + p(S|R)p(Rt) = p(St+1), (19.8)

where each increment of the index t represents a day. Similarly, the probability of it being rainy
tomorrow is given as

p(R|S)p(St) + p(R|R)p(Rt) = p(Rt+1), (19.9)

where the weights p(S|S), p(S|R), p(R|S), and p(R|R) are conditional probabilities that are time
invariant. The probabilities p(Rt) and p(St) are the fractions of the current day which are rainy
and sunny, respectively. The RVs R (rainy) and S (sunny) are denoted as states of the system, and
there are as many states as needed for the specified problem. Combining equations 19.8 and 19.9
into a system of equations gives

transition matrix︷ ︸︸ ︷[
p(S|S) p(S|R)
p(R|S) p(R|R)

]{
p(St)
p(Rt)

}
=

{
p(St+1)
p(Rt+1)

}
, (19.10)

where the 2× 2 matrix is the time-invariant transition matrix.

Another example of a Markov chain is illustrated in Figure 19.5. The diagram in Figure 19.5a
depicts the conditional probabilities of eating grapes (G), lettuce (L) and cheese (C) at t + 1,
where the ovals indicate the states of the system. Today’s state is indicated by the subscript t and
tomorrow’s state is indicated by the subscript t+1. For example, if you only ate grapes today then
this state is described by the 3 × 1 vector xt = (1 0 0) in Figure 19.5b. The rays emanating from
the grape oval in Figure 19.5a say that the conditional probabilities for eating grapes, lettuce and
cheese the next day are p(G|G) = 0.1, p(L|G) = 0.5 and p(C|G) = 0.4, respectively. This string of
conditional probabilities comprises the first column of the 3× 3 transition matrix in b). The middle
column consists of the conditional probabilities for eating lettuce today, which is the state given by
xt = (0 1 0), and the last column consists of the conditional probabilities for the state xt = (0 0 1)
of only eating cheese today. The vector on the right denotes the state xt+1 = (0.1 0.4 0.5), which
suggests a more balanced diet the next day that favors cheese. This system of equations is more
compactly written as Axt = xt+1, where A is the transition matrix.

The state that describes your menu choices n days from now is obtained by taking the product
of n transition matrices Anxt = xt+n. These states are displayed in Figure 19.5c, where the states
change along the first row of images, but stabilize along the second row. This is because the Markov
chain, after a sufficiently long time, has reached a stationary state where the probability vector xt

no longer changes at future times. That is,

Ax = x, (19.11)

which is characteristic of the second row of images in Figure 19.5c where x = (0.335 0.3110 0.3541).
Not all Markov chains have a stationary distribution, but stationarity is guaranteed to exist for
Markov chains with the ergodic property (Gillespie, 1992).
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Figure 19.5: a) Diagram of probabilities (in percent) for tomorrow’s food you will eat (tip
of arrow) that depends on what you ate today (tail of arrow). b) System of equation-
s that mathematically describe the transition from today’s state xt to tomorrow’s state
xt+1. c) Images of xt+n for different numbers n of iterations for Anxt = xt+n. Samples
from the burn-in iterations should be discarded because the probability distribution, e.g.
x1 = p(Gt=3), of the grape state is not that of the desired one, e.g. x1 = p(Gt=15), com-
puted during the stationary iterations. Here, x1 → p(Gt=15) is the probability of eating
grapes after the 15th iteration. Image in a) inspired by Ben Lambert’s video at http-
s://www.youtube.com/watch?v=U561HGMWjcw viewed in November, 2021.
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19.5 Metropolis Markov Chain Monte Carlo Sampling

The computational cost of the standard acceptance-rejection method is O(ND) evaluations of
the multivariate PDF, where D is the dimension of x and N is the number of uniformly sampled
points along one axis. This is very inefficient because many evaluations of candidate samples are
used to admit a small number of samples in low-probability regions. To reduce this cost, an iterative
Markov chain Monte Carlo (MCMC) sampling method is used to sample the PDF (Gillespie, 1992;
Bishop, 2006). Instead of generating high-dimensional clouds of samples with uniform density,
MCMC efficiently generates high-density clouds of samples near high-probability regions and low-
density clouds around low-probability regions. It iteratively selects candidate points for acceptance
or rejection using a proposal transition distribution g(x′|x). Here we can sometimes select g(x′|x) =
p(x′|x)/C to be proportional to the original distribution p(x) where C is a sometimes difficult-to-
compute2 normalization factor.

• The MCMC algorithm consists of a Markov chain where the decision to move to the next
sample xi+1 only depends on the previous sample xi. This is a 1st-order Markov chain
method, where higher-order MC methods use information from two or more preceding steps
to compute the new sample (Shamshad et al., 1992).

• The MCMC is a Monte Carlo algorithm because it uses a random number generator to decide
the next move. The simplest one is known as the random walk Monte Carlo method. The
conditional proposal distribution can be symmetric such that g(x|x′) = g(x′|x), which leads to
the Metropolis MCMC. If it is asymmetric then this is called the Hastings-Metropolis MCMC.
These proposal distributions should have the same support as the target distribution p(x).

• An effective transition probability is g(x′|x) ∝ exp(− 1
2 ||x − x′||2/σ2), so that samples closer

to x are more likely to be visited next. A ratio of g(x|x′)/g(x′|x) is the same as the ratio of
the actual transition probabilities p(x|x′)/p(x′|x) if the target and proposal distributions are
proportional to one another.

The iterative MCMC algorithm generates samples xi using the following steps illustrated in
Figure 19.6.

1. Choose a starting point x0 ∼ N (x, σ2) and center the enclosing distribution g̃(x) = N(x, σ̃2)
at x0. Re-center the enclosing distribution at any new point xi that is updated. Conveniently
use g(xi+1|xi) ≈ exp(− 1

2 ||xi+1 − xi||2/σ2).

2. Choose the next points xi for i ∈ {1, 2, 3, ...} with the following code:

for i = 0 : niter

x̃i+1 ∼ g(xi+1|xi)
u ∼ U(0, 1)

if u ≤ A(xi, x̃i+1) = min(1,
p(x̃i+1)g(xi|x̃i+1)

p(xi)g(x̃i+1|xi)
),

xi+1 = x̃i+1

else

xi+1 = xi

end (19.12)

At each iteration, the algorithm picks a candidate point x̃i+1, and if it is accepted according to
u ≤ A(xi, x̃i+1) in equation 19.12 then xi+1 = x̃i+1. The new starting point is xi+1 and the mean of

2Computing C for high-dimensional points θ can be computationally prohibitive in practice.
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Figure 19.6: Metropolis workflow algorithm where samples xi are obtained using the pro-
posal distribution g̃(x) = N (x, 1) centered at x where the proposed transition distribution
g(x′|xi) ≈ exp(−1

2 ||xi−x′||2/σ2) is symmetric. The Metropolis algorithm with wider Gaus-
sians, i.e. σ >> 1, searches far from the starting sample xi to avoid correlated samples, but
this can slow down convergence to a stationary state.
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a)  Actual Density                     b) Metropolis n =100           c) Metropolis n =400         d) Metropolis n =19.500 

Figure 19.7: a) Actual density function f(x, y) and density function reconstructed from
the MCMC samples after b) 100, c) 400 and d) 19,500 iterations. Images extracted from
Ben Lambert’s video at https://www.youtube.com/watch?v=U561HGMWjcw viewed in
November, 2021.

the proposal Gaussian is shifted to xi+1 and the iterations proceed until convergence to a stationary
state.

The Metropolis algorithm generates a sequence of sample values xi in such a way that, as more
and more sample values are produced, the distribution of values more closely approximates the
target distribution p(x). This is illustrated in Figure 19.7 where the target distribution is in a), and
b)-e) show the distributions reconstructed from MCMC samples for different numbers of iterations.
By the 19,500 iteration, the MCMC sampled points adequately reconstruct the original distribution.
Unlike the Gibbs algorithm, the Metropolis algorithm can reject points and search along any diagonal
direction that is not along a coordinate axis.

Note that the acceptance ratio A(xi, x̃i+1) indicates the probability ratios of the new and old
samples, according to the distribution p(x). If we attempt to move to a point x̃i+1 that is more
probable than that of the current point xi, we will always accept the move. Otherwise xi+1 = xi.
Thus, we will tend to stay in (and return large numbers of samples from) high-density regions around
p(xi), while only occasionally visiting low-density regions. Intuitively, this is why this algorithm
works and returns samples that follow the desired distribution with density p(x).

For example, if the variance σ of the proposal distribution is wide enough then this means it has
a good chance to find a candidate sample far from the starting point where many correlated points
can lurk. However, if σ is too large then the search for samples is inefficient and can leave gaps in the
estimated histogram as illustrated in Figure 19.8c. If σ is too small then the sampling is inefficient
as well, spending too many iterations around the starting point as illustrated in Figure 19.8a. But if
σ is just right, then the histogram in Figure 19.8b provides an accurate estimate of the actual p(x).

19.5.1 Detailed Balance Equation

The Metropolis algorithm seems intuitively reasonable in the sense that it prefers to sample
regions where there is a high probability in the actual distribution, yet will allow for some sampling
in low-probability regions. This is the parsimonious acceptance-rejection strategy of the Metropolis
algorithm. However, we must ensure that the algorithm, with enough iterations, samples points
with a probability that honors the target probability and becomes stationary.

The stationary character is embodied by the detailed balance equation:

x→x′

︷ ︸︸ ︷
p(x)g(x′|x)a(x′|x) =

x′→x,︷ ︸︸ ︷
p(x′)g(x|x′)a(x|x′) (19.13)

where a(x′|x) is the acceptance-rejection operator that decides if the proposed new state x′ should
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Figure 19.8: Transparent blue histograms estimated by Metropolis sampling when σ is a)
too small, b) just right, and c) too big. Inspired by Alexander Novikov’s lecture ”Bayesian
Methods for Machine learning”.

be accepted or rejected. The above detailed balance equation (O’Hagan and Forster, 2004) says that
the transition probability from x to x′ is the same as the reverse route of x′ to x. This is a necessary
condition for a stationary Markov Chain system that does not change from iteration to iteration.
Rearranging equation 19.13 gives the ratio of the a(x′|x)/a(x|x′):

a(x′|x)
a(x|x′) =

p(x′)g(x|x′)
p(x)g(x′|x) = A(x′, x), (19.14)

which is the acceptance-rejection ratio indicated in the Figure 19.6 workflow. If the proposal distri-
bution is symmetric so that g(x′|x) = g(x|x′) then the above equation reduces to

a(x′|x)
a(x|x′) =

p(x′)

p(x)
= A(x′, x). (19.15)

If the proposal distribution g(x′|x) is asymmetric then this defines the Hastings-Metropolis algorith-
m. Both the Metropolis and Hastings-Metropolis algorithms can converge to the target distribution
p(x) (https : //similarweb.engineering/mcmc/) if the detailed balance equation is satisfied.

19.5.2 Metropolis Sampling Example

The Metropolis sampling algorithm is applied to a unimodal Gaussian and a bimodal Gaussian.
After 500 iterations, the results are shown in Figure 19.9a for a unimodal Gaussian and Figure 19.9b
for a bimodal Gaussian. The estimated mean and standard deviation for the unimodal Gaussian
in Figure 19.9a are in good agreement with the actual values of the target Gaussian colored in
red. If there were an insufficient number of iterations, then the sampled points would sometimes be
exclusively located under just one of the humps in Figure 19.9b. The MATLAB code for generating
this figure is in the red Box in this section and the plotting functions are in Appendix 19.9.

The bimodal Gaussian is an example of a probability function associated with a non-linear
misfit function, such as the traveltime tomography problem discussed in Chapter 20. The non-linear
traveltime tomography problem is often characterized by local minima in the objective function,
which is equivalent to multiple peaks in the target density function.



582 CHAPTER 19. SAMPLING A PROBABILITY DISTRIBUTION

-5 0 5
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p(x
)

a) Metropolis Sampling
 Unimodal Gaussian: N = 500

= 0.01

= 0.88

Actual  = 0

Actual  = 1

proposed density

target density

-5 0 5
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ta
rge

t P
rob

ab
ility

b) Metropolis Sampling
 Bimodal Gaussian: N = 500

target density

proposed density

1
 = -1.61

2
 = 1.82

1
 = 0.71

2
 = 0.97

Figure 19.9: Metropolis sampling of a a) unimodal Gaussian and a b) bimodal Gaussian
using N = 500 iterations. The means and variances are computed for two groups of points:
the points to the left of x = 0 and those to the right.

Code 19.5.1. MATLAB 1D Metropolis Sampling

clear all;nit=500;

%Define stnd+means of Unimodal & Bimodal Gaussians

xhistory=zeros(nit,1);sigma=.5;sigmalike=sigma*2;

maxsig=max(sigma,sigmalike);mu=0;mu2=mu*2;

x=0.4; % Starting Sample

for i=1:nit %Unimodal Metropolis Sampling Algorithm

u=rand(1,1);

xp = drawxp(x,sigma);

p =1/sqrt(2+pi)/sigmalike*exp(-0.5*(mu2-x).^2/sigmalike^2);

pp =1/sqrt(2+pi)/sigmalike*exp(-0.5*(mu2-xp).^2/sigmalike^2);

r = pp/p;

A=min(1,r);

if u<=A;x=xp;end

xhistory(i)=x;

rr(i)=r;

end

mu=0; %Define Midpoint for Range of samples x

x=[-5*maxsig-mu:.1:5*maxsig+mu];%Define Sample Range of x

g=1/sqrt(2+pi)/sigma*exp(-0.5*(mu-x).^2/sigma^2);%Unimodal

g2=1/sqrt(2+pi)/sigmalike*exp(-0.5*(mu-x).^2/... %Bimodal

sigmalike^2);

Title1 % Plot Samples & Proposed+Target Unimodal Densities

[p]=BimodalGauss(x,sigma,sigmalike); %Create Bimodal Density

subplot(122);

hold on;plot(x,p,’r-’);plot(x,g,’b-’);hold off

x=0;xp=x;
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Code 19.5.2. MATLAB 1D Metropolis Sampling (cont.)

for i=1:nit %Bimodal Metropolis Sampling Algorithm

u=rand(1,1);

xp = drawxp(x,sigma);

p =BimodalGauss(x,sigma,sigmalike);

pp =BimodalGauss(xp,sigma,sigmalike);

r = pp/p;

A=min(1,r);

if u<=A;x=xp;end

xhistory(i)=x;

rr(i)=r;

end

Title2 % Plot Samples, Proposed and Target Bimodal Densities

19.6 Gibbs Sampling

Gibbs sampling is a MCMC method for obtaining a sequence of points xn = (xn1 , x
n
2 , x

n
3 ) for

n ∈ {1, 2, . . . , N} from a specified PDF that is a scaled approximation to the desired one p̂(x1, x2, x3):

p(x1, x2, x3) =
p̂(x1, x2, x3)

NC
, (19.16)

where NC is the unknown normalizing constant. These samples can then be used, for example, to
approximate those for a joint distribution or a marginal distribution in the parameter of interest.

The Gibbs sampling algorithm3is now given for the 3D multivariate joint distribution p̂(x1, x2, x3),
where we assume we know p(x1, x2, x3) but do not know the normalizing constant NC.

1. At the zeroth iteration, initialize xn for n = 0 at the starting point, for example, (x01, x
0
2, x

0
3) =

(0, 0, 0).

2. At the 1st iteration, draw the sample of the first coordinate x11 from the initial sample point:

x11 ∼ p(x1|
frozen x2 and x3 coordinates︷ ︸︸ ︷

x2 = x02, x3 = x03) ,

=
p̂(x1, x

0
2, x

0
3)

Z1
, (19.17)

where the conditional probability p(x1|x2 = x02, x3 = x03) is proportional to the joint distribu-
tion p̂(x1, x

0
2, x

0
3) and Z1 is the proportionality constant. The pdf p(x1|x2 = x02, x3 = x03) is a

1D distribution in x1 that is much easier to sample than a high-dimensional one.

We then draw the second x12 and third x13 coordinates in the same way:

x12 ∼ p(x2|x11, x03),
x13 ∼ p(x3|x11, x12), (19.18)

except we use the update x11 or both updates x11 and x12.

3Many of the ideas in this section are inspired by Alexander Novikov’s lecture ”Bayesian Methods for
Machine learning” at https : //www.coursera.org/lecture/bayesian−methods− in−machine− learning/
gibbs− sampling − eZBy5.
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Gibbs Sampling

x1

x2

x1

x2

High degree of correlation

between x1 and x2

leads to short steps

along x1 and x2 axes:

Gibbs sequentially moves

along x1 and x2 axes

0 10.7

Given x1=0.7

Most of x2’s are

within range of

x2 = 0.2 at (0.7,0.7)1

0

(0.7,0.7)0.7

This leads to slower convergence 

compared to MCMC which

can move in any direction

Figure 19.10: Samples of points (left plot) where x1 and x2 are highly correlated along
a line slanted at 45o. This leads to slow convergence of Gibbs sampling on the (right
plot) which sequentially samples along each of the axes. Highly correlated points for
this example mean that most (i.e. highly probable) samples near (0.7, 0.7) along the
vertical axis are within ∆x2 = ±0.2. Images inspired by Ben Lambert’s video at http-
s://www.youtube.com/watch?v=ER3DDBFzH2g viewed in November, 2021.

3. For the (k + 1)th iteration we have

xk+1
1 ∼ p(x1|xk2 , xk3),
xk+1
2 ∼ p(x2|xk+1

1 , xk3),

xk+1
3 ∼ p(x3|xk+1

1 , xk+1
2 ), (19.19)

where each step depends on previous steps, so it is not suitable for a parallel computer.

The Gibbs sampling compares to the Metropolis algorithm in the following ways.

• Unlike Metropolis sampling, there is no accept or reject option in Gibbs sampling, all proposals
are accepted. Not having to decide to accept or reject can make Gibbs computationally more
efficient than Metropolis sampling.

• Similar to Metropolis sampling, the current choice of the sample depends on the sample in
the previous iteration.

• If there is a high degree of correlation between two parameters, say x1 and x2, then the
progress of Gibbs sampling can be very slow as illustrated in Figure 19.10.

• Gibbs sampling requires conditional distributions, which are not so easy to obtain in some
cases.

• Gibbs is not easily parallelized, it goes from one dimension to the next that depends on the
previous point.

An example of Gibbs sampling is shown in Figure 19.11. Here, the joint distribution is given by
Figure 19.11a for p(x, y), and the conditional distributions are given in Figure 19.11b-19.11c. These
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Figure 19.11: a) Actual p(x, y), conditional b) p(x|y) and c) p(y|x). d) is the p(x, y)
estimated by Gibbs sampling after 820 iterations. Images inspired by Ben Lambert’s video
at https://www.youtube.com/watch?v=ER3DDBFzH2g viewed in November, 2021.

are then used for Gibbs sampling, and the Gibbs sampled distribution is shown in Figure 19.11d
after 820 iterations. It closely matches that of the actual p(x, y) in Figure 19.11a.

We now show that the Gibbs sampling converges to points that honor the joint distribution
p̂(x1, x2, x3). We can define a transition probability q(x′, y′, z′|x, y, z) such that marginalizing over
(x, y, z) gives

p(x′, y′, z′) =
∑

x,y,z

q(x′, y′, z′|x, y, z)p(x, y, z). (19.20)

Here, q(x′, y′, z′|x, y, z) represents one iteration of Gibbs sampling in moving from (x, y, z) to (x′, y′, z′).
As shown before, one iteration requires three transitions, each one of which freezes two of the coor-
dinates, which can be expressed as a concatenation of conditional probabilities:

q(x′, y′, z′|x, y, z) = p(x′|y, z)p(y′|x′, z)p(z′|x′, y′). (19.21)
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Figure 19.12: a)-e) are the joint distributions estimated by Gibbs sampling for different
numbers of iterations. f) is the actual p(x, y). Images inspired by Ben Lambert’s video at
https://www.youtube.com/watch?v=ER3DDBFzH2g viewed in November, 2021.
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Plugging equation 19.21 into equation 19.20 gives

p(x′, y′, z′) =
∑

x,y,z

q(x′,y′,z′|x,y,z)︷ ︸︸ ︷
p(x′|y = y, z = z)p(y′|x = x′, z = z)p(z′|x = x′, y = y′) p(x, y, z). (19.22)

The terms not dependent on the summation variables can be moved outside the summation to get

p(x′, y′, z′) = p(z′|x′, y′)
∑

y,z

p(x′|y, z)p(y′|x′, z)

p(y,z)︷ ︸︸ ︷∑

x

p(x, y, z),

= p(z′|x′, y′)
∑

z

[
∑

y

p(x′,y,z)︷ ︸︸ ︷
p(x′|y, z)p(y, z)]p(y′|x′, z),

= p(z′|x′, y′)
∑

z

p(y′|x′, z)

p(x′,z)︷ ︸︸ ︷∑

y

p(x′, y, z),

= p(z′|x′, y′)
∑

z

p(x′,y′,z)︷ ︸︸ ︷
p(y′|x′, z)p(x′, z),

= p(z′|x′, y′)

p(y′,z′)︷ ︸︸ ︷∑

z

p(y′, x′, z),

= p(z′|x′, y′)p(y′, z′) = p(x′, y′, z′) ∴ (19.23)

Therefore, if we start out with samples (x, y, z) from the distribution p(x, y, z), then the iterative
updating steps x→ x′, y → y′ and z → z′ in equation 19.19 will lead to the distribution p(x, y, z).

A problem with Gibbs sampling is that it has slow convergence with coordinates that are strongly
correlated with one another. At each sample point, it can only move along one, possibly inefficient,
coordinate direction. It cannot move in a more reasonable direction that is available to the Metropolis
algorithm. This is illustrated in Figure 19.10 where a starting point near the center axis of the ellipse
did not need to move very far to get to a highly probable neighbor. This will lead to many iterations
where many sampled points are clustered near to one another. Thus, many more iterations will be
needed to have a more diverse sampling of points that represent the true density distribution.

19.7 Summary

Four different sampling techniques are presented: the inverse transform, acceptance-rejection,
Gibbs sampling and the Metropolis version of MCMC. For high-dimensional distributions, Gibbs and
Metropolis sampling methods are preferred because they are much more efficient than the inverse
transform or AR methods. Gibbs sampling has the merit of simplicity in that it only requires a
few lines of code and it only samples along a single dimension at each sub-iteration. For example,
Figure 19.12 only required a few lines of MATLAB code. However, it has slow convergence when the
coordinates are highly correlated, so the Metropolis or Metropolis-Hastings algorithms are preferred.
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19.8 Exercises

1. Instead of the coin flip simulations, simulate sampling the outcomes of rolling an unfair 6-sided
dice and compare the simulated PMFs with the actual one for an unfair dice. Do the same
for a fair 6-sided dice. Constrain the unfair dice to have a probability of 0.05 for the unfair
face. Do the two sampling exercises require the same number of dice rolls for stationarity?
Explain.

2. Construct a Gibbs sampling code to sample points from a 2D Gaussian distribution. Compare
the number of simulations that are needed to reach a stationary state for a round Gaussian
compared to ones characterized by thin ellipsoids. Explain the different convergence rates.
Plot convergence rate against the aspect ratio of the Gaussian.

3. Same as previous problem except use the Metropolis algorithm. Compare convergence rates
with those of Gibbs sampling. Explain the differences in convergence rates.

4. Find the normalized eigenvectors of the transition matrix A associated with the grape-lettuce-
cheese transition matrix in Figure 19.5. Is one of these eigenvectors parallel with the stationary
vector x = (0.335 0.3110 0.3541)? How can this eigenvector be use to accelerate convergence?
See the Stochastic Processes section at https : //stephens999.github.io/fiveMinuteStats/.

19.9 Appendix: MATLAB Functions for Metropolis Code

This section contains the MATLAB function calls for plotting the results from the Metropolis
algorithm in section 19.5.2.

Code 19.9.2. Title1 Plotting Functions for MATLAB 1D Metropolis Sampling

% Tile1 Function: Plots densities and Samples

subplot(121);

plot(x,g,’b-’,x,g2,’r-’);hold on; %Plot Target+Proposed Densities

plot(xhistory,xhistory*0,’*k’);hold off

mean=sum(xhistory)/nit; % Estimate Mean+stnd. Samples

std=sqrt(var(xhistory));

xlabel(’x’);ylabel([’p(x)’])

title({[’a) Metropolis Sampling’]

[’ Unimodal Gaussian: N = ’,num2str(nit)]})

text(-4.6,.8,[’\mu= ’,num2str(round(mean,2))],’fontsize’,8)

text(-4.6,.75,[’\sigma= ’,num2str(round(std,2))],’fontsize’,8)

text(-4.6,.7,[’Actual \mu = ’,num2str(mu2)],’fontsize’,8)

text(-4.6,.65,[’Actual \sigma = ’,num2str(sigmalike)],’fontsize’,8)

text(0.5,.8,[’proposed density’],’color’,’blue’,’fontsize’,8)

text(1,.3,[’target density’],’color’,’red’,’fontsize’,8)
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Code 19.9.3. Title2 Plotting Function for MATLAB 1D Metropolis Sampling

% Tilte2 Plotting Code

hold on;

plot(xhistory,xhistory*0,’*k’);

xlabel(’x’);ylabel(’Target Probability’)

text(1,.5,[’target density’],’color’,’red’,’fontsize’,8)

text(.5,.6,[’proposed density’],’color’,’blue’,’fontsize’,8)

jj=0;jj1=0;

for j=1:nit

if xhistory(j)<=0;jj=jj+1;x1(jj)=xhistory(j);end

if xhistory(j)>0;jj1=jj1+1;x2(jj1)=xhistory(j);end

end
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Chapter 20

Bayes’ Theorem

Bayes’ formula in equation 28.28 was derived by defining the joint probability distribution
P (X,Y ) in terms of the conditional probabilities P (X |Y ) and P (Y |X). Now we provide the in-
tuitive meaning of Bayes’ Theorem and use examples to describe how it can be applied to geoscience
data to get the most probable earth model and the uncertainty estimates of its parameters. We also
show how the Bayesian maximum a posterior (MAP) estimate of the model parameter vector m is
equivalent to the least squares estimate of m with regularization. Finally, Bayes’ Theorem is applied
to satellite images of an oil spill, vertical seismic profile (VSP) data, well-log data and seismic data
to estimate the most probable geophysical parameters subject to constraints.

20.1 Introduction

Bayes’ formula

P (X |Y ) =
P (Y |X)P (X)

P (Y )
, (20.1)

was derived in Chapter 28 where P (X) is the prior probability for X , P (Y ) is the evidence, P (X |Y )
is the posterior probability and P (Y |X) is the likelihood. Now we will interpret the physical meaning
of equation 20.1 using examples.

Simple Example and 3 Key Benefits of Bayesian Inversion. There are three significant
benefits of Bayesian inversion (BI): 1) BI finds the model X∗ that best explains the new data Y , 2)
BI honors constraints P (X), aka as a prior, from previously recorded information, and 3) BI gives
P (X |Y ) as the uncertainty estimate of X∗, which can be updated as new data becomes available.

These three benefits are illustrated with a simple example of living on the Red Sea coast near
Jeddah where we often see clouds, but rarely experience rain. It usually rains about 1-3 times/year,
so let’s assume P (r) = .01, where R = r indicates rain and R = r̃ indicates no rain. However, it is
partly cloudy about 10% of the time so that P (c) = 0.1, where C = c indicates cloudiness. We also
know that the few times it rains, the skies are always cloudy so the likelihood of seeing clouds if it
rains is P (c|r) = 1. These facts are illustrated by the Venn diagrams in Figure 20.1.

Does reciprocity P (r|c) = P (c|r) hold true, where the probability of it raining after seeing clouds
is P (r|c) = 1? Intuitively, the answer is no. However, Bayes’ Rule in equation 20.1 says that it is
true if P (X)/P (Y ) = P (r)/P (c) = 1, which implies that the red circle must have the same radius
as the coincident blue circle. But the area ratio of rainy/cloudy days in Figure 20.1a is Ar/Ac = 0.1,
so Bayes’ Rule says that P (r|c) = P (c|r)P (r)/P (c) = 1 × 0.1 = 0.1. Thus, reciprocity is invalid
because the chances of it raining if you see clouds is only 10%.

591
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a) Venn Diagrams

b) Bayes’ Rule
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Figure 20.1: a) Venn diagrams for the prior probabilities of cloudy days P (c) = 0.10 and
rainy days P (r) = 0.01. b) Probability mass functions for the marginal P (R), likelihood
P (c|R), and posterior P (R|c) = P (c|R)P (R)/P (c) functions. The Law of Total Probability
P (c) = P (c|r)P (r)+P (c|r̃)P (r̃) is used to compute the value of P (c|r̃) = 0.91 at the bottom
left in b).
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A histogram interpretation of Bayes’ Rule is shown in Figure 20.1b. Here, the marginal PMF
P (r) = 0.01 is small in Figure 20.1b, but the likelihood1 P (c|r) = 1 says that there is 100% chance of
cloudiness if it rains. Multiplying these two probabilities suggests that there is a low posterior chance
P (r|c) ≈ P (c|r)P (r) = 0.01 for R = r of seeing rain after you see clouds. However, Bayes’ Rule
increases P (r|c) = P (c|r)P (r)/P (c) = 0.1 by a factor of 10, which is in agreement with the analysis
by Venn diagrams2. The posterior that is the highest probability P (R|c) is given by P (r̃|c) = 0.9,
which makes sense because if you see clouds, then it is more likely you will see no rain rather than
rain.

The recorded data for cloudy and rainy days will allow us to estimate the sample variances
and sample means of P (c|r), P (r), and P (c), so the probability mass function (PMF) formulas
in Figure 20.1b will provide the PMF P (r|c), which is the uncertainty function for predicting the
chance for rain if you see clouds. Uncertainty analysis is needed because scientific predictions should
not only provide an answer to questions, but also an uncertainty associated with that answer.

Bayesian Analysis in Science. Applying Bayesian analysis to geoscience data is becoming a
standard procedure for many geoscientists (Tarantola and Valette, 1982; Jackson, 1979; Jackson and
Matsuura, 1985; Cary and Chapman, 1988; Duijndam, 1988; Mosegaard and Tarantola, 1995; Sen
and Stoffa, 1995; Malinverno and Leaney, 2000; Malinverno and Briggs, 2004; Mukerji et al., 2001;
Scales and Tenorio, 2001; Ulrych et al., 2001; Buland and Omre, 2003). It can be very useful when
interpreting seismic data for the presence of hydrocarbons or for reducing the risk factors in drilling
expensive wells (Mukerji et al., 2001; Gonzalez et al., 2001; Ulrych et al., 2001; Gonzales et al., 2012a-
b; Avseth et al., 2005). One of the reasons for its popularity, especially in the 1980s, can be attributed
to the discovery of stochastic Markov chain Monte Carlo methods (https://en.wikipedia.org/wiki/
Markov chain Monte Carlo), which removed many of the computational problems, and an increasing
interest in nonstandard, complex applications (Wolpert, 2004). Bayesian methods are strongly
employed by Bishop (2006) in describing machine learning methods.

A problem with Bayes’ theorem is that it assumes knowledge of the prior PDFs and often
employs a normal distribution for the parameters of interest. This issue is partially addressed by
Malinverno and Briggs (2004) by using both the hierarchical and empirical Bayes’ approaches that
allow for a range of possible prior hypotheses on the hyperparameters, and so reduces the number
of assumptions.

Stochastic search methods are often used to find the Bayesian inverse to seismic data. Some
examples include VSP inversion by Malinverno and Leaney (2000), inversion of Rayleigh wave data
by Bodin and Sambridge (2009), and inversion of sonic acoustic data for sea-floor properties by
Dettmer and Dosso (2009), Dettmer et al. (2010) and Dosso et al. (2014). In the last three
examples, the number of model parameters is an unknown and the posterior probability density
function includes the type of model parametrization. This procedure, denoted as transdimensional
inference, partially addresses the overfitting problem of inverting for too many unknowns.

Bayesian inversion can also be applied to many other types of seismic data such as receiver
functions and surface waves (Bodin et al., 2012), ambient noise (Young et al., 2013; Saygin et al.,
2015), reflectivity inversion (Ray et al., 2016; Sen and Biswas, 2017; Dadi et al., 2018), and recorded
reflection inverted by FWI (Hawkins and Sambridge, 2015; Ray et al., 2017). For example, Visser et
al. (2019) and Gebraad et al. (2020) applied Monte-Carlo search methods to find the full-waveform

1P (c|r) = 1, where the Bayesian literature also refers to it as a likelihood function L(R;C) = P (C|R). In
the context of searching for the maximum likelihood, we can assume that the condition of cloudiness C = c
is fixed and the maximum likelihood procedure looks for the value of R that most likely explains that it is
cloudy. For a fixed observed value of the data C = c, the likelihood L(R; c) is a function of the unknown
parameter R. Integrating (or summing) it over all R is not equal to 1 so the likelihood function does honor
the definition of a probability function.

2See Appendices 20.9-20.10 for more complicated examples of computing how weather conditions affect
the decision to go biking.
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inverse to, respectively, acoustic and elastic data. The Visser et al. (2019) strategy is to use a
layer-stripping strategy to accelerate convergence in sampling, and a parsimonious dipping layer
parametrization is used so that the Markov Chain Monte Carlo algorithm can efficiently search with
fewer iterations. Each layer is parameterized with velocity, thickness, and lower interface dip angle.
They then inverted for narrow 2D velocity models using small offset data, and used the resulting
tomogram as the starting model for standard FWI.

Instead of using stochastic search methods, gradient descent methods (Liu and Wang, 2016)
can be used to find the optimal model that minimizes an objective function. One such objective
function is the Kullback-Leibler (KL) divergence (see Appendix 20.11 and Kullback and Leibler,
(1951)). Zhang and Curtis (2021) demonstrated the success of this approach for inverting synthetic
acoustic data generated from simple models.

Bayesian analysis has also been successfully used for EM data (Buland and Kolbjornsen, 2012;
Hawkins et al., 2018), AVO from seismic data (Buland and Omre, 2003), fault detection (Singh
et al., 2021), rock physics analysis (Bachrach, 2016; Grana, 2016), Dix inversion (Buland et al.,
2011), time-lapse data (Buland and El Ouair, 2006), lithology prediction from pre-stack seismic
data (Buland et al., 2008), and seismic amplitudes using the Zoeppritz equations (Buland and
Omre, 2003). Inverting the rock-physics model involves establishing a linearized relation between
the elastic attributes (velocities VP, VS and density ρ) and the petrophysical properties (porosity
φ, clay volume C, and water saturation Sw). If the elastic attributes are recorded in a well then the
inverse goal is to determine their associated petrophysical properties and rock types. This can be
accomplished with Bayesian inversion (Gonzalez et al., 2016; Xu et al., 2016) as demonstrated by
the examples in section 20.6.

More generally, Bayesian analysis (Sisson et al., 2018) is used in almost all fields of science and
engineering, including astronomy (Guest, 2011; Thrane and Talbot, 2019; Lorenz, 2019; Affholder
et al., 2021), biology (Yau and Campbell, 2019), medicine (Ashby, 2005; Yarnell et al., 2020),
geostatistics (Gelfand and Banerjee, 2017), hydrology and groundwater management (Borsukm,
2004; Shihab, 2005; Bromley et al., 2005; Allan, 2008; Henricksen et al., 2012), and geothermal
studies (Lösing et al., 2020) that use geological and heat production data as constraints to limit the
number of variables to invert. All of these scientific endeavors use Bayesian analysis to form models
from the data (Sheidt et al., 2018), but they also provide the uncertainty estimate P (m|d) for the
model parameters. Finally, a word of caution: Bayes’ methods are widely used, but they are not
accepted by all (Klir, 1994; Wang, 2004; Gelman, 2008; Horgan, 2016).

The next section provides an intuitive understanding of Bayesian analysis using the cancer prob-
lem as an example. Some properties of Bayes’ analysis are then presented, including Naive Bayesian
analysis and the connection between Bayes’ inversion and regularized least squares inversion. This
is followed by several examples of Bayesian analysis of well-log and seismic data. The final section
presents the summary.

20.2 Intuitive Interpretation of Bayes’ Theorem

Bayes’ formula in equation 20.1 is trivial to derive, but like any formula we need to intuitively
understand its meaning before applying it to data. This section first presents the geometrical
meaning of Bayes’ Theorem, and then deciphers each term in terms of the cancer probabilities in
section 28.2.1. To facilitate the understanding of equation 20.1 in terms of cancer testing example, X
is replaced by C which means the patient actually has cancer. Also, Y is replaced by T which means
that the test for cancer is positive, with the understanding that this positive prediction is wrong a
small percent of the time. Equation 20.1 in terms of the RVs for the cancer problem becomes

P (C|T ) = P (T |C)P (C)
P (T )

. (20.2)
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Figure 20.2: Same as Figure 28.1 except X is replaced by C where the patient actually has
cancer and Y is replaced by T for a positive cancer test result. The positive test result might
be mistaken so it would be labeled as a false positive (FP). Otherwise it is a true positive
(TP) so that total number of positive test results is equal to No. of TP + No. of FP .

20.2.1 Geometrical Interpretation of P (C), P (T ), P (C)
P (T )

Equation 20.2 can be geometrically interpreted in terms of the circle’s areas in Figure 20.2.
Here, the area AC of the blue circle divided by the area A of the universe is P (C) = AC/A, which
represents the fraction of people who have cancer. Similarly, the conditional probability of a positive
test result is P (T ) = AT /A, where AT is the area of the red circle and represents the fraction of

people who test positively for cancer. Therefore, the ratio P (C)
P (T ) can be replaced by AC

AT
to get the

geometrical formulation of Bayes’ Theorem:

P (C|T ) = P (T |C)

scaling term︷ ︸︸ ︷
P (C)

P (T )
,

=
AC ∩ AT

AC

AC

AT
. (20.3)

The geometrical interpretation of the scaling factor P (C)/P (T ) = AC/AT is that it is equal to
the ratio of the areas of the blue C and red T circles in Figure 20.2, which is less than 1 in this
example. If the areas AC = AT are the same then this implies P (C)/P (T ) = 1 and the symmetrical
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relationship P (C|T ) = P (T |C).
The small area AC of the blue circle says that there are only a relatively small number of possible

events that can occur in the huge reference universe enclosed by the black rectangle (Riley, 2020).
Therefore, the purple area AC ∩AT divided by the smaller reference area AC of the blue circle, i.e.
P (T |C) = AC∩AT

AC
, should be larger than the purple area AC ∩ AT divided by the larger reference

area AT of the red circle, i.e. P (C|T ) = AC∩AT

AT
:

P (T |C) =
AC ∩AT

AC
,

> P (C|T ) = AC ∩ AT

AT
, (20.4)

Therefore, someone who actually has cancer will much more likely receive a positive test result
compared to actually having cancer after getting a positive test result. This is good news to the
worried patient who just received a positive cancer diagnosis, he/she has good hope that this is a
false-positive prediction.

20.2.2 Medical Interpretation of P (C), P (T ), P (C)
P (T )

.

As a medical example of equation 20.4, assume that the test can detect pancreatic cancer with
100% accuracy, i.e. P (T |C) = 1, if you have pancreatic cancer. Here, P (T |C) is denoted as a
true positive (TP). We will assume that the test is equivalent to experiencing certain symptoms
suffered by all pancreatic cancer patients, e.g. allergy symptoms such as feeling weak and nausea.
This test, unfortunately, can give a false positive (FP) result if a cancer-free person has, e.g. a
special 1 out-of-10,000 person allergy, so that P (T |C̃) = 10−4. Unsurprisingly, the flawed test
produces many false positives (FPs) because there are ten times more people with special allergies
compared to the number of pancreatic cancerous people in a large population. These allergies are
time dependent so they might be prevalent during the first test but are very rarely active during a
second test. Therefore, even if the test is 100% accurate P (T |C) = 1 if you have a rare pancreatic
cancer with P (C) = 10−5 (Table 20.1), there will be ten times more healthy folks (P (T |C̃) = 10−4)
with allergies in a huge population of 100, 000 who will falsely test. We will now explain how this
skews the Bayesian estimate of P (C|T ).

Table 20.1: Empirical test statistics for
pancreatic cancer (https://en.wikipedia.org/wiki/
Bayes%27 theorem).

P (C) = 10−5; P (C̃) = 0.99999 Cancer: C No Cancer: C̃

Test Positive: T True Positive: P (T |C) = 1.0 False Positive: P (T |C̃) = 10−4

Test Negative: T̃ False Negative: P (T̃ |C) = 0.0 True Negative: P (T̃ |C̃) = 1− 10−4

P (T ) in the denominator of equation 20.3 is interpreted as proportional to the number of FPs
and TPs. Multiplying the fraction of the population with cancer by the area A, i.e. the total number
of people, of the universe gives NC = P (C)×A as the number of people with cancer. Since P (T |C)
is the fraction of cancer patients who test positive then the product of P (T |C) and the number of
cancer patients NC = P (C)A is

NTP =

frac. TP︷ ︸︸ ︷
P (T |C)

# cancer patients︷ ︸︸ ︷
P (C)A , (20.5)
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which is the number NTP of cancer patients who are issued a true-positive test result. Similarly the
number NFP of healthy people who receive a false-positive result is

NFP =

frac. FP︷ ︸︸ ︷
P (T |C̃)

# non−cancer patients︷ ︸︸ ︷
P (C̃)A , (20.6)

where C̃ indicates the person does not have cancer. For a cancer such as pancreatic cancer with
a very low incidence rate of P (C) = 10−5 (https://en.wikipedia.org/wiki/Bayes%27 theorem), the
number of false positives NFP = P (T |C̃)P (C̃)A >> NTP = P (T |C)P (C)A is much more than the
number of true positives because there are orders-of-magnitude more allergic people w/o cancer in
the population.

Therefore, for pancreatic cancer, the total number NT of people who test positive for cancer is
the sum of the number of true positives in equation 20.5 and false positives in equation 20.6

NT = NTP +NFP ,

=

small︷ ︸︸ ︷
P (T |C)P (C)A+

big︷ ︸︸ ︷
P (T |C̃)P (C̃)A . (20.7)

Dividing through by A gives

P (T ) =
NT

A
= P (T |C)P (C) + P (T |C̃)P (C̃), (20.8)

which could have been arrived at by the more opaque Law of Probability in section 28.1.3. This
formula can be substituted into the denominator of equation 20.3 to get its FP and TP interpretation:

P (C|T ) =

# true positives︷ ︸︸ ︷
P (T |C)P (C)

P (T |C)P (C)︸ ︷︷ ︸
# true positives

+ P (T |C̃)P (C̃)︸ ︷︷ ︸
# false positives

, (20.9)

where we will always assume that there is an implicit multiplication of both the numerator and
denominator by A so the braced terms represent the numbers of events. If the number of false
positives is much more than the true positives in the denominator, then this will significantly reduce
the value of P (C|T ) on the left side. Thus, there will be little confidence 0 < P (C|T ) << 1 in a
positive test result for cancer.

Plugging the numbers in Table 20.1 into Bayes’ formula gives

P (C|T ) =
1× 10−5

1× 10−5

︸ ︷︷ ︸
# true positives

+10−4 × 0.99999︸ ︷︷ ︸
# false positives

≈ 0.091, (20.10)

which says that a positive test for pancreatic cancer only ha a 9.1% chance of being accurate. Can
we improve this test accuracy? Yes, take more data and update the statistics as the next section
demonstrates.
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20.2.3 Updating Predictions with New Information

If a second test is taken and it also indicates cancer then the updated posterior is

P (C|T2, T1) =
P (T2, T1|C)P (C)

P (T2, T1|C)P (C) + P (T2, T1|C̃)P (C̃)
,

=
P (T2|C)P (T1|C)P (C)

P (T2|C)P (T1|C)P (C) + P (T2|C̃)P (T1|C̃)P (C̃)
, (20.11)

where conditional independence is assumed such that P (T2, T1|C) = P (T2|C)P (T1|C). The prob-
ability for receiving a positive result with the second test is the same as for the first test so that
P (T2|C) = P (T1|C). Therefore, the above equation with the values in Table 20.1 becomes

P (C|T2, T1) =
P (T1|C)2P (C)

P (T1|C)2P (C) + P (T1|C̃)2P (C̃)
,

=
10−5

10−5
︸ ︷︷ ︸

# true positives

+(10−4)2 × 0.99999︸ ︷︷ ︸
# false positives

= 0.999. (20.12)

Hence, the probability of having cancer after two positive tests in a row is greater than 99%. Why
did the posterior value jump from 9.1% to 99%? The mathematical reason is that the number ≈ 10−4

of false positives in the denominator of equation 20.10 is larger than the number ≈ 10−5 of true
positives. This means that the scaling term P (C)/P (T ) (see equation 20.3) is much less than one so
P (C|T ) = 9.1% is small. However, the second test finds the number (10−4)2×0.99999 ≈ 10−8 of false
positives in equation 20.12 to be squared, which now makes the denominator P (T ) to be dominated
by the number of true positives P (C|T )P (T ) ≈ 10−5. Thus the scaling factor P (C)/P (T ) ≈ 0.999,
and since P (T1|C)2 = 1 then the posterior P (T2, T1|C) = 0.999.

The intuitive explanation is that for a single test, the chance of receiving a false positive is low
∝ P (T1|C̃)P (C̃) ≈ 10−4, but it is about 10 times greater than the chance of receiving a true positive
∝ P (T1)P (C) = 10−5. However, if you take two tests in a row, then the chance ∝ P (T1|C̃)2 ≈ 10−8

of receiving two false positives, i.e. sampling someone with active allergies during the first and
second tests, in a row is really low compared to the chance P (T1|C)2P (C) = 10−5 of getting two
true positives in a row. Thus the number of true positives dominate both the numerator and
denominator, which says that you are very likely to have cancer after two positive tests in a row.

Equation 20.12 can be rearranged to give

P (C|T2, T1) =
P (T2|C)

P (C)new

︷ ︸︸ ︷
P (T1|C)P (C)

P (T2|C)P (T1|C)P (C)︸ ︷︷ ︸
P (C)new

+P (T2|C̃)P (T1|C̃)P (C̃)︸ ︷︷ ︸
P (C̃)new

, (20.13)

where P (C)new = P (T1|C)P (C) ∝ P (C|T1) and P (C̃) = P (T1|C̃)P (C̃) ∝ P (C̃|T1) are proportional
to the posteriors from the first test, where the proportionality constant is 1/P (T1). In other words,
the previously computed posterior P (C|T1) can be used to update your new prior P (C)new ≈
P (C|T1), and so compute the new posterior P (C|T1, T2). This allows for real-time prediction of the
posterior as new data arrives, and is much faster than recomputing all the distributions from the
original data set. Many popular real-time models or online models are based on Bayesian statistics3.

3https : //towardsdatascience.com/a − mathematical − explanation− of − naive − bayes − in − 5 −
minutes− 44adebcdb5f8
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20.3 Naive Bayes’ Theorem

Instead of using Bayes’ Theorem in equation 20.1, we will use the reverse of it for a set X of K
features X = (X1, X2, . . . XK) that are classified as Y :

P (Y |X1, X2, . . . , XK) =
P (X1, X2, . . . , XK |Y )P (Y )

P (X1, X2, . . . , XK)
,

=
P (X1, X2, . . . , XK |Y )P (Y )

∑I
i=1 P (X1, X2, . . . , XK |y = i)P (y = i)

,

(20.14)

where there are I discrete values for Y ∈ {1, 2, . . . , I} and equation 28.25 has been used to replace
P (X1, X2, . . . , XK) by a weighted sum of conditional probabilities. This is known as a discriminant
model in Chapter 21 because it predicts the class y of the input data x.

The rationale for using P (Y |X1, X2, . . . , XK) on the left side of equation 20.14 is that we are
given features X in order to predict the class Y . In this case we assume that training has computed
the values of the likelihood P (X|Y ) and prior P (Y ), as well as P (Xk|Y ) for k ∈ {1, 2, . . . ,K}.

However, computing the conditional probabilities is infeasible for high-dimensional data so we
assume thatX1, X2, . . . , XK are mutually independent conditioned on Y . In this case, equation 28.22
can replace the denominator of equation 20.14 to give the formula for the Naive Bayes’ classifier:

P (Y |X1, X2, . . . , XK) =
P (X1, X2, . . . , XK |Y )P (Y )

∑I
i=1 P (y = i)ΠK

k=1P (Xk|y = i)
; (20.15)

=
P (Y )ΠK

k=1P (Xk|Y )
∑I

i=1 P (y = i)ΠK
k=1P (Xk|y = i)

, (20.16)

where both the numerator and denominator only require the computation of the two-term condi-
tional probability functions P (Xk|Y ) and the marginal function P (Y ) for different values of Y = y.
Equation 20.16 is more practical to compute than equation 20.14 because computing two-term con-
ditional probability functions such as P (Xk|Y ) requires many fewer computations and realizations
than filling in a high-dimensional hypercube P (X1, X2, . . . , XK |Y ). See Figure 28.2 for a 3D cube
and Appendix 20.10 for a numerical example of using the Naive Bayes’ Theorem.

In summary, the Naive Bayes’ classifiers are a family of supervised classifiers which use Bayes’
Theorem to classify a discrete response. It uses the observed features {x1, x2, . . . , xN} with a sim-
plifying assumption of independence. The result is the Naive Bayes’ formula in equation 20.16 that
is much more computational feasible than Bayes’ formula in equation 20.14.

20.4 Motivation for Bayes’ Theorem

A motivation for using equation 28.28 or equation 20.1 is that we want to find the uncertainty,
i.e. probability P (X |Y ), of the occurrence of event X if Y has already happened. For example, if
our cancer test Y is positive how reliable is it as a true-positive indicator of cancer X? If the well-log
indicator Y suggests a formation has oil, what is the reliability of earning profits in starting up a
multi-million dollar drilling project X? In psychology, Bayes’ Theorem can give the probability of a
stimulus X given a response Y . In seismology, we are given data and wish to know the uncertainty
of an estimated earth model X that explains the recorded data Y . This conditional probability is
used to estimate the error bars for the parameters of the earth model.

Why not just use the definition of conditional probability P (X |Y ) = P (X,Y )/P (Y ) to get
P (X |Y ). The answer is that we often don’t have direct knowledge of the numerator P (X,Y ) or
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denominator P (Y ). Instead we might have an analytical or counting estimate for P (Y |X) and a
partial guess for P (X); the Law of Total Probability is used to get P (Y ). This is enough for using
Bayes’ Theorem to get P (X |Y ).

The generative model finds the statistical distribution P (X |Y ) of the data X that best explains
the observed classes Y . This type of model is classified as unsupervised because a training set of
labeled data is not required.

In contrast, the discriminative model finds the statistical distribution P (Y |X) that best predicts
Y from the input data X . Discriminative models often need supervised training where a large
training set of training pairs (input features and output classes) is required. As an example, the
supervised neural network finds the NN model that most accurately predicts the class Y of the
input data X (see Chapters 4-6). This neural network model is functionally equivalent to knowing
P (Y |X).

20.5 Equivalence Between Bayesian Inversion and Regular-
ized Least Squares Inversion

For geophysical inversion, the goal of the frequentist is to find the optimal modelm∗ that predicts
the observed data d which minimizes a specified objective function ǫ such as

ǫ =
1

2

data penalty︷ ︸︸ ︷
||dpredict − d||2 +λ

model penalty︷ ︸︸ ︷
g(m) , (20.17)

where ||dpredict − d||2 is the L2 norm of the data residual dpredict − d and g(m) ≥ 0 is the scalar
model penalty function, e.g. g(m) = 1

2 ||m||2. Choosing the functional form of the penalty function
reflects our prior belief that the model should also minimize g(m). The regularization parameter
λ regulates how much we prefer minimizing the data residual over minimizing the model penalty
function.

As shown in section 28.5, if λ = 0 then the optimal solution of the least squares problem is
equivalent to the maximum likelihood estimate when the errors belong to a normal distribution.
That is, the log-likelihood function can be described as

L(m;d) = lnP (d|m), (20.18)

and the maximum likelihood estimate m∗ is the one that maximizes L(m;d):

m∗ = argmax
m

L(m;d) = argmin
m

[−L(m;d)]. (20.19)

Here, P (d|m) replaces P (y|x,w) on the lefthand side of equation 28.36.
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Key Idea 20.5.1. Frequentist’s Inversion

The Maximum Likelihood Estimate, i.e. the Frequentist’s inverted model, is described by
equation 20.19 and is often computed by a gradient descent algorithm using the easily derived
gradient formulas ∂L/∂mi. The likelihood function L(m;d) = P (d|m) cannot be interpreted
as a conditional probability distribution because frequentists deny that m is a RV governed
by a probability distribution (Press et al., 2007). However, the uncertainty in m is caused
by noise in d, so that the variance values of the model’s parameters can be computed by the
model covariance matrix in equation 28.38.
The model-parameter statistics and hyperparameters, such as the damping parameter and
the number of model parameters, can be selected by a bootstrap method (Efron, 1979) or
by cross-validation (Bishop, 2006). Cross-validation divides the training data into S groups
of the same size, where a unique portion of the data is excluded from each group. Then,
S models are inverted from these S groups for various values of the hyperparameters. The
optimal hyperparameters are the ones that provide the most accurate predictions for the
out-of-the-training data. The Jackboot method (Efron, 1979) creates S groups of equal size
by selecting N points at random from the original data, even if the same point is selected
multiple times. These groups are then inverted to get S models, which can be used to
approximate the model means and variances.

In contrast, Bayesian inversion uses Bayes’ Theorem to rescale P (d|m) by P (m)/P (d) to get P (m|d)

P (m|d) =
P (d|m)P (m)

P (d)
, (20.20)

and then finds the optimal m∗ that maximizes P (m|d):

m∗ = argmax
m

P (m|d), (20.21)

= argmax
m

P (d|m)P (m)

P (d)
, (20.22)

= argmax
m

P (d|m)P (m), (20.23)

which is known as the maximum a posterior (MAP) estimate of the model parameter. The denom-
inator in equation 20.22 is eliminated to get equation 20.23 because it is does not explicitly depend
on m. For the well-log example in the next section, a Monte Carlo search algorithm is used to find
the optimal m∗.

Key Idea 20.5.2. Bayesian Inversion

Equations 20.23 or 20.24 give the MAP estimate, which is often found by a stochastic search
of earth models in which the simulated data d̂ agree with the observations d to a certain
level (Xu et al., 2016). For the well-log example in section 20.6, m∗ from equation 20.23 is
the Bayesian estimate, aka MAP estimate, of the rock type and its uncertainty is supplied
by the probability distribution P (m|d).

The gradient descent algebra for taking derivatives is simpler if P (m|d) in equation 20.21 is replaced
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by its logarithm lnP (m|d) (Xu, 2020) to get

m∗ = argmax
m

lnP (m|d),

= argmax
m

[lnP (d|m) + lnP (m)]. (20.24)

Under certain assumptions, it is approximately equivalent to the least squares estimate of m with
regularization. This can be shown by equating P (y|x,w) in equation 28.36 with P (d|m) and the

prior with P (m) = 1
β e

−λ 1
2m

Tm so that the terms in equation 20.24 become

P (d|m) =
1

α
e−

1
2

∑N
n=1(m

Tx(n)−y(n))2/σ2

; P (m) =
1

β
e−λ 1

2m
Tm, (20.25)

where w →m, α and β are normalization terms, λ = 1/σ2
m is the regularization term and σ2

m is the
variance for the model parameters. Plugging these probability functions into equation 20.24 gives

m∗ = argmax
m

[−1

2

N∑

n=1

(wTx(n) − y(n))2 − σ2

σ2
m

1

2
mTm/σ2]. (20.26)

In this case, the MAP estimate in equation 20.26 is the same as the regularized least squares solution

m∗ = [LTL+ λI]−1LTd where the damping parameter is defined as λ = σ2

σ2
m
. More generally, if the

inverse-covariancematrix for the Bayesian model is fully populated, then the regularized least squares
solution can emulate this by including an inverse-covariance weighting term in the sum of squared
residuals. Sparse solutions can be promoted using an L1 norm for the model penalty function (https :
//towardsdatascience.com/a − bayesian − take − on − model − regularization − 9356116b6457).
An example of using a regularizer in Bayesian inversion is the Kullback-Leibler (KL) regularization
described in Appendix 20.11.

20.6 Geophysical Examples of Bayesian Inversion

Several examples will be presented for analyzing geophysical data by Bayes’ Theorem. These
examples do not cover the vast number of geoscience applications with Bayes’ Theorem, but they
give practical insights as to how they can be implemented. See section 20.1 for a partial bibliography.

The first example is for estimating the location of an oil spill from synthetic satellite images
several days after the accident. The next example inverts for the velocity model from vertical
seismic profile (VSP) traveltimes. The third example is for estimating the locations of hydrofrac
sources from passive seismic data. This is followed by the case history of using Bayes’ theorem to
predict rock types from well-log data with core calibration. The final example is for identifying
different facies units from well-log and seismic data. The motivation for predicting the rock type
and the uncertainty of prediction is to reduce the probability of drilling an expensive dry hole.

20.6.1 Prediction of an Oil-Spill Source

Oil-spill accidents in marine environments are often not reported until several days after the
accident. The ocean currents carry the spill far from the location of the oil dump, and so the original
location of the spill is not obvious. However, if the ocean currents and spill date are approximately
known, then the image of a spill photographed by a satellite can be modeled by a current-flow
program. Fluid-flow computations start with a guess of the spill’s origin point at (xr, yr), duration
time ∆t, release time dr after the start time of the spill , and the quantity qr of the spill, where it is
assumed that the ocean current model is already known. Therefore different spill locations (denoted
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Figure 20.3: Images of the Deepwater Horizon oil slick in the Gulf of Mexico obtained
by the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA’s Terra
spacecraft on May 17, 2010. Oil-spill zone denoted by different shades of cyan color, which
are related to the oil concentration on the surface. NASA/GSFC/LaRC/JPL, MISR Team.

as epicenters), oil-dump times and durations, and spill sizes can be modeled until the final boundary
configuration of the model spill matches that of the satellite data (see Figure 20.3). For legal and
remedial purposes, both the epicenter of the spill and the probability of the estimated epicenter
should be computed as well.

To determine the source, intensity and eruption time of an oil spill from satellite images, El
Mohtar et al. (2021) proposed Bayesian analysis to find the unknown model parameters m =
(xr, yr,∆t, dr, qr) that explain post-spill satellite images related to the time-varying concentration
d(x, y, t) of the contaminant on the water surface. Discretizing the spatial and temporal variables
transforms the function d(x, y, t) into the recorded concentration vector d, where the number of
elements in d is equal to the number of spatial and temporal grid points. The goal is to find the
model parameter m that maximizes the posterior probability distribution

p(m|d) ∝ p(d|m)p(m), (20.27)

which is Bayes’ theorem. Here, simulations of fluid flow are used to compute the likelihood function
p(d|m) for different samples of m determined by a MCMC method. The prior p(m) is a uniform
distribution of m over pre-defined bounds.

The concentration of the contaminant can be expressed as a sum of weighted basis functions

d(x, t) =

np∑

i=1

γiφ(x− xi)σ (20.28)

where γi is the mass carried by particle i, φσ is a radial basis function, and np is the total number
of released particles. Here, γi = q/np , where q is the total mass of the released contaminant. The
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Figure 20.4: Snapshots of the flow field t = 0 and t = T/3. Images extracted from El
Mohtar et al. (2021).

bivariate Gaussian PDF with variance σ2 is the basis function:

φ(x− x′)σ =
1

2πσ2
exp(−|x− x′|2/2σ2), (20.29)

where

σ = 2×max
i
{min

j
(|xi − xj |)} i, j ∈ {1, 2, . . . , np}. (20.30)

Here, the (x, y) coordinates of a particle at time t are embedded in a flowing ocean model. This
data vector also contains information about the density of the oil on the water’s surface and the
duration time of the spill since its start time.

The model and data vectors are connected by the modeling operator L, where L is computed by
a numerical solution to the 2D advection-diffusion LPT model (El Mohtar et al., 2021). An example
of the flow field computed by this model is shown in Figure 20.4 for t = 0 and t = 2T/3, where T is
the total elapsed time of the simulation. The modeling equation is

Lm = d+ error, (20.31)

where the uncertainties in measurements and parameter estimates are accounted for by the term
error.

Metric for the Recorded and Predicted Data Mismatch

The contour of the contaminant concentration on a simulated image is denoted as Γ and corre-
sponds to a given value of the concentration τ . Given the density η of the oil, the thickness of the
oil is given by τ/η. To measure the dissimilarity between the observed and predicted contours, El
Mohtar et al. (2021) used the global Haussdorff distance.

The typical posterior distribution is the Gaussian distribution, with ∆ = ∆(Γobs,Γpred) is the
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general distance metric between the observed and predicted concentration contours of the image.
However, El Mohtar et al. (2021) adopted the exponential distribution as the likelihood function:

p(d|m) = 1
β exp(−∆/β), (20.32)

where β is the scale parameter of this distribution. This distribution is preferred over the Gaussian
because it is a better indicator of how different shapes match each other. The Haussdorff distance
is used as the argument of this exponential, where it accounts for the contour differences over the
entire predicted and observed images.

Oil Spill Example

A simulated oil spill is computed with the 2D modeling algorithm described in the previous
section. The number of MCMC simulations is 10,000 for exploring the 5D parameter space of m,
where each simulation produced a series of snapshot images of fluid flow at different time intervals.
Eight different sets of simulations were computed, each consisting of 10,000 fluid-flow simulations.
The idea is to propose a theoretical location of the localized oil spill, simulate the spread of the oil
along the surface over a long time interval, and then compare the distribution of the predicted oil
spill on the surface to the actual distribution for different days. The predicted oil distribution that
best matches the actual one will yield the highest value of the posterior function.

For burn in, the first 500 simulations were discarded. The remaining samples were then used to
estimate the 5-dimensional posterior distribution associated with the predicted location of the oil
spill.

The values of the Markov chain parameters m = (xr , yr,∆t, dr, qr) plotted against the MCMC
iteration number are shown in Figure 20.5. The values of these 5 parameters sample the 5D space
over a restricted range of values determined by the uniform prior p(m) restricted to between a
specified range of bounds.

Figure 20.6 depicts the snapshots of the posterior distribution (blue-red-yellow contours in the
lower portion of each snapshot) obtained from the flow simulations. The flow lines are indicated by
blue arrows. The groundtruth concentration is the blue kidney-bean shaped set of arrows at the
upper left, the black contours indicate the predicted contour and the red dot at the bottom of each
graph denotes the actual source location. The dark purple shapes in the lower portion of the graph
indicate the posterior distribution at the initiation time, and the trial source locations are denoted
by the black dots. Note, the highest probability values (higher probabilities indicated by hotter
colors) are those in the second row of images where the trial source location is near the actual source
location. Each column of images is computed for a different value of the trial total mass qr of the
spilled oil. The results indicate that the predicted contours are somewhat insensitive to the value
of qr between 50 and 200 tons. The last row images suggests that the final results are sensitive to
sources mislocated by more than 50 km from the actual source.

Corner Plots to Assess Parameter Dependency

Corner plots in Figure 20.7 are used to visualize the relationship between two different parame-
ters. For example, the joint probability p(xr, yr) map in the second row shows that the probability
values are somewhat insensitive to locations along the area with the yellow crooked smile. This plot
was computed by marginalizing the joint probability: p(xr, yr) =

∑
∆t,dr,qr

p(xr , yr,∆t, dr, qr).

20.6.2 VSP Traveltime Inversion

Bayesian analysis will now be applied to vertical seismic profile (VSP) traveltimes in order to
invert for the velocity model as a function of depth. The inverted velocity profile is equivalent to that
obtained by regularized inversion, also known as the damped least squares procedure. It is sometimes
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Figure 20.5: Values of Markov chain parameters computed by a MCMC simulation consist-
ing of 10,000 iterations. The traces plot the values of the five parameters (xr, yr,∆t, dr, qr).
The red horizontal line in each plot represents the value of the corresponding true (reference)
parameter. Images extracted from El Mohtar et al. (2021).
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Figure 20.6: (xr, yr) maps (slices) of the 5D posterior probability distribution of for dr = 2
days, ∆t = 5, 6, 7, 8 and 9 days, and qr = 50, 100 and 200 tons. The red dots correspond
to the true values of (xr, yr). The black dot marks the (xr, yr) location that has the highest
posterior probability in each 2D map. The blue contour represents the observation, whereas
the black contour is the model output of a hypothetical release from the black dot, for values
of dr, ∆t and qr corresponding to each plot. The blue vectors show the currents at the time
of release corresponding to each map. Images extracted from El Mohtar et al. (2021).
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Figure 20.7: Corner plots of the five parameters (xr, yr,∆t, dr, qr), formed by plots of the
joint probability distributions of each pair of parameters and plots of the marginal distri-
butions of the single parameters. The red lines represent the values of the true parameters
corresponding to each plot. For example, the red dot for the p(xr, xy) plot is the actual
location of the spill. Images extracted from El Mohtar et al. (2021).
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Figure 20.8: VSP configuration on the left showing red transmission rays and traces with
direct waves. a) VSP common shot gather from a field experiment, b) picked traveltimes of
direct arrivals after a linear moveout correction, and c) velocity profile (dark solid lines) es-
timated by damped least squares inversion. The width of the gray zone in b) is proportional
to the standard deviation of the traveltime errors and the wildly oscillating curve in c) is that
computed by the undamped inversion. Formulas for modeling and undamped/unweighted
inversion are at the bottom. The three figures on the right are from Lizarralde and Swift
(1999).

necessary to get conditional probabilities from joint distributions, so Appendices 20.13-20.14 provide
the corresponding formulas.

Least Squares Inversion of VSP Traveltimes

The goal of VSP traveltime inversion by a least squares method is to invert the transmission
traveltimes for the velocity model v(z) as a function of depth. These traveltimes can be modeled by
the traveltime modeling equation listed under Figure 20.8a, where we assume an N-layered medium
with each layer having a thickness of ∆z, no ray bending and a VSP geophone at the interface of each

layer. The modeled transmission traveltime t
(s)
i to the ith geophone for the sth s ∈ {0, 1, 2, . . . , S}

source is the sum of the traveltimes t
(s)
i =

∑i
j=1 l

(s)
i /vj along each segment of the ray from the

surface to the ith geophone, and si = 1/vi is the slowness in the homogeneous ith layer with velocity

vi. The ray-segment length l
(s)
i in a layer for the ith ray of the sth source is equal to

l
(s)
i =

√
(s∆x/i)2 +∆z2; s ∈ {0, 1, 2, . . . , S}, i ∈ {1, 2, . . . , N}, (20.33)

if the source is offset by s∆x from the vertical well.

The matrix-vector representation of the transmission traveltime equations is given as Ls = t
under Figure 20.8b. For a 5-interface velocity model with one source with s = 0 for a src-rec offset
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∆x = 0, the resulting traveltime equations form a 5× 5 lower-triangular matrix:
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. (20.34)

The undamped solution to this 5×5 system of equations is given by the equation below Figure 20.8c
(see equation 2.25), where the inverse matrix [LTL]−1 is given by Schuster (1988 and 1989):
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. (20.35)

If there are multiple sources on the surface then this gives rise to an overdetermined system of
equations. Appendix 20.12 provides the 10× 5 system of traveltime equations and [LTL]−1 for two
sources.

The regularized least squares solution is equivalent to that obtained by a grid search method
that finds the maximum a posterior function for λ = 1. There are four steps for implementing
regularized, aka damped, least squares inversion.

1. Define the objective function ǫ as the sum of the weighted squared data residuals and the
model penalty function

ǫ =
1

2σ2
t|s

||Ls− tobs||2 + λ

2σ2
s

sT s, (20.36)

where the traveltimes and slowness terms have been weighted by their variances σ2
t|s and σ2

s ,
respectively. Also, λ > 0 is the scalar weight that controls the tradeoff between having a
small data residual and a solution near the origin s = 0. Alternatively, this model penalty
term could be (s − s0)

T (s − s0) where s0 is known from prior information and is denoted
as the background slowness model. There are other regularizers such as the norm of spatial
derivatives that penalize rough velocity models (Wang and Yang, 2021).

2. Take the negative exponential ǫ of equation 20.36 to get ǫ̂, where

ǫ̂ = exp(− 1

2σ2
t|s

||Ls − tobs||2 − λ

2σ2
s

sT s),

=

∝P (t|s)︷ ︸︸ ︷
exp(− 1

2σ2
t|s

||Ls − tobs||2)×

∝P (s)︷ ︸︸ ︷
exp(− λ

2σ2
s

sT s), (20.37)

where we have conveniently defined the terms in the exponent as either P (t|s) or P (s). The
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Figure 20.9: Three steps for damped least squares inversion of VSP traveltimes. The
damped least squares solution s∗ maximizes the new objective function, plotted out as the
red curve, and the undamped objective function is the blue curve. The prior belief about
the model is plotted as the black curve, which is updated by the blue data misfit function
to be the red curve.



612 CHAPTER 20. BAYES’ THEOREM

stationary point s∗ of ǫ̂ is the same as that for ǫ in equation 20.36 because the negative
exponential e−ǫ in equation 20.37 is a monotonically decreasing function for increasing values
of ǫ > 0. Therefore, the stationary point s∗ of equation 20.37 maximizes ǫ̂ while the same
point minimizes ǫ in equation 20.36.

3. Therefore, the regularized, aka damped, least squares solution (see equation 2.19) that maxi-
mizes equation 20.37 is

s∗ = [LTL+
λσ2

t|s

σ2
s

I]−1LT t, (20.38)

and plots out as the red curve at the bottom of Figure 20.9. The red curve is a compromise
between maximizing the black model-penalty curve and the blue data-misfit curve. The degree

of compromise is determined by the value of
λσ2

t|s

σ2
s

, where large values of
λσ2

t|s

σ2
s

emphasize

honoring the model penalty term while small values favor a small data misfit.

The next section shows that the corresponding plots of the least squares objective functions are
identical to the plots of the prior P (s), likelihood P (t|s) and a posterior P (s|t) probability functions
in Figure 28.4 for σ = λ = 1 and certain conditions on the covariance matrices. The solid black
curve in Figure 20.8c presents the velocity model using damped least squares inversion.

Bayesian Inversion of VSP Traveltimes

The Bayesian analysis of the VSP traveltime problem is to find the slowness model that maxi-
mizes the a posterior probability function, i.e.

s∗ = argmax
s

P (s|t),

= argmax
s

P (t|s)P (s). (20.39)

Assuming a Gaussian distribution for the prior P (s) and likelihood P (t|s) functions, equation 20.39
becomes

s∗ = argmax
s

exp(−1

2
(Ls − t)TΣ−1

t|s (Ls− t)− 1

2
sTΣ−1

s s),

= argmax
s

exp(− 1

2σ2
t|s

(Ls − t)T (Ls − t)− 1

2σ2
s

sT s), (20.40)

where the last line assumes that the covariance matrix Σ−1
t|s and Σ−1

s are diagonal matrices with the

diagonal values, respectively, equal to 1/σ2
t|s and 1/σ2

s . Therefore, the exponential argument for BI
is the same as that for the objective function of regularized least squares inversion in equation 20.37.

For VSP data, d = t is the collection of direct-wave traveltimes picked from shot gathers excited
by walkaway sources on the surface. The geophones are in the well and the 1D modelm is represented
by an N × 1 vector, where each element represents the slowness value of a homogeneous layer. For
the geometry in Figure 20.10a, the model consists of 5 layers and the data are the traveltimes from
more than 20 near-offset sources. These traveltimes are inverted by unregularized inversion to give
the profile represented by the dashed line in Figure 20.10c. The well log is used to compute the
prior p(m), where the penalty function is proportional to ||m−m0||2 and m0 is the slowness profile
from the sonic log.

Instead of expensive sampling, the MAP solution m∗ is computed by finding the regularized
least squares inverse to the traveltime equations. To reduce computational expenses, the sampling
of points m is only performed around the MAP points and over a restricted range of reasonable
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Figure 20.10: a) VSP geometry, b) Corner plot (see El Mohtar et al., 2021) of p(si, sj)
conditioned on fixing the other three slowness values, and c) inverted slowness profiles and
sonic log. MAP points are the yellow dots along the diagonal of b). Image extracted from
Qiao et al. (2022). An MCMC method with 10,000 iterations is used to compute the
samples, where the 1st 1000 iterations are considered to be the burn-in samples and so were
discarded.

slowness values dictated by the well log. The MAP points define the solid red line in Figure 20.10c.
Appendix 20.15 describes how the statistical parameters are obtained for the prior and likelihood
functions.

Once the MAP points are computed, then the sampled values are used to get the histograms
around the MAP points in Figure 20.10b for different pairs of slowness values. These histograms
give the mean and variance values of the MAP points denoted by the yellow points in Figure 20.10b.

Figure 20.11 illustrates the MCMC sampling efficiency when the VSP MAP points computed
by least squares inversion are used as the starting points for the MCMC iterations. Only several
thousand iterations, described by the red line in Figure 20.11, are required to get reliable values of
the variances for the slowness model computed from VSP traveltime data. If the starting points for
the MCMC iterations are perturbed from the actual MAP points by around 5%, then the number of
MCMC iterations denoted by the black curve is around 20,000. Thus, the physics-informed MCMC
iterations are nearly an order-of-magnitude more efficient than the standard MCMC method for this
example.

Applying this physics-informed sampling strategy to all of the VSP data, five layers at a time,
gives the estimate of the 40-layer velocity model shown by the blue curve in Figure 20.12. The
standard deviation computed by the MCMC iterations are given by the error bars in blue, and the
pseudo-code is on the left. The constraint introduced by the prior strongly pins the velocity estimate
to the well-log curve shown in red.

20.6.3 Imaging Point Sources in a Hydrofrac Experiment

We now apply an efficient physics-informed Bayesian imaging of point sources to synthetic seismic
data computed for a hydrofrac experiment. Here, the goal is to find the epicenters of point sources
associated with localized rock failures induced by hydrofracing. The efficiency of this procedure can
be achieved by using either seismic migration or regularized least squares inversion to estimate the
MAP points, followed by a localized grid search around the MAP points.
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Figure 20.11: Red curve denotes the standard deviation of VSP slowness plotted against
the iteration number for the physics-informed MCMC. The blue curve is the same except it
describes the standard MCMC iterations where the starting slowness values are randomly
selected.
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Figure 20.12: Pseudo-code for MCMC sampling by physics-informed estimate of the MAP
points, and the results by MCMC sampling are shown on the right. Only several thousand
MCMC iterations were required to estimate the variance of the slowness estimate for a
selected slowness layer.

The following is the workflow for estimating the posterior probability function of the point-source
locations.

1. Define a window in time where passive events are expected to exist. Each event is that
from an assumed point source associated with a localized and impulsive rock failure due
to hydrofracing treatment. Figure 20.13a is an example of six point sources generating the
passive data d in Figure 20.13b. The start times of the event are unknown, but a focusing
operator can be used to migrate the events to their place of origin, and therefore estimate
their start time T0. A wave-equation migration method or a wavepath migration method
can be used with slant stacks (Yilmaz, 2001) to compute the migration image mmig ≈ LTd
in Figure 20.13c. An inexpensive approximation, such as migration deconvolution (Hu et
al., 2001; Yu et al., 2006; Aoki and Schuster, 2009), or an expensive least squares migration
mLSM ≈ [LTL]−1LTd can be used to sharpen the estimate of the MAP points, which are
the locations of the point sources. With less resolution compared to LSM, the location of
MAP points can also be estimated from the migration image in Figure 20.13c. This is the
physics-informed part of Bayesian inversion: samples for estimating the posterior are only
taken within several wavelengths of the MAP points.

2. Each point in the subsurface is a potential source point, so an inexpensive Green’s function
G(xg , zg = 0, t|xs, zs, 0) for a ray-based direct wave is computed with the point source at the
trial imaging point (xs, zs) and the receivers at (xg, zg). This Green’s function is inexpensively
computed by a direct-wave tracing method since the direct wave is an order-of-magnitude
stronger than the other events. Thus, there is no need for computing solutions to the wave
equation to account for reflection events.

The Green’s function for each subsurface point is stored (i.e, simply store the traveltime to
each receiver from the trial image point) for reuse with 4D monitoring.
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Figure 20.13: a) Point-source model with 6 point sources at white stars, b) recorded data,
c) migration image, d) unnormalized posterior image. Image extracted from Qiao et al.
(2022).

3. The sum of the squared residuals

r(xs, zs) =
∑

(t,xg)

[

recorded︷ ︸︸ ︷
d(xg, t)−

predicted︷ ︸︸ ︷
G(xg, zg = 0, t|xs, zs, 0)]2, (20.41)

is computed for each subsurface source point (xs, zs). The sum of the squared residuals is
plugged into the exponential exp(−r(xs, zs)/σ2)p(m) to give the values proportional to the
posterior p(m|d), as plotted in Figure 20.13d. Here, p(m) can be a uniform distribution with
restrictions for searching within a few wavelengths of the MAP points m∗ = (x∗s, z

∗
s ).

The final products of the above approach is an efficient method for computing both the source
locations and probability estimates associated with monitoring source locations in a hydrofrac ex-
periment. These calculations can be computed in real time with the reuse of the stored Green’s
functions (Qiao et al., 2022).
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Figure 20.14: Workflow for estimating the uncertainty P (m|d) in identifying the rock type
associated with the petrophysical properties m in each layer. a) Create synthetic earth
model by selecting rock types and petrophysical model m at each depth interval for the
specified layers, b) create simulated data d by forward modeling of earth model, c) Monte
Carlo search of rock parameters for shales, limestones, sandstones, etc so synthetic well-log
data d for a specified data type matches recorded well data to give P (d|m). Bed boundaries
are interpreted from recorded well log. Figure adapted from Xu et al. (2016).

20.6.4 Predicting Rock Types and Uncertainty from Well Log Data

An example of Bayesian inversion applied to well-log data is presented in the workflow diagrams
of Figure 20.14. The goal is to estimate the rock type at each depth level in the well from the
well-log data d. For one of the field cases to be discussed, there are 4 rock types denoted as rock ∈
{RT 1, RT 2, RT 3, RT4 = shale}. Each rock type, such as shale, is associated with a statistical
distribution of several rock properties measured by well logs and core analysis.

Rock Properties m. The petrophysical rock properties at any point in the core are described by
the model vector m, which in this example is the 7× 1 vector

m = (Ccl, Sw, φ, σt, σb, φN , γ)
T , (20.42)

with elements denoting the values of the volumetric concentration of clay (Ccl), water saturation
(Sw), total porosity (φ), apparent electric conductivity (σt), bulk density (ρb), neutron porosity (φN ),
and gamma ray (γ). A rock type is associated with a range of values for these seven petrophysical
properties so each petrophysical rock property is considered to be a RV with a specified mean and



618 CHAPTER 20. BAYES’ THEOREM

P( , )

RT1               Shale

shale

RT1

shale

Figure 20.15: Idealized Gaussian curves P (φ, γ)shale and P (φ, γ)RT1 fitted to idealized core
measurements of the petrophysical properties of total porosity φ and γ for the, respectively,
shale and RT1 rock types.

covariance matrix. For example, Figure 20.15 depicts an idealized graph of the joint probability
function P (φ, γ), where a Gaussian function is fitted to the petrophysical measurements of total
porosity φ and γ. Note, there will be a different Gaussian for a different rock type, so the rock-
type superscript rock will often be appended to the model vector m → mrock where, for example,
rock ∈ {RT 1, RT 2, RT 3, RT4 = Shale},

Estimate of Prior P (m)rock. The prior distribution of the rock type is given by

P (m)rock ≈ exp(−1

2
(m− µrock)TC−1

mrock(m − µrock)), (20.43)

where µrock is the 7× 1 mean vector associated with the petrophysical measurements for one of the
rock types rock ∈ {RT 1, RT 2, RT 3, RT4 = Shale} and C−1

mrock is the model parameter covariance
matrix. The mean values of petrophysical measurements can be obtained from analysis of cores
extracted from regional wells. Figure 20.16 lists the mean values and standard deviations of five
different rock parameters for each rock type in a field study.

Well Log Data d. The data d from which we predict the rock type correspond to different well-log
measurements at each recording level along the vertical well. For the example in Xu et al. (2016),
these well-log measurements at each depth level are packed into the 1× 4 data vector

d(z) = (σt(z), ρb(z), φN (z), γ(z)), (20.44)

which records electrical conductivity σt(z), bulk density ρb(z), neutron porosity φN (z), and the
gamma ray γ(z) value at each depth point z along the vertical well. To reduce notation complexity,
the depth coordinate z will remain silent and the recorded well-log vector to be inverted is denoted
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Figure 20.16: Means µrock and standard deviations σrock of the total porosity (φ), absolute
permeability (k), Dean-Stark water saturation (Sw), bulk volume of water (BVW), and
volumetric clay concentration (Ccl) for each rock type (rock ∈ {RT1, RT2, RT3, RT4}) in
a field study. These data were obtained by analysis of drill cores extracted from many wells
in the area of interest. Figure adapted from Xu et al. (2016).

as d0.

Simulation of Well Log Data d. To predict the rock type associated with a recorded well log,
hypothetical rock models m are used to generate synthetic data d until the optimal model m0

closely matches the recorded well-log data d0. Well log data are simulated by the forward modeling
operator G, where

G(m) = d, (20.45)

and G(m) represents fast numerical modeling codes for simulating, e.g., electrical conductivity from
rock physics models. The different earth models are drawn from a stochastic ensemble of models
so that the, e.g., 7 × 1 vectors m and 4 × 1 vectors d are considered to be random vectors drawn
from Gaussian-like distributions. The model and data distributions are characterized by the mean
vectors µm and µd, where the covariance matrices are denoted by the Cm and matrices Cd. Note,
the elliptical contours in Figure 20.15 suggest that there is a strong correlation between the RVs φ
and γ.

Workflow for Bayesian Prediction of Rock Type and Uncertainty P (m|d). The follow-
ing steps describe the steps for Bayesian inversion of the rock type in depth and its uncertainty
P (mrock|d) from a recorded well log d0 (Xu et al., 2016). In this case, Xu et al. consider either 4
{RT 1, RT 2, RT 3, RT4 = Shale} or 5 {RT 1, RT 2, RT 3, RT4, Shale} rock types in this well.

1. Construct Ensemble of Earth Models. For an earth model with L layers and five rock
types, there are 5L hypothetical vertical rock-type distributions to be tested during inference.
An efficient MCMC sampling technique is used to infer the most likely rock-type distributions
that honor the available well logs (Yang and Torres-Verdin, 2011). The recorded well log d0

indicates the small number of facies zones and their boundaries that consist of just one of
the possible rock types. For example, the blue horizontal lines in Figure 20.14b indicate the
boundaries of the different facies zones; and log cores in Figure 20.14a indicate the composition
of rock properties m and rock type at each depth level.

2. Zonation Strategy. The interval of interest in the well can be divided into different zones,
where each zone might correspond to one of the designated rock types. For the deltaic example
in Xu et al. (2016), the reservoir unit under analysis comprised a total depth interval of 260 ft,
which is a scale associated with the resolution of the seismic amplitude data. They used gamma
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ray, bulk density, and resistivity logs to segment the reservoir unit into 80 petrophysical zones
with an average thickness of approximately 2.9 ft. Most zones exhibit thicknesses ranging
from 1.0 to 4 ft, which are mostly a mixture of more than one rock type. One method for
assigning rock type to the mixture zone is to select the rock type as the one with the largest
volume in that zone.

3. Likelihood Function P (d0|mrock). The likelihood function P (d0|mrock) gives the prob-
ability of well-log data d0 being recorded in the rock-type formation denoted as rock ∈
{RT 1, RT 2, RT 3, Shale}. It can be calculated by simulating well data by using the froward
modeling operation d = G(mrock) and then assessing the mismatch between the measured
data d0 and simulations d:

P (d0|mrock) ≈ exp(−1

2
[G(mrock)− d0]

TC−1
d [G(mrock)− d0]), (20.46)

where Cd is the data covariance matrix and the data d0 is a RV vector because it contains
Gaussian noise4. The mrock model might consist of a string of different rock types over a
specified depth interval such as shown by the colored rectangles in Figure 20.14a. Xu et al.
(2016) indicate that they classified hybrid rock types over zones as narrow as 1 to 5 feet in
thickness.

According to Xu et al. (2016): Once a vertical rock-type distribution with associated petro-
physical properties is sampled and populated into the predefined multilayered earth model, well
logs are then numerically simulated and compared with field logs to test the hypothesis. A hy-
pothesis of rock-type realization is only acceptable when all available well logs acquired from the
field are reproduced to a certain fitting criteria with fast well-log forward modeling given the
hypothetical rock-type realization. Following the aforementioned procedure, we obtain enough
rock-type realizations to quantify the posteriori distribution. We stop the hypothesis testing
when the realizations follow the same distribution. The synthetic modeling step is illustrated
in Figures 20.14a-20.14b where well-log data are modeled for rocks with different hypothetical
properties.

4. Prediction of Rock Type from d0 by Bayes’ Theorem. Bayes’ Theorem can then be
used to determine the likely rock type of the recorded well-log data d0 by using a stochastic
search to get the optimal rock∗ type at each depth level along the well:

rock∗ = argmax
rock∈{RT1,RT2,RT3,RT4}

P (mrock|d0),

= argmax
rock∈{RT1,RT2,RT3,RT4}

P (d0|mrock)P (m)rock, (20.47)

where the argmax operation is applied to well-log data over the specified zone of a single rock
type. The MAP estimate in equation 20.23 is used and the uncertainty function P (d0|mrock)
is obtained from step 3. The prior probability P (m)rock is obtained from petrophysical mea-
surements fitted to Gaussian curves as illustrated in Figures 20.15 and 20.17.

.

5. Uncertainty of Rock Type Prediction. The probability of predicting the correct rock
type is given by Bayes’ Theorem

P (mrock∗ |d0) =
P (d0|m)rock

∗

P (mrock∗

)

P (d0)
, (20.48)

4According to Xu et al. (2016), they assume resistivity and permeability measurements to be represented
by a lognormal distribution, whereas bulk density, neutron porosity, and gamma ray are represented by
Gaussian distributions.
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Histogram of Gamma Ray Measurements

For Different Rock Types

Figure 20.17: Gaussian curves fitted to Gamma Ray histograms for different rock types.
Each Gaussian approximates P (d)rock for rock ∈ {RT1, RT2, RT3, RT4 = shale} and
d = γ. Figure adapted from Xu et al. (2016).
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Figure 20.18: Field case of Bayesian rock typing and uncertainty quantification. From left
to right, track 1: gamma ray; track 2: porosity; track 3: density; track 4: resistivity; track
5: rock type and uncertainty; track 6: permeability and uncertainty. The triangle marks in
tracks 5 and 6 identify core measurements. Figure from Xu et al. (2016).

where P (d0) is the normalization term and m∗ is obtained from equation 20.47. The normal-
ization term can be calculated by the product rule.

Xu et al. (2016) analyze the well logs in a sandstone unit located in a deltaic environment,
and use Bayesian inversion to get the optimal model mrock∗

, rock types in each zone, and the
posterior probability. This optimal model mrock∗

is plugged into the posterior probability to give
the uncertainty P (mrock∗ |d0) in identifying rock types in each zone along the well. Four of the well
logs are shown in Figure 20.18 alongside the rock types predicted by core analysis and Bayesian
inversion.

For two thin intervals in a well they obtained the posterior probability function P (mrock∗ |d0) =
P (d0|mrock∗

)P (m)rock
∗

/P (d0) in Figure 20.19 by Bayesian inversion with a stochastic search. The
comparison between the facies interpretation and the Bayesian derived rock types is shown in Fig-
ure 20.20. According to Xu et al. (2016), The application of the new method to a field case indicated
more than 77% agreement between the log- and core-derived rock types. Overall, the correlation
between predicted permeability and core-measured permeability was improved by approximately 16%
compared with conventional deterministic methods. In addition, the method quantified the uncer-
tainty associated with rock-type identification and permeability estimation. The final distribution
of maximum-likelihood rock types was consistent with the geologic framework and provided useful
information for stratigraphic reservoir construction and modeling.
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Probability of Rock Types P(m|d) For Different Intervals in the Well

Figure 20.19: Uncertainty of rock types quantified in two petrophysical zones in the offshore
deltaic field case. a) Thick bed at z =xx502 ft and b) thin bed at z =xx508 ft and there
are 5 rock types. Figure adapted from Xu et al. (2016).

Figure 20.20: Comparison between the estimated rock types and outcrop-based facies de-
scription. Left panel: rock types (RT) inferred from the Bayesian method; right panel:
facies description from Bowman (2004). Figure adapted from Xu et al. (2016).
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20.6.5 Predicting Rock Types and Uncertainty from Well Logs and Seis-
mic Data

Both seismic data and well-log measurements are now used to predict the facies type over a
large area illuminated by seismic reflections. The goal is similar to that of the previous well-log
example: determine the facies class of m and its uncertainty P (m|d0) from the geophysical data d0.
However, Gonzalez et al. (2016) use well-log data and the seismic data in Figure 20.21a recorded over
an area, and invert it to get the amplitude impedance (AI) in Figure 20.21b and the Vp/Vs section
in Figure 20.21c. Now d = (AI, Vp/Vs) instead of well-log data. The well data Vp, Vs, density and
fluid properties are used to generate realistic earth models m and identify the different rock types
associated with d = (AI, Vp/Vs).

Seismic forward modeling and inversion are used to compute many realizations of m along the
well to get histograms for d. These histograms can then be used estimate the variance and mean
vector for the Gaussian likelihood function P (d|m).

Gonzales et al. (2016) identified six distinct rock types from well core analysis: four types of
shales with different silt contents, oil-saturated sandstone, and sand/shale laminar mixed with oil.
Figure 20.22 shows a set of logs from the available well indicating the depth levels (colored samples)
that define each of the six initial rock types. The workflow in Figure 20.22 illustrate the steps for
computing the posterior P (m|d) and the rock types from the inverted seismic data in Figure 20.21.

1. Log and core measurements from wells are used to get the marginal probability distributions
P (m)rock for different rock types.

2. The Vp, Vs, and density logs in Figure 20.22 are used to generate a seismic model at the
well, and this model is used to generate seismic data that are inverted for AI and Vp/Vs as a
function of depth along the well. The range of values for AI and Vp/Vs for the shale 1 interval
(dark green) are plotted as the dark green points in Figure 20.23.

3. The d = (AT, Vp/Vs) generated in the previous step for a range of earth models can be used to
estimate conditional probability functions P (m|d) for each lithofluid facies. For example, the
AI − Vp/Vs points for each rock type can be computed and plotted in the AI − Vp/Vs plane.
A bivariate Gaussian (see Figure 20.23) is then fitted to these points to define the lithofluid
facies likelihood function P (d|m) for data along the well.

4. The P (d|m) computed from well log data can now be applied to the inverted seismic data in
Figure 20.21, and then Bayes’ Theorem can be used to get the posterior probability P (m|d)
at every subsurface point in the seismic section. Similar to the Xu et al. (2016) example,
both the facies type and its uncertainty can be now be computed at every subsurface point
because d = (AI, Vp/Vs) is known everywhere in the seismic section.

20.7 Summary

We reviewed important aspects of Bayes’ Theorem where several examples are used to illuminate
its meaning. The cancer example is used to geometrically interpret the scaling factor in Bayes’
formula as the ratio of the areas in the X and Y sub-universes of events. The conditional probability
P (X |Y ) conditioned on the larger sub-universe Y will always be smaller than P (Y |X) for the smaller
sub-universe X because there are fewer events in X . Fewer events in X means that there is a greater
likelihood for the common events X ∪ Y to occur. For the cancer example, Bayes’ formula is also
medically interpreted in terms of the number NTP of people with true positives divided by the total
number NT of people who tested positive. Here, NT = NTP + NFP can explain why a test with
high value of P (T |C) can be an unreliable predictor 0 < P (C|T ) << 1 of cancer in a largely healthy
population.
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Figure 20.21: a) Stacked seismic section, b) AI section, and Vp/Vs section obtained from
the seismic data. Figure adapted from Gonzales et al. (2016).
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Figure 20.22: Log data on the left and workflow on the right. Workflow describes the
steps for estimating the rock classes and uncertainties at each point in the subsurface from
seismic data. The depth samples in the logs are color coded by rock types interpreted from
petrophysical observations: four shales (increasing silt content from shale 1 to shale 4),
laminated sand with hydrocarbons, and clean/blocky sand with hydrocarbons. From left
to right: gamma ray (API), density (g/cm3), compressional velocity (m/ms), and shear
velocity (m/ms). Figure from Gonzales et al. (2016).

The motivation for using Bayesian inversion or a regularizer in the least squares objective func-
tion is that we can incorporate prior beliefs or information into the final solution. This is important
when there are few data points and many model parameters because it prevents overfitting . The
optimal model then focuses on the really important features of the data. For example, assume you
flip a coin just three times and each time it comes up heads. A classical MLE estimate of the next
flip would overfit and predict a 100% chance of heads. In comparison, the Bayesian (or regularized
inversion) use of the prior knowledge that, e.g. P (H) = 0.7, suggests a more reasonable estimate of
the chance of flipping a head.

There are four steps to computing the posterior distribution from Bayes’ Theorem:

1. Identify the independent events being investigated. For the well-log example in Xu et al.
(2016), the model might consist of five types of rock {RT 1, RT 2, RT 3, RT4, Shale}, and the
data consist of the 1× 4 vector in equation 20.44 at each depth level.

2. Compute a frequency table for these events, and from this table compute P (m)rock, P (d|mrock)
and P (d). For geophysical analysis, the physics that connects the data with the model allows
us to develop a fast forward modeling method to predict the data for each model m. From
these simulations, the covariance matrix and mean of the likelihood function P (d|mrock) can
be estimated and then used in equation 20.46. This differs from the medical field where there
often is not a rigorous modeling formula that connects m with d. In this case, the likelihood
must often be estimated from a massive data base obtained from records of many patients.

3. Find the rock properties m∗ and rock type rock∗ by a search method, e.g. equation 20.47,
that best explains the new data d0.

4. Plug the formulas for P (d|mrock), P (d) and P (m)rock into Bayes’ formula to compute the
posterior formula for P (m|d0). This can then be used to give the standard deviation for the
estimate m∗ and rock type.
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Figure 20.23: Bivariate plot of Vp/Vs plotted against AI for various points extracted from
the processed synthetic data. The elliptical contours are those for the Gaussians best fitted
to the data for each rock type. Figure from Gonzales et al. (2016).
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The equivalence between Bayesian inversion and regularized least squares inversion is established.
A penalty function, such as the KL regularizer, can be used to encourage the model’s probability
distribution to be the same as that for a specified one. The model penalty term for the regularized
objective function encourages the model to not only fit the data but also appear similar to the
characteristics of a preferred model. Finally, examples are presented that illustrate how Bayes’
Theorem can be used to estimate source of an oil spill, determine the velocity model and uncertainty
from VSP traveltime data, compute the location and its uncertainty of a hydrofrac source from
passive seismic data, and predict rock types from geophysical data. A powerful tool for Bayesian
analysis is the use of fast synthetic modeling that can accurately predict data from physical models.
This can be used to generate distributions of data from distributions of physical models, and so
partly alleviates the need for acquiring a large number of field data examples.

20.8 Exercises

1. Explain why the sum of the probabilities in the third column of Table 20.1 should be equal
to 1.

2. Prove equation 20.38.

3. Show that the 1st-order finite-difference approximation to a 1st-order derivative given by

L̄ =




1/l1 0 0
−1/l1 1/l2 0

0 −1/l2 1/l3


, (20.49)

is the inverse to the finite-difference approximation of the integration operator

L =



l1 0 0
l2 l2 0
l3 l3 l3


. (20.50)

Now show that L̄L̄T is the inverse to LTL. Write out the explicit matrix form for L̄L̄T and
compare it to the 5× 5 matrix [LTL]−1 in equation 20.35.

4. Prove that L in equation 20.50 can be expressed as

L =

D1︷ ︸︸ ︷

l1 0 0
0 l2 0
0 0 l3




I︷ ︸︸ ︷


1 0 0
1 1 0
1 1 1


, (20.51)

where I is the discrete approximation to an integration operator
∫ z

0
dz′ with ∆z′ = 1. Now

show that I−1D−1
1 is the inverse of L = D1I. Here, D−1

1 is the diagonal matrix with diagonal
elements equal to the reciprocal of the diagonal elements of D1.

5. Show that I−1 is a discrete approximation to a 1st-order derivative that has a lower bi-diagonal
structure. Also show that I−1I = I, where I is the identity matrix. Is it surprising that the
inverse to an integration operator is a finite-difference approximation to a derivative?

6. Denote the top 5× 5 block of the L matrix in equation 20.78 as L1 and the underlying 5× 5
block as L2. Show that

[LTL] = [LT
1 L1] + [LT

2 L2],

= IT [D2D2 +D1D1]I. (20.52)
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Now find the inverse matrix [LTL] in terms of I−1 and [D2D2 + D1D1]
−1. What is the

discrete-approximation interpretation of I−1I−T ?

7. Change the probabilities in Table 20.1 so that P (C) = 0.7 and P (C̃) = 0.3. Recompute
the posteriors for a single cancer test and two cancer tests. Intuitively explain the results
compared to the original posteriors for P (C) = 10−5 and P (C̃) = 0.99999.

8. A Yunsong Huang Problem. Assume N tests T1, . . . , TN that are conditionally indepen-
dent given C, as well as given C̃, namely,

P (T1, . . . , TN |C) =
N∏

i

P (Ti|C), (20.53)

P (T1, . . . , TN |C̃) =
N∏

i

P (Ti|C̃). (20.54)

Assume

P (Ti|C) ≡ 1, (20.55)

P (Ti|C̃) , φ < 1, ∀i. (20.56)

We obtain

P (C|T1, . . . , TN) =
P (T1, . . . , TN |C)P (C)

P (T1, . . . , TN |C)P (C) + P (T1, . . . , TN |C̃)P (C̃)
,

=

∏N
i P (Ti|C)P (C)∏N

i P (Ti|C)P (C) +
∏N

i P (Ti|C̃)P (C̃)
, (20.57)

=
P (C)

P (C) + φNP (C̃)
, (20.58)

=
1

1 + φN P (C̃)
P (C)

,

≈ 1− φN
P (C̃)

P (C)︸ ︷︷ ︸
P (C̃|T1,...,TN )

, if N ≫ 1. (20.59)

Here, equations 20.53 and 20.54 are used to yield equation 20.57; equations 20.55 and 20.56
are used to yield equation 20.58. Equation 20.59 says that, a large number of conditionally
independent tests are able to strengthen the confidence of the tests in that the probability of
false positive is geometrically reduced by φN .

Go to the literature and extract the values of P (T1|C), P (T1|C̃), P (C) and P (C̃) for estimating
the posteriors for various problems such as defect testing of manufactured goods, testing for
diseases such as COVID, etc. Plot the graphs for P (C|T1, T2, . . . , TN) versus iteration number
N for these different problems. Explain their differences.

9. Go to the 22:21 clip of the video https://www.youtube.com/watch?v=Pahyv9i X2k and show
that the mean and variance of the posterior are given by

µ1 =
(µ0/τ

2
0 ) + (y/σ2)

(1/τ20 ) + (1/σ2)
;

1

τ21
=

1

τ20
+

1

σ2
. (20.60)
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10. We have three coins5, where the probability of getting heads for coin A is P (A) = 0.5, heads
for coin B is P (B) = 0.6 and heads for coin C is P (C) = 0.9. We have a drawer containing 4
coins: 2 of type A and 1 for type B and 1 for type C. I pick a coin at random from the drawer.
Without showing you the coin, I flip it once and get heads. What is the probability it is type
A? Type B? Type C? Create a table of posterior, likelihood and prior function values similar
to that shown in Table 20.4.

11. Change the marginal probabilities in Table 20.1 so that P (C) = 0.4 and P (C̃) = 0.6. Recom-
pute P (C|T ) and explain why the positive test result is much more reliable than before.

12. Let the letter S denote the event that you have been successfully vaccinated against the Covid
virus. If Pf denotes the event of being vaccinated by the Pfizer vaccine, then the probability
of avoiding the Covid virus is given by P (S|Pf) = 0.95 according to statistical data. If
1/2 the population is vaccinated by Pfizer and the other half by the Whatever vaccine with
P (S|W ) = 0.25, what is the fraction P (S) of the total population that has successfully avoided
the Covid virus by either the Pfizer or Whatever vaccines? What are the meanings of P (W )
and P (Pf)? From the previous problem, find the value of P (Pf |S) and describe in words
what it means.

13. An ad hoc means6 for updating an unknown prior P (M) is to estimate the posterior P (M |D) =
P (D|M)P (M)/P (D) by assuming a non-informative prior. That is, P (M) is taken from a
uniform distribution where all possible outcomes have the same probability. This is also known
as the principle of insufficient reason. Each time you include a new experiment outcome, you
can use the old P (M |D)old to update your new prior P (M)new ≈ P (M |D)old, which can be
used to update your new posterior P (M |D)new = P (M |D)newP (M)new/P (D)new for a new
flip. Here, M indicates the flip of a head, D indicates the next flip is a head, and M̃ and D̃
both indicate a tail, and P (D) = P (D|M)P (M) + P (D|M̃)P (M̃).

Now assume three experiments which result in three sequential head flips in a row. This suggest
that P (D|M) = 1, P (M) = 1, P (D) = 1 and P (M |D) = 1. Assume a new experiment flips
a tail, so compute the new values for P (D)new , P (D|M)new and P (M)new ≈ P (M |D)old.
These updated values are used to compute the new posterior P (M |D). Repeat this process
for 5 more coin flips where the outcome of each new coin flip is opposite from the previous
flip. What is the final P (M |D)?

20.9 Appendix: Bayes’ Theorem Examples

Two examples of applying Bayes’ Theorem are presented. The first one is an univariate example
for predicting the chance of rain given the next day’s weather: a priorcast! The second one is a
multivariate example for assessing the chances of going biking as a function of the weather pattern.

20.9.1 Example: Rainy Weather

As an example from Wikipedia7, we define a P (S) = 0.40 probability of rain on Sunday, a
P (M) = 0.52 probability of rain on Monday, and the conditional probability

P (M |S) = 0.10, (20.61)

which are denoted by the numbers in black font seen in Figure 20.24a-20.24b. This says that
there is a 10% chance that it will rain on Monday if it rains on Sunday. Here, S indicates a rain

5This problem is from the lecture notes of Orloff and Bloom’s Class 11 at MIT.
6See https://www.youtube.com/watch?v=R13BD8qKeTg.
7https : //simple.wikipedia.org/wiki/Bayes%27 theorem
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event on Sunday and M indicates a rain event on Monday, and a tilde above the variable, e.g. M̃
and S̃, indicates that the rain event did not happen on the day indicated by the letter. We also
know that there is an 100 × P (M |S̃) = 80% chance that it rains on Monday given that it did not
rain on Sunday. This value can be obtained from the statistical records of rain. The probability
P (M) = 0.52 (green fonts in Figure 20.24a) of it raining on Monday can be obtained by employing
the Law of Total Probability in Figure 20.24c and the given values of the conditional and marginal
probabilities in Figure 20.24a-20.24b. This means that probability of it not raining on Monday is
P (M̃) = 1− P (M) = 1− .52 = 0.48, which agrees with the value of P (M̃) = 0.48 computed by the
Law of Total Probability in Figure 20.24c.

a) Marginal Probabilities                                   b) Conditional Probabilities

~Monday no 

rain

Monday

rain

Sunday

no  rain

Sunday 

rain

P(M|S)=0.20 P(M|S)=0.90

P(M|S)=0.10P(M|S)=0.80

~

~

~P(S) = 0.40

no  rain rain

Monday

Sunday ~

P(M)=0.48~ P(M)=0.52

P(S) = 0.60

c)     Total Law of Probability                             d) Bayes’ Rule

P(M) = P(M|S)P(S) + P(M|S)P(S) 

= 0.1  x  0.4   + 0.8  x  0.6 = 0.52

~ ~ P(S|M) = P(M|S)P(S)/P(M)

= 0.1x0.4/0.52

= 0.0769

P(M) = P(M|S)P(S) + P(M|S)P(S) 

=  0.9  x  0.4   +   0.2  x 0.6 = 0.48

~~~~~

Figure 20.24: Values of the a) marginal and b) conditional probabilities for the simple rain
example. The numbers in black font are given either by records or deduced from constraints
such as P (M) + P (M̃ ) = 1 or P (S) + P (S̃) = 1. The values in red or green fonts in c) are
computed from the Law of Total Probability in c). Bayes’ Rule in d) is used to compute
the value of P (S|M) = 0.0769.

So, how can we determine the probability P (S|M) it rained on Sunday if we know that it rained
the next day on Monday? The conditional probability P (S|M) can be considered as a priorcast
which has reversed the letter ordering in equation 20.61, so we can use Bayes’ Theorem

P (S|M) =
P (M |S)P (S)

P (M)
,

=
0.10 · 0.40

0.52
= 0.0769, (20.62)

in Figure 20.24d to say there is a 100 × P (S|M) = 7.69% chance it rained on Sunday despite the
fact it rained the next day on Monday.

Wait a minute, how come P (S|M) 6= P (M |S) in equations 20.61-20.62? Shouldn’t there be a
symmetrical relationship? No, unless the chance P (M) for rain on Monday is the same as that P (S)
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for Sunday. Rearranging equation 20.61 shows that there is a reciprocal relationship in the ratios of
the conditional probabilities:

P (M |S)
P (S|M)

=
P (M)

P (S)
. (20.63)

This means that P (M |S) = P (S|M) if there is an equal chance of rain on either Sunday or Monday.
On the other hand, if there is a much greater chance of rain on a Monday than on a Sunday, i.e.
P (M) >> P (S), then it makes sense that the chances of a Monday rain P (M |S) = 0.1 should be
greater than that of a Sunday rain P (S|M) = 0.0769.

20.9.2 Example: Biking and Weather

In the previous example, the RVs are binary and can take on only one of two values, e.g. M = 1
(yes) or M̃ = 0 (no). Bayes’ Theorem can also be applied to RVs that can take on more than 2
different values, e.g. W ∈ {1, 2, 3}. Let us now use Bayes’ Theorem in an example where the decision
to go biking B = 1 (yes) or B̃ = 0 (no) is conditioned on the three types of weather:

Sunny : W = 1, Overcast : W = 2, Rainy : w = 3. (20.64)

Assume that you want to go biking, but you need to decide if the weather is sunny enough.
Most often, you go biking on sunny days and usually don’t go biking on rainy days. The second
column of Table 20.2 gives the weather forecast and the third column gives the decision of whether
to go biking or not. There are three types of forecast and the input to each day is assigned to the
RV W ∈ {O,S,R} associated with one of the three forecasts in equation 20.64, where O, S and R
indicates overcast, sunny and rainy, respectively. The decision to go biking8 is assigned the binary
RV B ∈ {B, B̃}, where B = 1 indicates the decision to go biking and B̃ = 0 indicates no biking.

There are two steps to implementing Bayes’ Theorem for this example:

• Collect data and organize it into Table 20.2 for the training pairs (W,B).
• Convert Table 20.2 into the frequency Table 20.3. These data can then be used to compute
P (B|W ) from Bayes’ Theorem.

The weather frequencies P (O), P (S) and P (R) and biking frequency P (B) = 10/14 are given in
Table 20.3, and the conditional biking frequencies as a function of weather type can be obtained from
Table 20.2. These are used to compute the estimates of P (B|W ), as demonstrated in equation 20.67.

The last row in Table 20.3 says that you went biking 10 out of the 14 available days, so that the
probabilities of Biking and not B̄iking are

P (B) = 0.71; and not biking P (B̃) = 1− P (B) = 0.29, (20.65)

respectively. The last column of Table 20.3 suggests that the probabilities of Overcast, Rainy, and
Sunny weather are

P (O) = 0.35, P (R) = 0.29; P (S) = 0.35, (20.66)

respectively.
The last column in Table 20.2 says that on the 10 days of biking, only 3 of the days were sunny,

i.e.

P (S|B) = 3/10 ≈ 0.3. (20.67)

8https://www.javatpoint.com/machine-learning-naive-bayes-classifier
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Table 20.2: Weather forecast & bike decision.
Day W: Weather Forecast B: Biking?

0 Rainy Yes
1 Sunny Yes
2 Overcast Yes
3 Overcast Yes
4 Sunny No
5 Rainy Yes
6 Sunny Yes
7 Overcast Yes
8 Rainy No
9 Sunny No
10 Sunny Yes
11 Rainy No
12 Overcast Yes
13 Overcast Yes

Table 20.3: Weather Forecast Frequency.
Weather Biking: Yes Biking: No Frequency
Overcast 5 0 P (O) : 5/14=0.35
Rainy 2 2 P (R) : 4/14=0.29
Sunny 3 2 P (S) : 5/14=0.35
Total 10 4

Frequency P (B)=10/14=0.71 P (B̃)=4/14=0.29

What is the probability P (B|S) of it being sunny and then deciding to go biking? The answer can
be obtained either by event counting in Table 20.2 or by Bayes’ Theorem using the quantities in
equations 20.65-20.67. Bayes’ Theorem says that

P (B|S) = P (S|B)P (B)

P (S)
=

0.3× 0.71

0.35
= 0.6, (20.68)

where the first term on the left side expresses the conditional probability in terms of the sunny S
and the biking B variables.

An alternative way for computing P (B|S) is to examine Table 20.2 and notice that there were
5 sunny days, and we decided to go biking on 3 of them. Thus,

P (B|S) = 3/5 = 0.6; P (B|O) = 5/5 = 1; P (B|R) = 2/4 = 0.5, (20.69)

where P (B|S) = 3/5 = 0.6 agrees with the estimate in equation 20.68. The other conditional
probabilities were computed by counting events in Table 20.2. One of the dangers in estimating prior
probabilities from a small sample size is that the sample size might be too small to get an accurate
estimate of true probabilities. For example, if the bicycle was mostly in the shop for repairs for the
June data in the table, then P (B) computed from June data is severely underestimated compared
to a table that sampled data over a year.

Table 20.4 summarizes the values of the posterior probabilities that are used to compute P (W |B1)
for biking in different weather conditions in section 20.9.2. Instead of using the RV B to indicate
biking, we will later use B1 because we will later need to use another RV, denoted as B2, to indi-
cate biking on another day. Note, the sum of unnormalized posterior values in the fifth column of
Table 20.4 should sum to P (B1), i.e.,

P (B1) = P (B1|O)P (O) + P (B1|R)P (R) + P (B1|S)P (S), (20.70)

because of the Law of Total Probability. Here, the events O, R, S are disjoint (it can’t be sunny,
rainy or overcast at the same time in an idealized world) and the union of these events explain any
type of weather pattern. This is how the value of P (B1) is obtained to compute the divisor for the
posterior probability functions P (B1|W )P (W )/P (B1) in the last column.

Why did we go through the trouble of Bayes’ Theorem to compute P (B|S) when we could have
determined it from Table 20.2? The answer is that we might only have access to information in
equations 20.65-20.67, but we do not have access to the entire contents of Table 20.2. That is, only
the third column of numbers might have been given to us in order to compute P (B); we were not
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Table 20.4: Summary of the probability mass, likelihood and posterior probability functions
for the biking-weather data. Here, {B1, B̃1} and W ∈ {O,R, S} where B1 indicates the
event of biking and B̃1 = 0 indicates the event of not biking. The hypothesis events for
overcast, sunny and rain are denoted by, respectively, O, S and R.

Evidence Hypothesis Prior Likelihood Unnormalized Posterior 1
eq. 20.65 eq. 20.66 Prior (eq. 20.69) Posterior 1

P(B1) W P(W) P(B1|W) P(B1|W)P(W) P(W|B1)=
P (B1|W )P (W )/P (B1)

P(B1)=10/14 O P(O)=0.35 P(B1|O)= 1.0 P(B1|O)P(O)=0.35 P(B1|O)P(O)/P(B1)=0.49

P(B1)=10/14 R P(R)=0.29 P(B1|R)= 0.5 P(B1|R)P(R)=0.145 P(B1|R)P(R)/P(B1)=0.203

P(B1)=10/14 S P(S)=0.35 P(B1|S)= 0.6 P(B1|S)P(S)=0.21 P(B1|S)P(S)/P(B1)=0.294

Total
∑

=0.99
∑

=0.705
∑

=0.99

given each weather forecast paired with the decision to go biking. Separately, the numbers in the
2nd column of Table 20.2 are given to us to get P (S), but again the numbers are not paired up with
a particular day or a biking decision. For the case of continuous variables, the posterior function is
fitted to a Gaussian after suitable training, which can then can be used to accurately predict the
posterior for new input data.

20.10 Appendix: Naive Bayes’ Theorem, Weather and Bik-

ing

Assume that the decision to go biking also depends on how windy it is: if it is too windy then one
tends to not go biking. Table 20.5 is the same as Table 20.2, except it now lists the wind conditions
as either windy X2 = 1 or not windy X2 = 0. In this case X2 is a binary RV∈ {0, 1}. Therefore, if
X1 is the RV associated with the weather forecast and X2 is the one for the wind conditions then
the multinomial conditional PMF is P (X1, X2|Y ) rather than P (X |Y ) for Table 20.2. Therefore,
the Naive Bayes’ equation 20.16 becomes

P (Y |X1, X2) =
P (X1|Y )P (X2|Y )P (Y )

P (X1, X2)
. (20.71)

The numbers in Table 20.5 can be used to get P (X1|Y ) and P (X2|Y ), similar to the procedure for
getting the conditional probabilities in Table 20.2. The marginal PMFs P (X1) and P (X2) can be
obtained from a table similar to that of Table 20.3, except it would contain the wind conditions as
well for each day.

20.11 Appendix: Kullback-Leibler Regularizer

An objective function ǫ is usually composed of a data loss function such as
∑

n(d
(n)− d̃(w)(n))2

and a model penalty function R(w):

ǫ =
1

2

∑

n

(d(n) − d̃(w)(n))2 + λR(w), (20.72)

where d(w)(n) is the predicted data for the nth training example, w represents the model parameters
and the summation in n is over training examples. The damping parameter is λ, where large values
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Table 20.5: Weather forecast, wind & bike deci-
sion.
Day X1: Weather Forecast X2: Windy Y: Biking?

0 Rainy Not Windy Yes
1 Sunny Not Windy Yes
2 Overcast Not Windy Yes
3 Overcast Not Windy Yes
4 Sunny Windy No
5 Rainy Not Windy Yes
6 Sunny Not Windy Yes
7 Overcast Not Windy Yes
8 Rainy Windy No
9 Sunny Windy No
10 Sunny Not Windy Yes
11 Rainy Not Windy No
12 Overcast Not Windy Yes
13 Overcast Not Windy Yes

of λ prioritize models that minimize the model penalty term and smaller λ values prefer models that
minimize the data loss function. The rationale for this regularization is that ill-posed optimization
problems are often characterized by many models that almost fit the same data. Of all these
possibilities we might prefer a model that has certain smoothness properties or one that is close to
the property of a preferred model. An example of such a property might be that the mean of the
model parameters should be small, or perhaps the jth activation output aj(x

(i)) of a neural network
layer should have a mean that is small; here, the superscript for the layer index is silent and x(i)

represents the input data into that layer for the ith training example.

The average value of the output of an activation layer is defined as

ρ̂ =
1

M

M∑

j=1

[aj(x
(i))], (20.73)

for the ith training example. The motivation for using a regularizer that promotes a small value of
ρ̂ is that it acts as a sparsity constraint for the NN model. This means less complex models and
encourages the trained network to focus on the really important features, highly reducing the risk of
overfitting (Hinton, 2013; Berthelot et al., 2018). One such regularizer is the Kullback-Leibler (KL)
regularization term described below9.

The goal of the KL regularizer is to (approximately) enforce the constraint

ρ̂j = ρ, (20.74)

where ρ is a ’sparsity parameter’ that is close to zero (say ρ = 0.5). This means that the KL penalty
term will prefer models in which the average activation of each hidden neuron j to be close to 0.5
(say). The consequence of enforcing equation 20.74 is that most of the hidden unit’s activations will
be near 0, and only a few, i.e. sparse, number of nodes will be strongly activated.

The KL regularizer R(w) that enforces sparsity is

R(w) =
M∑

j=1

KL(ρ||ρ̂j)︷ ︸︸ ︷
ρ log

ρ

ρ̂j
+ (1 − ρ) log 1− ρ

1− ρ̂j
, (20.75)

9view-source:http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/
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where the summation in j is over the number of neurons M in the hidden layer, and this sparsity
regularizer can be applied to any specified number of layers. A plot of KL(x||x0) = | ln(x/x0)| versus
x is in Figure 20.25, and shows the minimum at x0 = 0.5, with steep sides on either side of this
minimum point x0.

Here, KL(ρ||ρ̂j) is the Kullback-Leibler (KL) divergence between a binary, i.e. Bernoulli, random
variable with mean ρ and a binary random variable with mean ρ̂j . KL divergence is a standard
function for measuring the difference between two different distributions.

0 1 2 3 4 5

x

0

0.5

1

1.5

2

2.5

3

3.5

4

|ln
(x

/0
.5

)|

|ln(x/0.5)| vs x

Figure 20.25: |ln(x/x0)| penalty function plotted against x for x0 = 0.5.

The KL penalty function has the property that KL(ρ||ρ̂j) = 0 if ρ̂j = ρ, and otherwise it
increases monotonically as ρ̂j diverges from ρ. For example, in Figure 20.25, x0 = ρ = 0.5 and
KL(ρ||ρ̂j) = | ln(x/x0)| is plotted for a range of values of ρ̂j = x: We see that the KL-divergence
reaches its minimum of 0 at ρ̂j = ρ = x0 = 0.5, and blows up (approaches∞) as ρ̂j approaches 0 or
1. Thus, minimizing this penalty term has the effect of causing ρ̂j = x to be close to the specified
ρ = x0 = 0.5.

The KL regularizer in equation 20.75 can be inserted into equation 20.72 to give the cost function
with the KL regularizer. The term ρ̂j implicitly depends on w because it is the average activation
of the jth hidden unit, which explicitly depends on these model parameters. The gradient of this
term for back-propagation is

δ
[2]
i =




s2∑

j=1

w
[2]
ji δ

[3]
j


 f ′(z

[2]
i ), (20.76)

where we have inserted the layer superscript number [2] to terms in the second layer and the su-

perscript [3] for the input from the next deeper layer. Here, δ
[2]
i and δ

[3]
i are, respectively, the ith

components of the back-propagation gradients in layers 2 and 3 (see equation 4.23 for the term
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f ′(z
[2]
i )). If the regularizer term is included then the gradient becomes

δ
[2]
i =






M∑

j=1

w
[2]
ji δ

[3]
j


+ γ

(
− ρ
ρ̂i

+
1− ρ
1− ρ̂i

)
 f ′(z

[2]
i ). (20.77)

According to Ng et al.10 we have the following comments about implementation of the KL gradient.

One subtlety is that you’ll need to know ρ̂i to compute equation 20.77. Thus, you’ll need to compute
a forward pass on all the training examples first to compute the average activations on the train-
ing set, before computing back-propagation on any example. If your training set is small enough
to fit comfortably in computer memory (this will be the case for the programming assignment), you
can compute forward passes on all your examples and keep the resulting activations in memory and
compute the ρ̂i’s. Then you can use your precomputed activations to perform back-propagation on
all your examples. If your data is too large to fit in memory, you may have to scan through your
examples computing a forward pass on each to accumulate (sum up) the activations and compute

ρ̂i (discarding the result of each forward pass after you have taken its activations a
[2]
i into account

for computing ρ̂i). Then after having computed ρ̂i, you’d have to redo the forward pass for each
example so that you can do back-propagation on that example. In this latter case, you would end up
computing a forward pass twice on each example in your training set, making it computationally less
efficient.

20.12 Appendix: Multisource VSP and [LTL]−1

For a 5-interface velocity model with two sources, the first source with s = 0 has a src-rec offset
∆x = 0 and the other with s = 1 has offset ∆x. The resulting traveltime equations form a 10 × 5
matrix L that is a concatenation of two 5× 5 blocks of lower-triangular matrices:

L︷ ︸︸ ︷


l
(0)
1 0 0 0 0

l
(0)
2 l

(0)
2 0 0 0

l
(0)
3 l

(0)
3 l

(0)
3 0 0

l
(0)
4 l

(0)
4 l

(0)
4 l

(0)
4 0

l
(0)
5 l

(0)
5 l

(0)
5 l

(0)
5 l

(0)
5

l
(1)
1 0 0 0 0

l
(1)
2 l

(1)
2 0 0 0

l
(1)
3 l

(1)
3 l

(1)
3 0 0

l
(1)
4 l

(1)
4 l

(1)
4 l

(1)
4 0

l
(1)
5 l

(1)
5 l

(1)
5 l

(1)
5 l

(1)
5




s︷ ︸︸ ︷


s1
s2
s3
s4
s5




=

tobs︷ ︸︸ ︷


t
(0)
1

t
(0)
2

t
(0)
3

t
(0)
4

t
(0)
5

t
(1)
1

t
(1)
2

t
(1)
3

t
(1)
4

t
(1)
5




. (20.78)

The above 10× 5 matrix L can be expressed as L = [L0,L1], where L0 = D0T and L1 = D1T are
the, respectively, top and bottom 5× 5 sub-blocks of L. Here, T is the 5× 5 lower-triangular matrix
with lower-triangular values of 1 and D0 and D1 are 5× 5 diagonal matrices with diagonal elements

[D0]ii = l
(0)
i and [D1]ii = l

(1)
i . The inverse T−1 is the 1st-order backward-difference operator

(Schuster, 1989) and [TTT]−1 = T−1T−T is the second-order backward-difference operator.

10http : //deeplearning.stanford.edu/tutorial/ and material at http://ufldl.stanford.edu/tutorial/.
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Therefore, the normal matrix is given by

LTL = [LT
0 L0 + LT

1 L1],

= TT [D2
0 +D2

1]T,

= TTD2T, (20.79)

where the sum of the squared diagonal matrices can be expressed as the diagonal matrix D2 =

D2
0 +D2

1, with diagonal components [D]ii =
∑1

s=0 l
(0)2
i . The inverse (Schuster, 1988 and 1989) to

the normal matrix [LTL]−1 = T−1D−2T−T is

[LT
L]−1 =





















1
∑1

s=0 l
(s)2
1

− 1
∑1

s=0 l
(s)2
1

0 0 0

− 1
∑1

s=0 l
(s)2
1

1
∑1

s=0 l
(s)2
1

+ 1
∑1

s=0 l
(s)2
2

− 1
∑1

s=0 l
(s)2
2

0 0

0 − 1
∑

1
s=0 l

(s)2
2

1
∑

1
s=0 l

(s)2
2

+ 1
∑

1
s=0 l

(s)2
3

− 1
∑

1
s=0 l

(s)2
3

0

0 0 − 1
∑1

s=0 l
(s)2
3

1
∑1

s=0 l
(s)2
3

+ 1
∑1

s=0 l
(s)2
4

− 1
∑1

s=0 l
(s)2
4

0 0 0 − 1
∑1

s=0 l
(s)2
4

1
∑1

s=0 l
(s)2
4

+ 1
∑1

s=0 l
(s)2
5





















,

which reduces to the 2nd-order backward-difference operator if D is the identity matrix. As the
number of sources increase the variance [LTL]−1

ii associated with the ith slowness parameter de-
creases. The inverse matrix in equation 20.80 has the same tridiagonal structure as that in the

equation 20.35, except now the squared segment lengths l
(s)
n

2
in the denominators have been re-

placed by their summation
∑2

s=1 l
(s)
n

2
over the number of sources.

20.13 Appendix: Conditional Covariance Matrix

The formulas for the mean and covariance matrix will be derived for the conditional distribution
p(d|m), which will be referred to as the likelihood function in the context of Bayes’ Theorem. We
will make use of the fact that exponent of a general Gaussian function can be written as

−1

2
(x− µ)TΣ−1(x− µ) =

quadratic in x︷ ︸︸ ︷
−1

2
xTΣ−1x +

linear in x︷ ︸︸ ︷
xTΣ−1µ +cnst, (20.80)

where Σ−1 is the inverse covariance matrix and µ is the mean. In determining the mean and
covariance matrix of target distributions, the key step is to beat their exponentials into forms that
are identical to the one of the right, which is a sum of weighted quadratic and linear terms in x.
Once this is accomplished then their weights can be identified as the covariance and mean of the
target distribution. This procedure is called completing the square (Bishop, 2006).

The goal is to derive formulas for the mean and covariance matrix of the likelihood function
p(d|m) in terms of the mean and covariance matrix of the joint distribution p(m,d). We begin by
assuming the joint probability distribution p(z) = p(d,m) with the vector z and its mean defined
as

z =

{
d
m

}
and µ =

{
µd

µm

}
. (20.81)
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Therefore, the joint covariance matrix is

Σ =< (z− µz)(z− µz)
T > =

[
< (d− µd)(d− µd)

T > < (d− µd)(m − µm)T >
< (m− µm)(d− µd)

T > < (m − µm)(m − µm)T >

]
,

=

[
Σdd Σdm

Σmd Σmm

]
. (20.82)

Symmetry of the covariance matrix demands < (m−µm)(d−µd)
T >=< (d−µd)(m−µm)T >T .

That is, Σmd = ΣT
dm.

The inverse of this joint covariance matrix is given by a system of sub-block matrices:

Σ−1 =

[
Σdd Σdm

Σmd Σmm

]−1

=

[
Λdd Λdm

Λmd Λmm

]
, (20.83)

where the sub-blocks of the matrixΣ−1 are denoted by terms such as Λdm with subscripts associated
with the type of variable that appears in the exponent of the Gaussian p(d,m). These sub-blocks
Λdd, Λdm, Λmd, and Λmm are those for the inverse covariance matrix Σ−1 = Λ of the joint
distribution. Surprisingly, the expression for the conditional covariance matrix Σd|m will be the

same as Λ−1
dd , i.e. Λ

−1
dd = Σd|m as we will now show by comparing the arguments of the exponentials

for the joint and conditional distributions.

The argument of the exponential in the joint Gaussian distribution is

exp. argument of joint distribution p(m,d)︷ ︸︸ ︷
−1

2
(z− µz)

TΣ−1(z − µz) =

quadratic in d︷ ︸︸ ︷
−1

2
(d− µd)

TΛdd(d− µd)−
1

2
(d− µd)

TΛdm(m− µm)

− 1

2
(m− µm)TΛmd(d− µd)−

quadratic in m︷ ︸︸ ︷
1

2
(m− µm)TΛmm(m− µm) .

(20.84)

The goal is to now identify the argument of this joint distribution p(m,d) with that of the likelihood
distribution p(d|m) = p(m,d)/p(m), and then determine the formulas for the mean covariance
matrix of p(d|m) from those in p(m,d). How do we do this? The answer is to recognize that
p(d|m) = p(m,d)/p(m) considers m to be a constant, so the argument of its exponential will
contain the following quadratic and linear terms in d:

exp. argument of likelihood distribution p(d|m)︷ ︸︸ ︷
−1

2
(d− µd|m)TΣ−1

d|m(d− µd|m) = −1

2

quadratic in d︷ ︸︸ ︷
dTΣ−1

d|md +

linear in d︷ ︸︸ ︷
dTΣ−1

d|mµd|m +cnst,

(20.85)

where the likelihood’s quadratic d terms here should be matched to the quadratic d terms in equa-
tion 20.84 for the joint distribution. Matching the quadratic d terms in equations 20.84-20.85 allows
us to conclude

Σ−1
d|m = Λdd. (20.86)

To derive the equation for the likelihood’s mean µd|m, we equate the linear-in-d term in equa-
tion 20.84

linear term in joint ln p(m,d) = dT (Λddµd −Λdm(m− µm)), (20.87)
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to the likelihood’s linear-in-d term of equation 20.85 to get

Σ−1
d|mµd|m = {Λddµd −Λdm(m− µm)}. (20.88)

Multiplying both sides by Σd|m gives

µd|m = Σd|m{Λddµd −Λdm(m− µm)}, (20.89)

= µd −Λ−1
dd Λdm(m− µm), (20.90)

where equation 20.86 is used to go from equation 20.89 to equation 20.90.

The analytic formula for the inverse matrix in equation 20.83 can be obtained (see equa-
tion 20.100 or p. 87 in Bishop, 2006) so that Λdd and Λdm of the precision matrix Λ can be
expressed as

Λdd = (Σdd −ΣdmΣ−1
mmΣmd)

−1, (20.91)

Λdm = −(Σdd −ΣdmΣ−1
mmΣmd)

−1ΣdmΣ−1
mm. (20.92)

Manipulation of these equations (Bishop, 2006) provides the following formulas for the conditional
means and covariance terms:

µd|m = µd +ΣdmΣ−1
mm(m− µm), (20.93)

Σd|m = Σdd −ΣdmΣ−1
mmΣmd. (20.94)

Therefore, the conditional covariance matrix Σd|m and mean µd|m can be obtained from those in
the joint distribution.

20.14 Appendix: Bayes’ Theorem and Conditional Covari-

ance Matrix

In Appendix 20.13 the conditional covariance matrix Σd|m and mean µd|m of the likelihood
p(d|m) were expressed in terms of those for the joint distribution p(m,d). In the context of Bayes’
theorem, these parameters are those for the likelihood. Now we employ Bayes’ theorem with the
predictor equation Lm = d+ error and compute the covariance matrix Σm|d and mean µm|d of the
posterior distribution p(m|d) in terms of those for the joint distribution.

The starting point is to assume

p(m) = N (m|µm,Λ
−1),

p(d|m) = N (d|Lm,L−1), (20.95)

where Λ−1 is the covariance matrix for p(m) and L
−1 is that for the conditional distribution p(d|m).
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The natural log of the joint distribution p(m,d) = p(d|m)p(m) is

ln p(m,d) = ln p(m) + ln p(d|m),

= −1

2
[ (m− µm)TΛ(m− µm) + (Lm − d)TL(Lm − d) + cnst],

=

2nd−order terms in joint ln p(m,d)︷ ︸︸ ︷
−1

2
[mT (Λ+ LT

LL)m+ dT
Ld] +mTLT

Ld

+

1st−order− term in m for ln p(m,d)︷ ︸︸ ︷
µT

mΛm −1

2
µT
mΛµm + cnst (20.96)

where cnst is independent of m and d. The second-order terms are not all quadratic in m because
the aim is to transform these second-order terms into a vector-matrix-vector product similar to the
partitioned matrix in equation 20.84, as will be demonstrated below.

The second-order terms in m and d can be expressed as a vector-matrix-vector product:

2nd−order terms in joint ln p(m,d)︷ ︸︸ ︷
−1

2
[mT (Λ+ LT

LL)m + dT
Ld− dT

LLm −mTLT
Ld] = (20.97)

= −1

2

{
m
d

}T

R︷ ︸︸ ︷[
Λ+ LT

LL −LT
L

−LL L

]{
m
d

}
= −1

2
zTRz, (20.98)

where z = (mT dT )T and

R =

[
Λ+ LT

LL −LT
L

−LL L

]
. (20.99)

Here, R is the inverse covariance matrix, aka as the precision matrix, for the joint distribution
p(m,d).

We know that the analytic inverse (see p. 87 in Bishop, 2006) to a 2× 2 block matrix is

[
A B
C D

]−1

=

[
M −MBD−1

−D−1CM D−1 +D−1CMBD−1

]
, (20.100)

where M = (A−BD−1C)−1. Therefore, equation 20.100 can be used to get the analytical inverse
of R in equation 20.98 to give the formula for the joint covariance matrix:

cov(z) = R−1 =

[
Λ−1 Λ−1LT

LΛ−1
L

−1 + LΛ−1LT

]
. (20.101)

Similar to the derivation of the likelihood’s mean in equation 20.88, we can compare the joint
distribution’s first-order linear-in-m term in equation 20.96

linear z term in joint ln p(m,d) =

{
m
d

}T [
Λµm

0

]
= mTΛµm. (20.102)
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to that in the natural log of the posterior function ln p(m|d), i.e.

ln posterior p(m|d)︷ ︸︸ ︷
−1

2
(z− µz)

TR(z− µz) = −
1

2

quadratic in z︷ ︸︸ ︷
zTRz +

linear in z︷ ︸︸ ︷
zTRµz +cnst. (20.103)

The linear z-multiplicative factors of zT in equations 20.103 and 20.102 can be equated to give

Rµz =

[
Λµm

0

]
. (20.104)

Multiplying both sides by R−1 gives the formula for the mean of z:

µz =< z >=<

{
m
d

}
> = R−1

{
Λµm

0

}
=

{
µm

Lµm

}
. (20.105)

which implies

< d > = Lµm. (20.106)

This is not surprising because Lm predicts d, so the average over d should be the same as the
average over m multiplied by L.

The covariance matrix of the marginal distribution for d is

Σdd = L
−1 + LΛ−1LT , (20.107)

which is obtained from the lower-right sub-block in equation 20.101. A special case is that Σdd =
LLT becomes the expression for the unregularized data covariance matrix when Λ = I and L

−1 = 0.
Therefore, equations 20.106-20.107 represent, respectively, the mean and covariance matrix of the
variable d in the joint distribution p(m,d).

The covariance matrix of the posterior p(m|d) can be expressed using the same idea in the
derivation of the covariance of the partitioned covariance Σ−1

d|m = Λdd in equation 20.86. In that
example, the quadratic-in-d term in the upper-left sub-block Λdd of equation 20.84 is matched
with the quadratic-in-d term Σ−1

d|m of equation 20.85 to get equation 20.86. Now, we match the

quadratic-in-m term in equation 20.98 with that in equation 20.80 where x→m and Σ−1 → Σ−1
m|d

to get

Σm|d = (Λ+ LT
LL)−1. (20.108)

To compute the mean µm|d we collect the terms linear in m in equation 20.96

linear − in−m terms = mTLT
Ld+mTΛµm, (20.109)

and match them to the linear-in-m term in equation 20.80 where x→m and Σ−1 → Σ−1
m|d to get

mTΣ−1
m|dµm|d = mTLT

Ld+mTΛµm. (20.110)

Replacing Σ−1
m|d with the expression on the right-side of equation 20.108, we conclude that

µm|d = (Λ+ LT
LL)−1(LT

Ld+Λµm). (20.111)
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a) Shot Points for Edison VSP Survey           b) VSP Shot Gather                        c) Sonic Log and Inverted 
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Figure 20.26: a) Shot points for the VSP survey where the well is located at the large yellow
dot, b) VSP shot gather and c) sonic log (yellow lines) and slowness profiles inverted by
undamped (blue lines) and damped (brown lines) least squares inversion. The green dots
in a) denote the near-offset sources that generated the near-offset shot gathers, where the
direct arrivals are picked and inverted for the velocity model.

20.15 Appendix: Estimation of Statistical Parameters for

VSP Data

The VSP traveltimes are picked from direct arrivals recorded by the Edison 3D VSP survey
(Paulsson and Kelley, 2021). Figure 20.26a depicts the shot points for this survey, but only the
sources (green points) near the well (yellow dot) were used for inverting the traveltimes of direct
waves. A typical shot gather is shown in Figure 20.26b, and the damped and undamped least squares
solutions are compared to the slowness profile from the sonic log in Figure 20.26c.

Bayes’ formula requires the values of the statistical parameters for both p(d) and p(s). The
next two sections describe how the means and covariance matrices are computed for p(d), p(m) and
p(d|m).

20.15.1 Estimating p(d) and p(m)

To determine the standard deviation of the traveltime values ti at the ith depth level, arrival
times of direct waves recorded at the ith geophone11 are plotted against the straight-line distance
between the source and ith geophone in Figure 20.27a. A straight line is fitted to these points and the
traveltimes are approximately flattened by subtracting them from the time along the best-fit straight
line. The standard deviation σd

i of these flattened traveltimes is computed for i = {1, 2, . . . , N},
where N is the number of geophones. It is assumed that the picking errors at the ith geophone
are zero-mean Gaussian distributed with the standard deviation given by σd

i , where Figure 20.27b
depicts σd

i plotted against the depth coordinate zi. The mean slownesses associated with the five
shallowest geophones are plotted in Figure 20.27c, where the standard deviations are denoted by
bars at each depth level.

The picking errors at different geophones are independent of one another. Therefore, the
marginal probability p(d) is defined by the Gaussian p(d) = p(t1, t2, . . . , tN) = p(t1)p(t2)...p(tN ),
where d = (t1, t2, . . . , tN), N is the number of geophones and ti is the picked traveltime at the ith

geophone.

11The ith depth level is the depth of the ith geophone along the vertical well.
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a) Src-Rec Distance vs Time                b) Standard Dev. vs. Depth              c) Mean Slowness vs Depth
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Figure 20.27: a) Arrival times plotted against straight-line distance between the source and
downhole receiver, b) standard deviation σdi of traveltimes from a) for each receiver, and
c) mean slowness s̄i computed by dividing the distance dij from the jth source to the ith

receiver to get the average slowness s̄i =
1
Ni

∑Ni
j=1 tj/dij down to the ith interface. Here, Ni

is the number of direct arrivals recorded by the ith receiver and tij is the arrival time of the
direct wave excited by the jth source and recorded at the ith receiver.

The statistical parameters for p(m) are determined by assuming ergodicity in the slowness
variable so that the average slowness µslow

i and standard deviation σslow
i at the ith depth level are

computed over a small window in the sonic log. The window is centered at the ith depth level, and
both µslow

i and σslow
i for i ∈ {1, 2, . . . , N} are computed by centering this window at each geophone

level. The covariance values < sisj > can be computed as well, but for simplicity we assumed
uncorrelated slowness values < sisj >= 0 if i 6= j.

20.15.2 Estimating p(d|m)

We assume that the data have independent random errors that are normally distributed with
mean-value zero. The probability density function for the ith observation di is taken to be

pi(di|m) =
1

(2π)
1
2σi

e
− 1

2

(di−(Lm)i)
2

σ2
i , (20.112)

where the standard deviation of the ith observation di is σi, which is approximated by the computed
error σd

i in this case.

The likelihood function for the complete dataset is now given by

p(d|m) = p1(d1|m)p2(d2|m) . . . pm(dm|m) =
1

(2π)
M
2 Πm

i=1σi
Πm

i=1e
− 1

2

(di−(Lm)i)
2

σ2
i . (20.113)

We can write the likelihood function p(d|m) in the more compact form as

p(d|m) =
1

(2π)
m
2 |Σd|m|

1
2

e−
1
2 (d−Lm)T |Σd|m|−1(d−Lm), (20.114)

where the data variances form the diagonal elements of the conditional covariance matrix Σd|m.
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A more general form of Σd|m starts with the definition

Σd|m = < ddT >,

= < LmmTLT >,

= L

Σm︷ ︸︸ ︷
<mmT >LT , (20.115)

where Σm =<mmT > can be estimated from the sonic log.
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Chapter 21

Discriminant Analysis and
Gaussian Mixture Model

The theories of Discriminant Analysis and the Gaussian Mixtures Model (GMM) are presented.
A discriminant function takes an input vector x and assigns it to one of K classes (Bishop, 2006).
For linear discriminant analysis and binary classification, a decision hyperplane is computed that
separates the points classified as y = 0 from the points classified as y = 1. For Gaussian Discriminant
Analysis (GDA) and the GMM, each method fits Gaussian density functions to a group of N data
points x(n) n ∈ {1, 2, . . . , N}. However, the training data for GDA consists of both the data x(n)

and the specified class y(n) for each point, i.e. (x(n), y(n)), which means it is a supervised learning
method. In contrast, the GMM is an unsupervised learning method because the training data are
only the unclassified data x. The output is the optimal mean and variance values of the Gaussian
density functions that best explain the data by dividing them into K clusters. The number of
Gaussian fitting functions is specified, i.e. guessed at, by the user. Similar to the iterative K-
means cluster method, the number K of Gaussian clusters is user specified. Unlike the K-means
hard-clustering method where each point belongs to only one cluster, the GMM is a soft-clustering
method where all points have a non-zero probability of belonging to any one cluster. GDA is also a
hard-clustering method because each point only belongs to one Gaussian.

21.1 Introduction

Figure 21.1a-21.1b depicts a cluster of Yellowstone points (see Figure 17.1) fitted to a) a single
Gaussian density function and b) two Gaussian density functions. Each cluster in b) is tightly
enclosed by Gaussian-like contours centered at the mean point and shaped by the variance of the
corralled points. Fitting the unclassified data toK clusters governed byK Gaussian density functions
is the goal of the Gaussian Mixture Model, where the fitted function f(x) is simply described as

f(x) =

K∑

k=1

wkN (x|µk,Σk), (21.1)

where
∑K

k=1 wk = 1, (µk,Σk) describes the mean and covariance matrix, respectively, for the kth

Gaussian, 0 ≤ wk ≤ 1 is the mixture weight for the kth Gaussian, x is a N × 1 point and there
are K Gaussians. Unlike the hard-clustering method of K-means (see Chapter 17), each point
x in the training data is shared by all K Gaussians. Therefore, the GMM is a soft-clustering
method similar to fuzzy clustering (see Chapter 17), except the GMM uses the Gaussian probability
functions to determine the degree, i.e. probability, of membership (Károly et al., 2018). This allows

647
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Figure 21.1: Data points fitted to a) one Gaussian density function, b) contours fitted to two
Gaussian density functions that define the red and green clusters of points, and c) fully con-
toured GMM contours from another data set demonstrating that all points are shared by the
two Gaussians. Points with a sufficiently low probability of membership might be considered
to be too noisy for further consideration. Figures a and b modified from Bishop (2006), c)
modified from https://scikit-learn.org/stable/auto examples/mixture/plot gmm pdf.html.

for the construction of irregular and multimode probability functions as illustrated in Figure 21.1c.
Moreover, f(x) provides a reliability estimate of the class membership for any point.

In contrast, GDA fits only one Gaussian to each point, class, to give p(x|y). Each class of
training points is fitted to its own unique Gaussian to yield the associated covariance matrix and
mean vector. Bayes’ theorem can be used to generate p(y|x), which allows a new data point xnew

to be classified as p(y|xnew). This also gives an uncertainty estimate of this prediction.
A practical industrial application of the GMM is to fit arbitrary probability distributions to

multidimensional data x(n); n ∈ (1, 2, . . . , N). According to Reynolds et al. (2009), GMMs are
commonly used as parametric models that predict the probability distribution of continuous bio-
metric measurements, such as recognizing the speaker identity from the spectral features of voice
recordings. Another application is in assessing the quality of fabricated machine parts1. For assess-

ing quality control of manufactured products, x(n) = (x
(n)
1 , x

(n)
2 ) = (strength, temperature) might

be the test result for a constructed engine component. The components might have been constructed
at two different manufacturing plants, and so the test results might plot as the bi-modal contours
in Figure 21.1c. The points near the peaks of these contours might be designated as meeting the
design criteria, but those far from the peaks, i.e. means of the two Gaussians, can be flagged as
engine components with insufficient strength under harsh temperature conditions.

GMMs can also be applied to geophysical data x(n) in order to classify different types of signals
and to distinguish signal from outlier noise. As an example of signal classification, Lubo et al.
(2014) applied a GMM to well-log data from different wells in a Texas oil field. They were able to
distinguish between lithologies from six different wells to produce a probabilistic map of the seismic
lithologies over the area covered by the wells. In a related study, Bradley and Hardisty (2019)
extracted classes of seismic facies by applying the GMM to data computed by a self-organizing map
(SOM ) of seismic data. The GMM clusters were then used to delineate features in the turbidite
system with more accuracy than the SOM map. Moreover, they produced an uncertainty map that
indicated highly reliable area of their interpretation.

To account for the multi-modal nature of describing rock properties with probability density

1See lecture by Andrew Ng at https://www.youtube.com/watch?v=rVfZHWTwXSA.
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a) Discriminative P(Y|X) b) Generative P(X|Y)

Figure 21.2: Illustrations of a) discriminative and b) generative models. Figure modified
from Bishop (2006).

functions, Grana and del Monte (2010) used a two-step approach: 1) estimate the probability dis-
tributions of elastic parameters (velocities and density) and 2) estimate the multi-modal probability
distributions of the underlying reservoir properties and conditions by assuming that the reservoir
properties obey a Gaussian mixture distribution. This assumption reflects the realistic properties of
these rocks.

Instead of just classifying the data by a GMM, it can be used to assist in inverting the seismic
traces for lithology information. As an example, de Figueiredo et al. (2021) combined seismic
inversion with the probability density function from a GMM for different facies units. The result is
joint inversion of seismic data for the prediction of facies and elastic properties with both synthetic
data and field records. In a related work, Astic and Oldenburg (2018) used the density function
obtained from the GMM to replace the Gaussian prior in Tikhonov regularized inversion of seismic
data.

The following sections describe the theories of linear discriminant analysis (LDA), GDA and
GMM. This is followed by the description of the iterative Expectation-Maximization (EM) algorith-
m, which is used to find the parametric parameters for the GMM. The EM algorithm consists of
alternating estimates of the statistical parameters (µ, Σ) and the Gaussian mixture weights for each
point. The next section provides numerical examples where the GMM is applied to seismic data for
both lithology classification and seismic inversion.

21.2 Generative and Discriminative Models

There are two types of functions used for the GMM: discriminative and generative functions.
The discriminative function p(Y |X) predicts the class Y from the input data X . For example, in a
supervised neural network the NN model, a proxy for p(Y |X), is computed from training data to get
the optimal decision boundaries (see Figure 21.2a) that separate one class of points from another.
This is done by finding the NN parameters w that minimize a loss function. The parameters that
define the optimal NN model are given by w and the training pairs are multivariate random vectors
with the discriminative model described the conditional probability function p(Y|X,w).

In contrast, the generative function p(X |Y ) is the reverse of the discriminative function in that
it generates the data X from the class Y , as illustrated in Figure 21.2b. For the GMM, the kth
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class of data is characterized by the weighted Gaussian distribution with the statistical parameters
Y = {wk,µk,Σk}. The GMM in equation 21.28 predicts the probability of the data X. This is
equivalent to the decoder portion of an autoencoder in Chapter 14 where the latent variables z in
the autoencoder are used to predict the data X.

Key Idea 21.2.1. Key Idea: Example of a Generative Function

An example of a generative model with a low-dimensional class variable k = {0, 1} is illus-
trated in Figure 21.3a. Here, high-dimensional vectors flattened from the images of faces are
mapped to the real line with values x. A face that is of the male class (k = 2) honors the red
Gaussian curve, where the probability of finding a Chinese face is highest with probability
p(Chinese|k = 2) ≈ 0.18; more than 1.4 billion people live in China out of the 2021 world
population of more than 7.7 billion people.

The Gaussian can be sampled so that it answers the question of which nationality x is associ-
ated with a probability of, say, p(x|k = 2) ≈ 0.03. In this case it might be a white American
male whose average picture can be generated by following the reverse path of the arrows that
start with the tip at the green arrow (faces from https://leadingpersonality.wordpress.com/
2013/09/30/average-faces-of-men-and-women-around-the-world/). Using a lookup table, the
probability function p(x|k = 2) = α can be sampled to generate faces of males that are coded
along the real axis x and represent the fraction α of the world’s male population. The female
faces can be generated in the same way, except the blue Gaussian curve can be used to assess
the frequency of occurrence and generate their images. We will denote this as sampling the
probability density function.

If a probability value p(x|k = 1) = β is between two values with known faces, then the
new face is an interpolation of the neighboring faces. A general interpolator is that of an
autoencoder in Figure 21.3b. After training the autoencoder, the generator (a fancy version
of a lookup table) takes a low-dimensional vector k and generates the image on the right. If
the latent vector k is generated by sampling a probability distribution hidden in the encoder,
then this type of autoencoder is known as a variational autoencoder. See Chapter 14 for
details.

21.3 Linear and Gaussian Discriminant Analysis

A discriminant is a classifier function that learns from training data (x(n), y(n)) to accurately
predict the class y(n) of the input vector x(n). The multinomial output can be assigned integer
values from one to K classes, where y ∈ {1, 2, . . . ,K}. In the context of Gaussian analysis, each
class index is associated with a different Gaussian. If the class index y(n) is given for each training
data point, then this is denoted as supervised GDA. If the class is not given in the training set, then
this is known as a Gaussian Mixture Model.

We now present the theories associated with two supervised discriminant analysis methods: LDA
and GDA. To simplify the discussion, we will confine the discriminants to be binary classifiers, with
the understanding that they can be extended to multinomial classifiers (Bishop, 2006). In contrast,
the Gaussian Mixture Model is a soft clustering method that is unsupervised where any point belongs
to every Gaussian, which is a generalization of hard-clustering GDA where any point belongs to just
one Gaussian.
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Figure 21.3: a) Average faces i(m) mapped to numbers x along the real line, where x is the
coded value of the 106 × 1 vector i(m) that is the flattened image of a face with 106 pixels.
The faces are ordered along the real line so that the probability of a face is equal to the
fraction of that person’s nationality in the world’s population. These faces belong to the
class of either female (k=1) or male (k=2). The Chinese faces are the most numerous in
the world so they appear with the highest probability. b) Architecture of an autoencoder,
where the decoder represented by L−1k takes the low-dimensional vector k and maps it
into the high-dimensional image i(1).

21.3.1 Linear Discriminant Analysis

LDA for binary classification linearly models the input vector D × 1 vector x and output class
label y for y ∈ {0, 1} as

f(x)︷ ︸︸ ︷
wTx+ w0 = y, (21.2)

where w is the D × 1 weight vector, f(x) is the discriminant, and w0 is the bias term. The LDA
goal is to find (w0,w

T ) that accurately predicts the class y(n) from the training input data x(n)

for n ∈ {1, 2, . . . , N}. The optimal (w0,w
T ) defines a hyperplane, aka as the decision surface, that

separates the y = 1 points from the y = 0 points.

For comparison, Chapter 4 presented the non-linear NN model which also finds the optimal
weights (w0,w

T ) that define the optimal decision surface separating the two classes of points. In
this case, the discriminant function f(wTx+w0) is a non-linear function that consists of squashing-
type functions such as the sigmoid and softmax functions. However, the decision surface plotted in
(x1, x2, . . . , xD) coordinates is described by

y(x) = wTx+ w0 = constant, (21.3)

which is a linear function in (x1, x2, . . . , xD) even though the NN function f(x)

y(x) = f(wTx+ w0) = constant, (21.4)

is a non-linear function. Therefore, equation 21.4 describes a generalized linear model (p. 138 in
Bishop, 2006).

There are several LDA methods besides the NN model, such as the support vector machine in
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Chapter 7, least squares discriminants and Fisher discriminant analysis (Bishop, 2006). The least
squares classification problem is defined in Box 21.3.1 for a 1-out-of-K classifier scheme, where an
element of 1 is appended to x to give the (D + 1)× 1 vector x̃ = (1,xT )T , and w0 is appended to
w to give the (D + 1)× 1 vector w̃ = (w0,w

T )T .

To account for the multinomial 1-of-K classification scheme, we can use the compact variables
w̃ and x̃ to define

yk(x) = w̃T
k x̃; for k ∈ {1, 2, . . . ,K}, (21.5)

where the integer subscript k denotes the kth class. If there are K classes, then the 1-out-of-K
class K × 1 vector is y = (0, 0, . . . , 0, 1, 0, . . . , 0)T , where all of its element values are 0 except
for the kth one with class label yk = 1. According to equation 21.5, there will be K row vectors
w̃T

k k ∈ {1, 2, . . . ,K} that can be used to form the K × (D + 1) matrix W̃T

To form a matrix W̃ from w̃k, define the K × 1 label vector y = (y1, y2, . . . , yK)T . with the
ith component yi = δik for i ∈ {1, 2, . . . ,K}. This says that the elements of y have value zero
except for the kth element yk = 1. Therefore, the K × (D + 1) matrix W̃T can be formed from the
k ∈ {1, 2, . . . ,K} equations in equation 21.5 to give

W̃T x̃ = y; or x̃TW̃ = yT , (21.6)

where the 1× (D+1) vector (wk0,w
T
k ) is the k

th row vector of W̃T , x̃ = (1,xT )T is the (D+1)× 1
data vector and yT is the 1×K vector.

The training data (1,x(n))T for n ∈ {1, 2, . . . , N} can be assembled into the N × (D+1) matrix
X̃, such that

X̃W̃ = Y. (21.7)

The nth row of X̃ is the 1 × (D + 1) training vector (1,x(n)T ) and the corresponding row in the

N ×K matrix Y consists of the associated 1× (D+1) class vector y(n)T . The least squares solution
to the above equations is given below, which is then used to compute the least squares discriminant
that determines the class of a new input vector x.
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Example 21.3.1. Least Squares Discriminant Analysis

Given : Training Data (1,x(n))T , y(n) for n ∈ {1, 2, . . . , N}

and x(n) ∈ R
D, y(n) ∈ R

K , y
(n)
i ∈ {0, 1} ∀i, n.

X̃W̃ = Y; W̃ ∈ R
(D+1)×K , X̃ ∈ R

N×(D+1), Y ∈ R
N×K

Find : W̃∗ = argmin
W̃

Tr[(X̃W̃ −Y)T (X̃W̃ −Y)] (21.8)

Solution : W̃∗ = (X̃T X̃)−1X̃TY. (21.9)

Here, Tr is the trace of the matrix where the diagonal elements are summed to get the sum
of the squared errors (see Exercise 21.7.2). The class label of a new point xnew is obtained
by applying w̃T∗

k xnew = yk and selecting the class index k∗ such that

k∗ = argmax
k∈{1,2,...,K}

yk︷ ︸︸ ︷
w̃T∗

k xnew, (21.10)

which is the one associated with the maximum value of yk for k ∈ {1, 2, . . . ,K}. For the
two-class problem, the least squares solution is equivalent to the Fisher solution (Duda and
Hart, 1973; Bishop, 2006). The Fisher solution for binary classification finds the optimal w,
which gives a large class separation between the means of two clusters projected along w,
while also giving a small variance within each class.

A problem with least squares discriminant analysis is that the quadratic misfit function in
equation 21.8 is strongly influenced by outlier points that are far from the decision surface. This
is illustrated in Figure 21.4a, which shows that both logistic regression and LSDA give similar
decision surfaces, but the LSDA decision surface fails compared to logistic regression when there are
a large number of outliers in Figure 21.4b. This problem can be mitigated by regularization, where
a weighted diagonal matrix is added to equation 21.8 as a penalty term, with ||w̃k||2 for the kth

diagonal element. Another possibility is replace the quadratic norm in equation 21.8 with the L1

norm of the data residual. The resulting solution algorithm is known as reweighted least squares
(Bishop, 2006).

21.3.2 Gaussian Discriminant Analysis

Gaussian Discriminant Analysis (GDA) is a special case of the GMM in that each training point
x(n) ∈ RD belongs to only one Gaussian, and the cluster membership, indicated by the scalar RV
y(n), is known for each training point. Therefore GDA is a supervised learning method where the
training pairs are (x(n), y(n)). If we know that the labels y(n) and the points only belong to one of
the Gaussians, then we can use Maximum Likelihood Estimation (MLE) to find the optimal values
of the parameters (µ,Σ, φ). This assumes that the probability distribution of the data is that of a
Gaussian.
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Logistic regression

decision boundary

outliers

a) Two Classes of Points w/o Outliers b) Two Classes of Points with Outliers

logistic regression

& least squares

decision boundaries

Figure 21.4: Comparison of decision boundaries computed by logistic regression and least
squares LDA for points a) without and b) with outliers. Figure modified from Bishop
(2006).

For example, joint probabilities for the data pairs (x(n), y(n)) with y ∈ {0, 1} are given as

p(x, y = 0) = p(y = 0)p(x|y = 0)

= (1− φ) 1√
(2π)D|Σ0|

e−
1
2 (x

(n)−µ0)
TΣ0

−1(x(n)−µ0), (21.11)

p(x, y = 1) = p(y = 1)p(x|y = 1)

= φ
1√

(2π)D|Σ1|
e−

1
2 (x

(n)−µ1)
TΣ

−1
1 (x(n)−µ1); (21.12)

where p(x|y) is a generative probability function, φ = p(y = 1), and the subscripts in the µ’s and
Σ’s indicate the binary class of either y = 0 or y = 1. We also know that y is a Bernoulli RV so its
probability mass function is

p(y) = φy(1− φ)1−y, (21.13)

where φ is the probability that y = 1 and 1 − φ is the probability that y = 0. Here, µk =
(E(x1)k, E(x2)k, . . . , E(xD)k)

T for k ∈ {0, 1} is the D-dimensional mean vector, E[ ] represents the
expectation or averaging operation over the random variables, and Σk is the D × D covariance
matrix for the kth cluster. For example, if the data dimension D = 3, then x is a 3× 1 matrix, µ is
a 3× 1 vector, and Σ is a 3× 3 matrix where

Σij = E[(xi − µi)(xj − µj)]. (21.14)

In practice, the covariance matrix is sometimes assumed to be a diagonal matrix2.

2Reynolds (2009) states: ”...the component Gaussian are acting together to model the overall feature
density, full covariance matrices are not necessary even if the features are not statistically independent. The
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The optimal fit of a Gaussian to the points x(n) is equivalent to finding the statistical parameters
(µ,Σ) that maximize the log-likelihood function L defined as

L = lnΠN
n=1p(x

(n), y(n) = 1;φ,µ,Σ),

= lnΠN
n=1p(x

(n)|y(n) = 1)p(y(n) = 1). (21.15)

If only one Gaussian is fitted to all the points then the closed form formulas for the parameters are
given in Box 21.3.2. Box 21.2.3 gives the formulas for fitting two Gaussians, and the derivations are
in Appendix 21.9.

Example 21.3.2. Gaussian Discriminant Analysis for a Single Gaussian

Given : Training Data (x(n), y(n) = 1) for n ∈ {1, 2, . . . , N}
where x(n) ∈ R

D, y(n) = 1; p(y = 1) = φy;

p(x, y) = p(x|y)p(y) = 1√
(2π)D|Σ|

e−
1
2 (x

(n)−µ)TΣ−1(x(n)−µ)p(y); (21.16)

Find : (φ∗,µ∗,Σ∗) = argmax
(φ,µ,Σ)

equation 21.15︷ ︸︸ ︷
L(x(n), y(n) = 1;φ,µ,Σ) . (21.17)

where L is the log-likelihood function. Defining y(n) = 1 ∀n, defining the number of Gaussians
K = 1, setting the gradients ∇φ,∇µ,∇Σ of L to zero, and solving for φ, µ and Σ, gives (see
Appendix 21.9)

Solution : φ∗ =
1

N

N∑

n=1

I{y(n) = 1} = 1; (21.18)

µ∗ =

∑N
n=1 I{y(n) = 1}x(n)

∑N
n=1 I{y(n) = 1}

=

∑N
n=1 x

(n)

N
; (21.19)

Σ∗ =

∑N
n=1 I{y(n) = 1}(x(n) − µ)T (x(n) − µ)

N
,

=

∑N
n=1(x

(n) − µ)T (x(n) − µ)

N
, (21.20)

where I{y(n) = k} is an indicator function that is equal to 1 when the argument is true,
otherwise it is equal to the value 0. The indicator function is equal to the Kronecker delta
function δy(n)k.

linear combination of diagonal covariance basis Gaussians is capable of modeling the correlations between
feature vector elements. The effect of using a set of M full covariance matrix Gaussians can be equally
obtained by using a larger set of diagonal covariance Gaussians”.
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Example 21.3.3. Gaussian Discriminant Analysis for Two Gaussians

Given : Training Data (x(n), y(n)) for n ∈ {1, 2, . . . , N}
where x(n) ∈ R

D, y(n) ∈ {0, 1}; p(y) = φy(1− φ)1−y ;

p(x, y) = p(x|y)p(y),

p(x|y) = 1√
(2π)D|Σy|

e−
1
2 (x

(n)−µy)
TΣ−1

y (x(n)−µy); (21.21)

Find : (φ∗,µ∗
0,µ

∗
1,Σ

∗
0,Σ

∗
1) = argmax

(φ,µ1,Σ1,µ0,Σ0)

L(x(n), y(n);φ,µ0,µ1,Σ0,Σ1),(21.22)

where L = lnΠN
n=1p(x

(n), y(n);φ,µ,Σ), (21.23)

= lnΠN
n=1(p(x

(n)|y(n))p(y(n)))y(n)

(p(x(n)|y(n))p(y(n)))1−y(n)

. (21.24)

Setting the gradients ∇φ,∇µ,∇Σ of L to zero, defining the number of Gaussians K = 2, and
solving for φ, µk and Σk, k ∈ {0, 1} gives (see Appendix 21.9)

Solution : φ∗k =
1

N

N∑

n=1

I{y(n) = k}; (21.25)

µ∗
k =

∑N
n=1 I{y(n) = k}x(n)

∑N
n=1 I{y(n) = k}

; (21.26)

Σ∗
k =

∑N
n=1 I{y(n) = k}(x(n) − µk)

T (x(n) − µk)

N
. (21.27)

See Exercise 21.7.3.

Note that equation 21.25 counts the number of points that belong to the kth Gaussian and
divides by the total number of points in the training set. Therefore, φ is the estimated chance
that a point belongs to the kth Gaussian3. The mean vector associated with the kth Gaussian in
equation 21.26 is estimated by summing up the points x(n) belonging to the k(th) Gaussian cluster
and dividing by the number of such points. The covariance terms are estimated in a similar way
except the covariance values of points belonging to the kth Gaussian cluster are summed and divided
by the number of points in that cluster4.

In summary, GDA is a supervised learning and hard clustering method that requires assigning
every point to just one of the K Gaussians. GDA provides closed form formulas for the statistical
parameters and it is easily understood. This will help us understand the steps for the unsupervised
and soft clustering GMM, where each point partially belongs to every weighted Gaussian. Unfor-
tunately, not knowing the class labels of the input points prevents the derivation of closed-form
formulas for (µ,Σ). Instead, an iterative method known as Expectation-Maximization is used to
estimate these parameters.

3See lecture by Andrew Ng at https://www.youtube.com/watch?v=rVfZHWTwXSA.
4Estimated statistical parameters such as the mean are often denoted by the mean symbol µ with a hat,

i.e. µ̂. We will not use this notational distinction between the analytical and estimated formulas for the
statistical parameters.
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Probability Functions

1). P(x(n)): Probability density function for finding a data point at x(n).

3). P(zk|x
(n)): Probability that given data point at x(n) came from kth Gaussian. 

P(zk|x
(n))= Pnk responsibility matrix of dimension NxK.

2). P(zk): Probability a data point chosen at random is in kth Gaussian. Denotes fraction of data points in kth Gaussian

4). P(x(n)|zk): Probability that selected kth Gaussian contains data point at x(n).

5). L := nP(x(n)| w, ) :  Likelihood function.  Probability finding all N points at (x(1), x(2),…, x(n)): 

P(x(n)|zk) := P(x(n)|wk, k k)

a)     Unlabeled Points                      b) Initial Guess Gaussians K=2

L := P(x(1), x(2) ,…,x(N) | w, ) where (w, ) =(w1,w2,…,wk,, … K …, K)

Figure 21.5: Interpretation of probability functions (Press et al., 2007) used for the GMM
and EM algorithms.

21.4 Theory of the Gaussian Mixture Model

The Gaussian Mixture model (Reynolds et al., 2009; Bishop, 2006) for the random D× 1 vector
x = (x1, x2, . . . , xD)T is a sum of K weighted Gaussian densities given by

p(x) =

K∑

k=1

wkN (x|µk,Σk), (21.28)

where

N (x|µk,Σk) =
1√

(2π)D|Σk|
exp

(
−1

2
(x− µk)

TΣ−1
k (x − µk)

)
, (21.29)

and X = {x(1),x(2), . . . ,x(N)} is drawn independently from a Gaussian distribution5. The inter-
pretation of p(x) is that it is the probability of finding a point at the position x. For example, if
the point x is far from the mean of the fitted Gaussian then this point has a low probability of
occurrence. See item 1 in Figure 21.5, where a list of probability functions are interpreted to help
deconfuse the reader about their meaning.

The mixture weights are w = (w1, w2, . . . , wK) and, just like a discrete probability function,
must be greater than or equal to zero and sum to the value 1:

K∑

k=1

wk = 1; wk ≥ 0. (21.30)

This can be proven by integrating equation 21.28 over x, noting that 1 ≥ p(x) ≥ 0 and remembering
that the Gaussian is normalized. See Exercise 21.7.6.

The association of the rightside of equation 21.28 with a probability expression is given by the
definition of the marginal probability p(x) expressed as a sum of weighted conditional probabilities:

p(x) =
K∑

k=1

wk︷︸︸︷
p(k)

N (x|µk,Σk)︷ ︸︸ ︷
p(x|k) , (21.31)

5Reynolds et al. (2009) uses the notation p(x|w,µ,Σ) for the leftside of equation 21.28 while Bishop
(2006) and Press et al. (2007) ’uses the traditional notation p(x) for a marginal probability function.
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1       2        3        4       5       6

Mixture of 3 Gaussian Density Functions

p(x)

K=3 x

Figure 21.6: The red curve is the result of a weighted sum p(x) =
∑3

k=1wkN (x|µk,Σk) of
hidden causes, where each cause is governed by a Gaussian density function. Therefore, the
GMM can form smooth approximations to an arbitrary density function. Figure modified
from Bishop (2006).

where the mixture coefficient is defined as wk = p(k). Here, p(k) is interpreted as the fraction of the
points shared by the kth Gasussian6. See item 2 in Figure 21.5 and the red curve p(x) in Figure 21.6.

The data points are assumed to be independent so the GMM log-likelihood function is

L = lnΠN
n=1p(x

(n)),

=

N∑

n=1

ln

K∑

k=1

p(k)p(x|k) in equation 21.31︷ ︸︸ ︷
wkN (x(n)|µk,Σk) . (21.32)

The gradients of L can be set to zero, similar to the GDA procedures in Boxes 21.3.2-21.2.3, in order
to estimate the mean vectors and covariance matrices for each Gaussian (see Box 21.4.1). However,
the labels and weights wk = p(k) are unknown as well and so obtaining closed form formulas for the
parameters (w,µ,Σ) is not possible. Therefore, an iterative solution method is used for computing
these parameters, and one of the most popular methods is known as the Expectation-Maximization
(EM) method in Box 21.4.2.

Before discussing the EM method, we first define the responsibility function p(k|x(n)). This
is also denoted as a discriminative function which is required because the generative function
p(x(n)|k) = N (x(n)|µk,Σk) in equation 21.32 will be computed using Bayes’ theorem (see equa-
tion 21.38), which requires knowing the so-called responsibility p(k|x(n)).

6Any single point is shared by all the Gaussians, but the sharing is not always equal for each Gaussian.
If there are two Gaussians and one of them has a fractional ownership of w1 = 1/3 for all the points then
the other Gaussian has w2 = 2/3 ownership.
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Example 21.4.1. Gaussian Mixture Model

Given : Training Data (x(1),x(2), . . . ,x(N)),

L =
N∑

n=1

ln

equation 21.28︷ ︸︸ ︷
K∑

k=1

wkN (x(n)|µk,Σk) . (21.33)

p(x) =

K∑

k=1

wkN (x|µk,Σk), (21.34)

Find : (w∗,µ∗,Σ∗) = argmax
(w,µ,Σ)

L(w,µ,Σ), (21.35)

where 0 ≤ wk ≤ 1 and

K∑

k=1

wk = 1. (21.36)

Solution : Expectation−Maximization. (21.37)

The condition
∑K

k=1 wk = 1 follows from the fact that p(x) and the Gaussian components
are normalized so that integrating equation 21.34 over x is equal to 1. Also, the Gaussian
has the property N (x|µk,Σk) ≥ 0 so that a sufficient condition for p(x) ≥ 0 is that wk ≥ 0
for all k.

The maximum likelihood estimator finds (w∗,µ∗,Σ∗) that maximizes the log-likelihood func-
tion L. These parameters are computed by the expectation-maximization algorithm (Demp-
ster et al., 1977) described in section 21.4.2 and Box 21.3.2.

21.4.1 Responsibility Function p(k|x(n))

The Gaussians in the GMM all share the same points and so the sharing responsibility function
p(k|x(n)) of the k(th) Gaussian needs to be estimated by the EM algorithm for a given point x(n).
But how do we get the responsibility function p(k|x(n)) if we only know the function p(x(n)|k) =
N (x|µk,Σk) from equation 21.31 and the marginal probability p(k)? The answer is Bayes’ theorem:

pnk = p(k|x(n)) =
p(x(n)|k)p(k)

p(x(n))
, (21.38)

where pnk = p(k|x(n)) is interpreted as the probability that x(n) is in the kth Gaussian. Since each
point belongs to every Gaussian, then pnk is also interpreted as the fraction of the point x(n) whose
responsibility is shared by the kth Gaussian. See items 2-4 in Figure 21.5.

The intuitive understanding of the responsibility function is shown in Figure 21.7. Here, Fig-
ure 21.7a depicts a group of unlabeled points that will be GMM fitted to two Gaussians. After an
approximate fitting, the two Gaussians in Figure 21.7b share each point, and the fraction of sharing
is denoted by the multicolored circles. The ratio of blue and red colors in a circle is proportional to
the ratio of weights p(k = 1|x(n))/p(k = 2|x(n)), where k = 1 indicates the blue Gaussian and k = 2
indicates the red one.
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x

a)     Unlabeled Points                      b) Initial Guess Gaussians K=2

x

Initial guess means

P(x|k=2)

P(x|k)

P(x|k=1)

Figure 21.7: a) Unlabeled points and b) points fitted to blue and red Gaussians, as indicated
by the latent variables k = 1 and k = 2, respectively. The latent variable k is a compressed
code indicating the kth Gaussian associated with (wk, µk,Σk). Each point is shared by both
the blue and red Gaussians, where the ratio of blue/red colors in each point is proportional
to the ratio p(k = 1|x)/p(k = 2|x).

21.4.2 Expectation-Maximization Method

The EM method is similar to the alternating direction method in that the original set of unknown
parameters is broken up into two sets. As described in Box 21.4.2, the parameter values for the first
set are guessed at, and the second set is solved for. Then, the updated second-set parameters are
used to update the first set. This procedure is repeated until convergence.
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Example 21.4.2. Expectation-Maximization Algorithm

1. Initial Values of Parameters. Guess the number K of Gaussians and the initial
values for the first set of parameters Φ1 = (p(k),µk,Σk) for k ∈ {1, 2, . . . ,K}. The
initial guess parameters give rise to the red and blue Gaussians in Figure 21.8b, and
these guessed parameters can be provided by a K-means method. For example, the
value of p(k) ≈ Nk/N can be estimated by counting the number of points Nk in the
kth K-means cluster and dividing by the total number N of points. The means and
covariances of each K-means cluster can easily be computed to get (µk,Σk) ∀ k ∈ {1, 2}
for the red and blue Gaussians in Figure 21.8b.

2. Expectation Step. Knowing Φ1 = (p(k),µk,Σk), the second set of unknowns Φ2 =
p(k|x(n)) = pnk, aka the responsibility functions, are computed using equation 21.38
from Bayes’ theorem. Here, p(x) is obtained from equation 21.31 and p(x(n)|k) is
obtained from the Gaussian N (x(n)|µk,Σk).

3. Maximization Step. The updated values of Φ2 = p(k|x(n)) can then be used to
form a new L in equation 21.28, and the gradients are computed w/r to the variables
in Φ1 = (p(k),µk,Σk). These gradients are set to zero to get updates to Φ1. This is
the Maximization- or M-step and the formulas for (p(k), (w,µk,Σk) are arrived at in
a manner similar to the procedure in Appendix 21.9 except every Gaussian shares any
point x(n). That is, the hard-clustering Kronecker delta functions in Appendix 21.9
are replaced by the soft-clustering responsibility functions. These formulas (Bishop,
2006; Press et al., 2007) are given by

µk =

∑N
n=1 pnkx

(n)

∑N
n=1 pnk

; (21.39)

Σk =

∑N
n=1 pnk(x

(n) − µk)(x
(n) − µk)

T

∑N
n=1 pnk

; (21.40)

Nk =

N∑

n=1

pnk; p(k) = wk = Nk/N. (21.41)

4. Iteration Steps. Steps 2-3 are repeated until there is little change in L. Figure 21.8c-
21.8d illustrate the red and blue Gaussians at the intermediate and final iterations. See
Exercises 21.7.4.

21.4.3 1D Example of a Responsibility Function

As a 1D example of a responsibility function, the black curves in Figure 21.9 depict the p(k = 1|x)
and p(k = 2|x) conditional probabilities for the Bernoulli variable k. In contrast, the colored
Gaussian curves depict the conditional probabilities p(x|k = 1) and p(x|k = 2). Here, the p(k|x)
probabilities are those for the Bernoulli distribution.

The solid black curve in Figure 21.9 represents the sigmoid probability p(k = 2|x) = 1/(1 +
e−w2x−w20) and says that the red points on the right are highly likely to belong to the red k = 2
Gaussian because they are closer to the red mean point marked by the red x. This is confirmed by
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x

a)     Unlabeled Points                      b) Initial Guess Gaussians K=2

x
Initial guess

means

c) Intermed. Iteration Gaussians      d) Final Iteration Gaussians

xx Intermediate means

p(x|b) p(x|r)p(x|c)

p(x|b) p(x|r)p(x|c)
p(x|b) p(x|r)p(x|c)

Figure 21.8: a) Unlabeled data points along the real line. The conditional probabilities
p(x|r) and p(x|b) are plotted against x for b) the initial guessed means (indicated by the
colored symbols⊗) and variances, c) the means and variances determined by an intermediate
iteration of the GMM, and the d) final iteration of the GMM. Here, the percent membership
of each point with either a blue or red Gaussian is colored by a blend of blue and red
colors, where the red and blue color proportions are equal to the values of the responsibility
functions p(r|x) and p(b|x).
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P(k=1|x)                   P(k=2|x)

x

p(x|k=1)
p(x|k=2)

Figure 21.9: Black-solid and black-dashed lines depict the p(k = 2|x) and p(|k = 1|x)
posterior conditional probabilities. The reverse class-conditional probabilities p(x|k = 1)
and p(x|k = 2) are plotted as the colored Gaussian density curves.

setting p(x|k = 2) >> p(x|k = 1) for x ∈ red so that

p(k = 2|x) =
p(x|k = 2)p(k = 2)

p(x|k = 1)p(k = 1) + p(x|k = 2)p(k = 2)
,

≈ p(x|k = 2)/p(x|k = 2) = 1, x = red points (21.42)

for the red points on the right. In contrast, the points on the left have a very small probability
p(k = 2|x ∈ left) ≈ 0 of belonging to the red Gaussian.

21.4.4 Geophysical Inversion

The goal of geophysical inversion is to find the Earth model m that best explains the recorded
data d. Here, the forward modeling operator L computes the physics-based prediction Lm = d
of the data d from the model m. The recorded data have random amplitude errors so the data
amplitudes are RVs with the conditional probability given by p(d|m).

In contrast to forward modeling as the deterministic data generator, the L2 estimate of the
model m̂ = [LTL]−1LTd plays the role of the statistical discriminator p(m|d). If prior information
about the model m is to be used then the regularized solution is given by m̂ = [LTL+ λI]−1LTd,
which accounts for the priori information that ||m||2 ≈ 0 in this example. This is equivalent to the

prior knowledge of p(m) used in the formula for Bayes’ rule p(m|d) = p(d|m)p(m)
p(d) .

21.4.5 Example of Generative and Discriminative Modeling

One of the advantages of using an adaptive generative approach to computing the decision
boundary is that it requires less data compared to the discriminant approach. For example, the
NN is a discriminative method using the discriminant modeler p(Y |X) that requires a huge number
of training examples to obtain an accurate NN model. In comparison, the Gaussian generative
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Figure 21.10: Best fit Gaussians to the binary points provide the blue decision
boundary between the green and red points while logistic regression provides the
purple decision boundary. Figure adapted from Lecture 5 at Stanford University
(https://betterprogramming.pub/generative-vs-discriminative-models-d26def8fd64a).

model, represented by p(X |Y ), often requires much less training data because it fits an analytic
function to the training data. Empirical results suggest that this fitting procedure does not require
so many training examples to get accurate models. Then, Bayes’ theorem can be used to estimate
the discriminant model, represented by p(Y |X), that will accurately predict the class of untrained
data7.

As a comparison, Figure 21.10 depicts the results for estimating the decision boundary using
a supervised Gaussian modeling method and a supervised logistic regression method. Both meth-
ods give adequate decision boundaries, but the Gaussian method requires less training data. For
the Gaussian method, the maximum likelihood estimates are obtained by maximizing a joint log-
likelihood function for all of the training data (x(n), y(n))

joint log likelihood : L(φ,µ0,µ1,Σ0,Σ1) = lnΠN
n=1p(x

(n), y(n)),

= lnΠN
n=1p(x

(n)|y(n))p(y(n)). (21.43)

In comparison, the log-likelihood function for a neural network discriminant model is

conditional log likelihood : l̂(w) = lnΠN
n=1p(y

(n)|x(n),w), (21.44)

where l̂(w) is the conditional likelihood compared to the joint likelihood L(φ,µ0,µ1,Σ0,Σ1) in
equation 21.43.

7https://betterprogramming.pub/generative-vs-discriminative-models-d26def8fd64a).
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L = n=1 ln k=1wk a  (x(n)| k, k)

p(x(n) |k) =a  (x(n)| k, k);

= ½ n=1 k=1wkn || x(n) – Ck||
2

wkn = || x(n) – Ck||
-1       

k’=1 || x(n) – Ck’||
-1

Ck =  wkn x(n)

n=1 wkn

n=1

N

N

K
k=1wk = 1 k=1wkn = 1

K

k =  pnk x(n)

n=1 pnk

n=1

N

N

k =  pnk (x(n) – k) (x(n) – k)
T

n=1 pnk

n=1

N

N

wk =    pnk

N 

n=1

N

pnk = p(x(n)|k)wk

p(x(n))

GMM                                  Fuzzy Clustering

Objective

function

Weight

constraint

Weight

formula

Mean

Covariance

Figure 21.11: Formulas for the soft unsupervised clustering methods of GMM and the FCM.
See Chapter 17 for the details of fuzzy clustering.

21.4.6 Fuzzy Clustering and GMM

The Fuzzy C-means Clustering method (FCM) in Chapter 17 is an unsupervised clustering
method where any point is shared by every cluster. Therefore, it is a soft clustering method similar
to that of GMM. However, unlike fuzzy clustering, GMM produces a PDF p(x) that provides a
probabilistic estimate of its membership to any cluster, which is important if uncertainty estimates
are required for the features of interest. For example, FCM was used in section 17.5 to pick arrival
times of P and S waves in seismic data. These traveltimes can be used to estimate hypocenter
locations or be inverted to give the velocity tomogram. In these cases, it is important to provide the
standard deviation of traveltime picks so they can be used to estimate errors in the inverted model.
Only GMM provides reliable statistics in this example. A comparison of the formulas for GMM and
the FCM are displayed in Figure 21.11. The key advantage of GMM compared to fuzzy clustering is
that it produces a posterior PDF for the model, but the disadvantage is that FCM is theoretically
simpler and does not have to abide by the constraints of probability theory. Therefore it is more
easily adapted to different problems at the expense of less rigor.

21.5 Numerical Examples of GMM in Geoscience

The GMM can be used to cluster many types of geophysical data. We now give several examples
associated with analysis of turbidite models from seismic data and seismic inversion.

21.5.1 Turbidite Identification from Seismic Data

Bradley and Hardisty (2019) extracted classes of seismic facies by applying GMM to data com-
puted by a self-organizing map (SOM ) of seismic data. Figure 21.12b depicts the SOM associated
with the seismic horizon slice in Figure 21.12a.
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a) Seismic Horizon                        b) SOM-colored Horizon

Figure 21.12: Slices of the a) seismic horizon from a 3D seismic data cube and b) SOM
coloration associated with the seismic data slice. The red arrows indicate possible slope
fans, the blue arrows indicate high-amplitude deposits, the white arrows indicate stacked
channels, and the black arrows indicate weak sinuous channels (Zhao et al., 2016). A 2D
color bar is used to represent two SOM latent axes.

The attributes associated with the input to the SOM procedure were peak spectral frequency,
peak spectral magnitude, coherent energy, and curvedness of a seismic horizon slice tied to a picked
continuous reflector below a turbidite system. The output of the SOM was projected onto a 2D
manifold in Figure 21.12b. The 2D points in the SOM manifold were then used as input training
data into a GMM with the goal of generating maps of different (though still unsupervised) seismic
facies. Bradley and Hardisty (2019) used Bayes’ Theorem to obtain uncertainty estimates that
were corendered with their facies classification map. The number of clusters was obtained using a
elbow-like method where the Bayesian Information Criterion8 (BIC) is plotted against the number
of different clusters (Schwarz, 1978), as shown in Figure 21.13. The number of Gaussian clusters on
the elbow of the BIC curve was selected as the optimal number, which was selected as 7 clusters.

Figure 21.14 depicts the colors associated with the seven GMM clusters9 , which reveals a more
quantitative identification of the turbidite channels compared to the SOM image in Figure 21.12b.
The uncertainty map is a byproduct of the GMM, which produces statistical information from
p(m|d) at every point of the horizon. Bradley and Hardisty (2019) use these maps to make the
following interpretation of colors 1-7 in Figure 21.14a. For a non-geologist, these final results do

8The BIC is defined as BIC = k ln(N) − 2 lnL∗, where N = number of data points, L∗ =
p(x|µ∗,Σ∗,w∗) is the maximized likelihood function, k is the number of unknown parameters es-
timated by the model, and the star superscript indicates the optimal parameters. See http-
s://en.wikipedia.org/wiki/Bayesian information criterion.

9Instead of the EM algorithm, the neighborhood EM algorithm is used. Bradley and Hardisty state the
following: ’The neighborhood EM (NEM) algorithm is implemented to consider spatial correlations using a
small subset of the horizon to highlight a channel feature. NEM adds a component to the objective function
being optimized that rewards neighboring observations having similar cluster posterior probabilities. In such
a way, NEM constructs models that have the data well-explained and spatially constrained to be smooth to
such an extent as the data support.’.



21.5. NUMERICAL EXAMPLES OF GMM IN GEOSCIENCE 667
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Figure 21.13: Plot of BIC vs number of clusters. The module symbols, EII, VII, EEI, EVI,
etc., represent the different parameterizations of the covariance matrix. Because the BIC
does not decrease with the number of clusters, the model on the shoulder of the curve is
picked. Figure from Bradley and Hardisty (2019).

not appear too different from the original SOG image, but the subtle changes appear to make a
difference in the final interpretation.

1. Discontinuous; widespread.

2. Discontinuous; some constraint in distribution.

3. Clear lineaments along channels.

4. Continuous; possibly slope fan and lobe deposits.

5. Discontinuous; some constraint in distribution.

6. Continuous; associated with slope fan and lobe deposits.

7. Continuous; constrained to channels, slope fan, and lobe deposits;

8. lobe deposits; sandy

At the end of their paper they state the following: ’Ambiguity and uncertainty measurements
highlight the strengths of GMMs as an interpretation tool.’.

21.5.2 Gravity and Magnetic Inversion with GMM Constraints

Giraud et al. (2017) jointly inverted synthetic gravity and magnetic data using a GMM density
function as a penalty function in the following objective function:

ǫ =

data misfit︷ ︸︸ ︷
||d(m)− ddata||22 +

model penalty function︷ ︸︸ ︷
α||m−mprior||22 +

petrophysical PDF misfit︷ ︸︸ ︷
β||p(mµ)− p(m)||22 , (21.45)



668CHAPTER 21. DISCRIMINANT ANALYSIS AND GAUSSIAN MIXTURE MODEL

a) GMM-colored Horizon        b) Uncertainty-colored Horizon

Figure 21.14: Plots of a) classified turbidite system using a GMM and b) ambiguity plot
overlain on classification image. Figure from Bradley and Hardisty (2019).

where α, β > 0 are damping coefficients. The predicted data vector d(m) = (d(m)grav,d(m)mag)
consists of the gravity data d(m)grav and magnetic data d(m)grav simulated along the surface in
the Figure 21.15a models. The term p(mµ) is a Gaussian PDF with the mean value of the Gaussians
associated with the petrophysical data. Recorded data are denoted as ddata and an example of the
slowly-varying gravity data and rapidly-varying magnetic data is in the second row of graphs in
Figure 21.15a. The data misfit and model penalty terms in equation 21.45 silently contain the data
and model covariance matrices Cdata and Cmodel, respectively. Giraud et al. (2017) describes them
as spherical covariance matrices corresponding to data and model noise.

The petrophysical PDF term p(m) is a weighted sum of Gaussian density functions that account
for the prior estimates of both the gravity and magnetic models. It describes the GMM model of
crossplot values shown in Figure 21.15b. In practice, this PDF is obtained by fitting a sum of
weighted Gaussians, e.g. equation 21.31, to well-log and rock measurements. An idealized crossplot
of 4 Gaussian functions fitted to petrophysical properties is depicted in Figure 21.16c. The properties
for the ith cell of the model might be assigned to the red peak in Figure 21.16c, but can change for
different cells associated with different lithologies.

The simulated gravity and magnetic data are shown in Figure 21.15a and the crossplot of the
physical property values is shown in Figure 21.15b; here, there are 5 different lithologies denoted by
numbers at the peaks of the colored contours. The means and variances of the simulated Gaussians
are given in Figure 21.15c and represent real-world estimates from different rock types.

The problem with separately inverting gravity data without taking into account constraints is
illustrated in Figure 21.15b. The horizontal dashed green line intersects the peaks labeled as +2 and
+4. This means that there are two different rock types with the same magnetic susceptibility but
dramatically different densities. This non-unique mapping between susceptibility and two different
rock types cannot be resolved by solely inverting the magnetic data in Figure 21.15a. However,
if the gravity and magnetic data are jointly inverted using the GMM constraint ||p(µ) − p(m)||2
in equation 21.45, then the inverted density and susceptibility models shown in Figure 21.17c are
much more accurate than the Figure 21.17b models reconstructed by unconstrained inversion. This
highlights the value of GMM as a means for constraining joint inversion of different types of data.
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Figure 21.15: a) Definition of joint inversion problem for gravity and magnetic data. b)
crossplot of the GMM density function P (m), wherem = (∆ρ, S), and c) table of mean and
variance values of susceptibility and density for different lithologies. Here, density contrast
and magnetic susceptibility are represented by ∆ρ and S, respectively. Figure adapted from
Giraud et al. (2017).



670CHAPTER 21. DISCRIMINANT ANALYSIS AND GAUSSIAN MIXTURE MODEL

a) Gridded Model

p
(k

)=
w

k

Lithology k

(k=1,2,3,4)

L
it

h
o
lo

g
y
 P

ro
b

ab
il

it
y

ith model cell

b) GMM Weights wk

c) Gaussian Density Functions

Weighted GMM Gaussians      

Figure 21.16: a) Gridded model, b) p(k) for k = 1, 2, 3, 4 and c) Gaussians for equation 21.31.
Figure adapted from Giraud et al. (2017).
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Figure 21.17: a) Actual model, b) unconstrained inversion model and c) constrained inver-
sion model. Figure adapted from Giraud et al. (2017).

In this case, the gravity data largely provided long-wavelength information about the subsurface
structure and the magnetic data mainly provided the short-wavelength variations.

21.5.3 Joint Inversion with Updated GMM Penalty Terms

Astic and Oldenburg (2018) used a GMM to replace the Gaussian prior in Tikhonov regular-
ized inversion of gravity and magnetic data. They defined the objective function ǫ of Tikhonov
regularization as a combination of data misfit and model penalty terms:

ǫ =

data misfit︷ ︸︸ ︷
||d(m)− ddata||22 +

prior model penalty︷ ︸︸ ︷
αsmall||m−mprior||22 +

rough model penalty︷ ︸︸ ︷
βsmooth||Dm||22 , (21.46)

where d(m) is the predicted data computed from the model m, ddata represents the recorded
data, D is a spatial differentiation-like operator, mprior is a prior estimate of the expected model,
and (αsmall, βsmooth) are the damping coefficients greater than zero that determine the degree of
(smallness, smoothness) in the inverted model m∗ that minimizes ǫ. If the model is spatially
rough and has sharp gradients, then ||Dm||22 will penalize the objective function with a large value.
Thus, the iterative optimization procedure will iterate to a smoother model. Similarly, the term
||m−mprior||22 will encourage the iterative model to resemble the prior model mprior. The innovation
here compared to the approach employed by Giraud et al. (2017) is that the mixture parameters
are iteratively recomputed with the updated model.

The optimal modelm∗ that minimizes ǫ in equation 21.46 is equivalent to the one that maximizes
the posterior distribution p(m|d), which can be expressed by Bayes’ Theorem (see section 20.5) as

p(m|d) ∝ p(d|m)p(m)small p(m)smooth. (21.47)
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Here, the priors p(m)small and p(m)smooth are typically expressed as multivariate Gaussian distri-
butions. For example,

p(m)small ∼ N (m|mprior, [W
T
smallWsmall]

−1)βαsmall , (21.48)

whereWsmall is the matrix that expresses confidence in the prior modelmprior and [WT
smallWsmall]

−1

is akin to a model covariance matrix. Astic and Oldenburg (2018) replaced the unimodal Gaussian
in equation 21.48, which can be obtained by GMM analysis of petrophysical data from outcrops,
well logs, and lab measurements. The result is

p(m)small ∼ M(m|Φ)βαsmall , (21.49)

where M is the weighted sum of Gaussians from a GMM (see equation 21.28) and Φ represents
the petrophysical mixture weights, means and covariance information for each Gaussian associated
with a different rock unit. The optimal model is found by applying the EM method that maximizes
the logarithm of equation 21.47. After each iteration, the mixture parameters are recomputed from
the geophysical model and the lithological characteristics are updated using the EM algorithm.
This two-step process of geophysical inversion followed by a GMM update produces the expected
petrophysical and geological characteristics.

To test the effectiveness of this approach, Astic and Oldenburg (2019) generated gravity and
magnetic data for synthetic gravity and susceptibility models of a kimberlite deposit. There are
375,442 cells with unknown density and magnetic susceptibility values in the 3D model. The smallest
square cells are 10 m along a side and the initial model is the background half-space. There is a
depth weighting applied to the model parameters because the data are less sensitive to parameters in
the deeper parts of the model. Each inversion required ten to twenty iterations before being halted.

The models inverted from the gravity and magnetic data are shown in Figure 21.18. Here, a)
and b) are the inverted susceptibility and density models using Tikhonov inversion, where the data
are inverted separate from one another. The second row is the same as the 1st row except the data
are separately inverted from one another and the petrophysical model is employed as a constraint.
The third row of results are obtained by joint inversion of both the gravity and magnetic data, as
well as using the GMM as a constraint from the petrophysical data. The GMM prior is updated
after each iteration. Individual petrophysically guided inversions are better at recovering clusters
but only the joint inversion accurately recovered the yellow regions in the model.

21.6 Summary

The unsupervised clustering method of the GMM is presented, which assigns clusters to points
that are best fitted by a specified number of Gaussians. It is similar to the K-means clustering
method in that it consists of an iterative procedure that first finds the statistical parameters of
the Gaussians (means, covariances, and mixture weights), and then determines the new cluster
membership of the points. These new members are then used to update the statistical parameters,
and this procedure is repeated until convergence. The benefit of this method over clustering methods
such as K-means and Fuzzy C-means Clustering method (FCM) is that the final point distributions
are governed by probability distributions, which can be used to assign uncertainty values in their
membership class. Figure 21.11 shows the close relationship between the formulas for updating the
parameters in the FCM and GMM.

The discriminative models compute the decision boundary between the classes, and so learns the
conditional probability p(Y |X). This learning is usually done by a supervised learning procedure.
In contrast, the generative model learns the probability distribution p(X |Y ) of each class. It can be
used in an unsupervised manner such as the GMM, or a supervised manner as in supervised GDA.
An advantage of supervised GDA over supervised NN is that it does not require as much training
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a)   Mag Tikhonov    b) Gravity Tikhonov

c) Mag Petro-Guide d) Gravity Petro-Guide

e)     Mag Joint          f)  Gravity Joint

g) Geomodel Joint    h) Drilling Geomodel
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Figure 21.18: First column consists of magnetic susceptibility models and the second column
are the density models recovered by inverting the gravity data. Figure adapted from Astic
and Oldenburg (2019).
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data.

21.7 Exercises

1. Carry out Exercises 4.7.10-4.7.11.

2. Assume that the data residual matrix ǫ = X̂Ŵ − Ŷ in equation 21.8 is 2 × 2, with the first
column vector given by (ǫ1, ǫ2)

T and the second is (ǫ̃1, ǫ̃2)
T . Show that Tr[ǫT ǫ] is the sum of

the squared errors ǫ21 + ǫ22 + ǫ̃21 + ǫ̃22.

3. Derive equations similar to equations 21.25-21.27 for fitting three Gaussians.

4. Derive equations 21.39-21.41. See section 21.9.4.

5. Show that the optimal mean µ and variance σ2 formulas for maximizing the Gaussian 1
σexp(− 1

2N

∑N
n=1(x

(n)−
µ)2) for a group of points x(n) n ∈ {1, 2, ..., N} are

µ =
1

N

N∑

n=1

x(n); σ2 =
1

N

N∑

n=1

(x(n) − µ)2. (21.50)

6. Integrate equation 21.28 over x and show that the summation of mixture weights wk is equal
to 1. Note that both p(x) and the Gaussian are normalized.

7. Prove the identity ∇X aTX−1b = −X−TabTX−T .

8. Create a triangle like PDF and create a MATLAB code that samples this PDF by the inverse-
transform method. As your starting point, use the MATLAB code listed below.

clear all;hold off

x=[0:.1:3];u=x.*x/9;

subplot(131);

plot(x,2/9*x);xlabel(’x’);

ylabel(’f_X(x)’);

title({’a) PDF: f_X(x)= 2/9*x’,’for 0\leq x \leq 3’})

for ix=2:3

N=15;

if ix==2;ur=rand(N,1);end

if ix==2;subplot(132);end

if ix==3;subplot(133);end

hold on;

plot(ur*0,ur,’r*’)

plot(x,u,’b-’);

xlabel(’x’);

if ix==2;ylabel(’F_X(x\geq X)’);

title({’b) CDF: F_X(x)’,’\int_0^x f_X (x_0)dx_0 = x^2/9’})

text(.2,.85,{’\color{red}red\color{black} pts sampled from’,’uniform distribution’},’fontsize’,7)

end

if ix==3;

ylabel(’F_X(\color{green}x\color{black}\geq X)=\color{red}u\color{black}’);

title(’c) x = F_x^{-1}(u)’)

xlabel(’x’,’color’,’green’)

end

if ix==3;subplot(133);

plot(3*sqrt(ur),ur*0,’g*’);end

if ix==3;

for i=1:N
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plot([3*sqrt(ur(i)),3*sqrt(ur(i))],[0,ur(i)],’--g’)

plot([0,3*sqrt(ur(i))],[ur(i),ur(i)],’--r’)

end

end

hold off

end

subplot(131)

hold on

i=3;

x=3*sqrt(ur(i));y=2*x/9;

plot([3*sqrt(ur(i)),3*sqrt(ur(i))],[0,y],’--g’)

plot(3*sqrt(ur(i)),0,’*g’)

x=3*sqrt(ur(i));y=2*x/9;

plot([0,x],[y,y],’--r’)

plot(0,y,’r*’)

plot(x,y,’kO’)

plot(3*sqrt(ur),ur*0,’g*’)

hold off

9. Extend the acceptance-rejection code below to 2D.

clear all;subplot(111);plot(1);N=300;dx=1/N;sigma=.1;

ii=zeros(N,1);f=ii;

for i=1:N

ii(i)=i*dx;

f(i)=1/(sqrt(2)*sigma)*exp(-0.5*(i*dx-0.5)^2/sigma^2);

end

f=f/max(f(:));

subplot(221);plot(ii,f);

% Sampling

b=1;a=0;N1=N;

r = a + (b-a).*rand(N1,1);%Random Sampling along x axis

r1 = a + (b-a).*rand(N1,1);%Probability of acceptance

r1=r1*max(f);

subplot(222);

hold on

plot(r,r1,’*g’,ii,f,’b-’)

plot([0 1 1 0 0],[0 0 1 1 0],’r-’)

xlabel(’x’);ylabel(’z’)

title(’b) Random Points and f_X(x)’)

ia=0;N1=N;xa=zeros(N1,1);ff=xa;

for i=1:N1

ir1=round(r(i)*N);if ir1<1;ir1=1;end

if f(ir1)>=r1(i);ia=ia+1;xa(ia)=r(i);izz(ia)=r1(i);

ff(ia)=f(i);end

end

hold off

subplot(223)

hold on;

plot([0 1 1 0 0],[0 0 1 1 0],’r-’)

plot(ii,f,’b-’);

xlabel(’x’);ylabel(’z’)

text(.03,.9,{’\color{black}Accepted pts = \color{green}’},’fontsize’,7)

text(0.37,.87,’\color{green}*’,’fontsize’,15)

title(’c) Accepted Points (x_{acc},z_{acc})’)

for i=1:ia;

plot(xa(i),izz(i),’*g’)

end

hold off

subplot(221);

hold on;

plot([0 1 1 0 0],[0 0 1 1 0],’r-’)

xlabel(’x’);ylabel(’z’)
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title(’a) PDF: f_X(x) vs x’)

for i=1:ia;

plot(xa(i),0,’*r’)

end

text(.046,.08,{’\color{black}Accepted x pts = ’},’fontsize’,8)

text(0.465,.05,’\color{red}*’,’fontsize’,15)

hold off

subplot(224)

hold on

for i=1:ia;

plot(xa(i),0,’*r’)

end

histogram(xa(1:ia),10)

mx=max(histcounts(xa(1:ia),10));

plot(0,mx*1.2,’.’)

plot([0 1 1 0 0],[0 0 mx*1.2 mx*1.2 0],’r-’)

text(.05,mx*1.1,{’\color{black}Accepted x pts = \color{red}’},’fontsize’,9)

text(0.536,mx*1.07,’\color{red}*’,’fontsize’,15)

plot(ii,f/max(f)*mx,’b-’);xlabel(’x’);ylabel(’Count’);title(’d) Histogram vs x’)

hold off

21.8 Computational Labs

1. Download the Yellowstone data from LAB1/Chapter.YellowstoneData/YellowstoneData.docx.
Compute the GMM contours for these data using the lab at
https://colab.research.google.com/drive/1KScCs6jwUt5WQkz0lvqfDltOjHaZBYQ2?usp=sharing
.

Select the number of clusters to be two, and use the GMM responsibility function pnk to decide
which cluster a point belongs to. That is, for any point assign it to the cluster associated with
the highest probability. This transforms the GMM into a hard clustering method. How does
it compare to the K-means results shown in Figure 17.1.

2. Write the MATLAB or Python code for the expectation-maximation algorithm in Box 21.4.2.
Apply it to the Yellowstone data in LAB1/Chapter.YellowstoneData/YellowstoneData.docx
for two clusters. Compare your results to the K-means results shown in Figure 17.1.

Select the number of clusters to be two, and use the GMM responsibility function pnk to decide
which cluster a point belongs toto. That is, for any point assign it to the cluster associated
with the highest probability. This transforms the GMM into a hard clustering method. How
does it compare to the K-means results shown in Figure 17.1.

21.9 Appendix: Gradients of the GDA Log-likelihood Func-

tion

If the points x(n) belong to just two Gaussians then there are two means (µ0,µ1) and two
covariance matrices (Σ0,Σ1), two possible values for the class label, y ∈ {0, 1}, and p(y(n)) =

φy
(n)

(1− φ)1−y(n)

is the probability of the n(th) point belonging to either Gaussian. We now derive
the analytic formulas for the means, covariance matrices and φ for the case of fitting two Gaussians
to the binary training data (x(n), y(n)), where we assume Σ0 = Σ1 = Σ. If only one Gaussian is
fitted to all of the training data then it will be shown that p(y) = φ = 1 and the mean and covariance
formulas are easily derived.
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The log-likelihood function for GDA in equation 21.24 is defined as

L = lnΠN
n=1p(x

(n)|y(n);
φ,µ0, µ1, Σ︷︸︸︷

Φ )p(y(n)),

= lnΠN
n=1[

1

(2π)D/2
|Σ|−1/2{δy(n)0(1− φ)e−0.5(x(n)−µ0)

TΣ−1(x(n)−µ0) + δy(n)1φe
−0.5(x(n)−µ1)

TΣ−1(x(n)−µ1)},

=

N∑

n=1

[−0.5D ln 2π − 0.5 ln |Σ| − δy(n)0

2
(x(n) − µ0)

TΣ−1(x(n) − µ0)−
δy(n)1

2
(x(n) − µ1)

TΣ−1(x(n) − µ1)

+y(n) lnφ+ (1− y(n)) ln(1 − φ)],
(21.51)

where Φ represents the unknown statistical parameters and, for convenience, Σ0 = Σ1 = Σ.
Note, the Kronecker delta function indicates which conditional probability function is activated. For
example, if the nth sample is classified as y(n) = 1 then the term with δy(n)1 is activated and the
term with δy(n)0 = 0 is eliminated.

21.9.1 Solving for φ

Setting ∂L/∂φ = 0 gives

∂L
∂φ

=

N∑

n=1

[
y(n)

φ
− 1− y(n)

1− φ ] = 0, (21.52)

which can be rearranged to give

N∑

n=1

[y(n) − y(n)φ− φ+ y(n)φ] =
N∑

n=1

[y(n) − φ],

=

N∑

n=1

y(n) −Nφ = 0. (21.53)

Solving for φ gives

φ =
1

N

N∑

n=1

y(n),

=
1

N

N∑

n=1

I{y(n) = 1}, (21.54)

where I{y(n) = 1} is the indicator function in equation 21.25. This expression gives the probability
p(y = 1) = φ = N1/N for y = 1, where N1 is the number of points that belong to the Gaussian
labeled as y = 1. If the points all belong to a single Gaussian where y(n) = 1 ∀n ∈ {1, 2, . . . , N},
then φ = 1 in equation 21.54.
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21.9.2 Solving for µ

Setting ∇µ0L = 0 gives

∇Lµ0 = −1

2

N∑

n=1

∇µ0 [δy(n)0(x
(n) − µ0)

TΣ−1(x(n) − µ0) + δy(n)1(x
(n) − µ1)

TΣ−1(x(n) − µ1)],

= −1

2

N∑

n=1

∇µ0 [δy(n)0

yTHy︷ ︸︸ ︷
(x(n) − µ0)

TΣ−1(x(n) − µ0)], (21.55)

where the term with δy(n)1 does not contain µ0, so its derivatives with respect to components of µ0

are zero. The term under the overbrace is composed of the D×D symmetric matrix H = Σ−1 that
is left- and right-multiplied by the D× 1 vectors y = (x(n) −µ0) and y = (x(n) −µ0), respectively.
From the least squares section in Chapter 2, we know that

1

2
∇yy

THy = Hy, (21.56)

so that equation 21.55 becomes

∇Lµ0 = −
N∑

n=1

δy(n)0H(x(n) − µ0),

= −
N∑

n=1

δy(n)0[Σ
−1x(n) −Σ−1µ0],

= Σ−1
N∑

n=1

δy(n)0x
(n) −Σ−1µ0

N∑

n=1

δy(n)0,

= 0. (21.57)

Left-multiplying both sides of this equation by Σ and solving for µ0 yields

µ0 =

∑N
n=1 δy(n)0x

(n)

∑N
n=1 δy(n)0

, (21.58)

where δy(n)0 is the indicator function I{y(n) = 0}. Similarly, the derivation for the gradient with
respect to µ1 yields

µ1 =

∑N
n=1 δy(n)1x

(n)

∑N
n=1 δy(n)1

. (21.59)

These two equations are consistent with equation 21.26. If the points all belong to a single Gaussian
where y(n) = 1 ∀n ∈ {1, 2, . . . , N}, then equation 21.54 reduces to

µ1 =

∑N
n=1 δy(n)=11x

(n)

∑N
n=1 δy(n)1

,

=

∑N
n=1 x

(n)

N
,

(21.60)
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and µ0 = 0.

21.9.3 Solving for Σ

Setting ∇ΣL = 0 gives

∇ΣL =
N∑

n=1

−0.5∇Σ ln |Σ| − 0.5∇Σ[δy(n)0(x
(n) − µ0)

TΣ−1(x(n) − µ0)

+δy(n)1(x
(n) − µ1)

TΣ−1(x(n) − µ1)], (21.61)

=
N∑

n=1

{−1

2
Σ−T − 1

2

1∑

k=0

δy(n)k[−Σ−T (x(n) − µk)(x
(n) − µk)

TΣ−T ]}, (21.62)

= −1

2

N∑

n=1

{Σ−T −
1∑

k=0

δy(n)k[Σ
−T (x(n) − µk)(x

(n) − µk)
T ]Σ−T } = 0, (21.63)

where the identity ∇X aTX−1b = −X−TabTX−T is used in transforming equation 21.61 to equa-
tion 21.62. The term Σ−T is independent of the summation index n, so the above equation can be
right multiplied by Σ to get

∇ΣL =
N∑

n=1

{1−
1∑

k=0

δy(n)k[Σ
−T (x(n) − µk)(x

(n) − µk)
T ]} = 0. (21.64)

We know that
∑N

n=1 1 = N so we have

∇ΣL = N −
N∑

n=1

1∑

k=0

δy(n)k[Σ
−T (x(n) − µk)(x

(n) − µk)
T ] = 0. (21.65)

Multiplying the above equation by Σ, dividing by N and solving for Σ gives

Σ =
1

N

N∑

n=1

1∑

k=0

δy(n)k(x
(n) − µk)(x

(n) − µk)
T . (21.66)

If the Σ is taken to be different for each Gaussian, then the covariance gradient is with respect to
the kth covariance matrix for k ∈ 0, 1. That is, ∇Σ is replaced by ∇Σk

in equation 21.61. Therefore,

only the terms that are a function of∇Σk
survive in equation 21.63, the summation

∑1
k=0 is replaced

by the value 1 and k = 1. In this case, equation 21.66 becomes

Σ =
1

N

N∑

n=1

δy(n)1(x
(n) − µ1)(x

(n) − µ1)
T . (21.67)

If the points all belong to a single Gaussian where y(n) = 1 ∀ n ∈ {1, 2, . . . , N} and k = 1, then
δy(n)k = δy(n)=11 = 1 becomes unity in the above equation.

21.9.4 Gradient of the GMM Log-likelihood Function

Setting the gradients of the GMM log-likelihood in equation 21.33 to zero and solving for the
parameters gives expressions similar to the GDA formulas, except now the gradient w/r to the
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mixture coefficients wk ∀ k needs to be estimated instead of the gradient w/r to φ in equation 21.52.

The constraint
∑K

k=1 wk = 1 must be enforced, which can be done by using a Lagrange multiplier
and maximizing the adjusted log-likelihood function

L̂ = L+ λ(
K∑

k=1

wk − 1). (21.68)

Taking the gradient of L̂ w/r to wk gives the formula (Bishop, 2006)

0 =
N∑

n=1

N (x(n)|µk,Σk)∑K
j=1 wjN (x(n)|µj ,Σj)

+ λ. (21.69)

Multiplying both sides by wk, summing over k and using the constraint
∑K

k=1 wk = 1 we find
λ = −N . This expression for λ = −N can then be used to find the final expression for

wk =
Nk

N
, (21.70)

where Nk =
∑

k pnk in equation 21.41 is the total number of points effectively shared by the kth

Gaussian.
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Chapter 22

Physics-Informed Machine
Learning Inversion of Seismic Data

The second-best way to solve a problem is sometimes by machine learning. The best way is to
understand the physics and use a physics-based inversion strategy.

This chapter overviews the general procedures for deterministic and stochastic inverse algorithms
that find the optimal geophysical model m that best explains the data d. The inverse solutions
by machine learning and a physics-based algorithm can be combined to give a hybrid ML+physics
algorithm denoted as physics-informed machine learning. The benefit of combining both strategies
in parallel is that the ML algorithm is trained to recognize a familiar data pattern, and so encourages
a physics-based gradient algorithm to search in the neighboring model space. The hope is that this
search avoids many local minima that surround the global minima. Another hybrid strategy is
sequential where ML is first used to reduce the dimension of the data, and then a physics-based
inversion is used to estimate the optimal model. This chapter is followed by three more that present
examples of physics-informed ML inversion of seismic data.

22.1 Deterministic and Stochastic Inversion

Chapter 20 presented several examples of geophysical inversion, including the deterministic in-
version of the velocity model from VSP data dobs and locating the point source model m from
passive seismic data. This is denoted as a deterministic search because the optimal velocity model
used a physics-based ray theory to compute the gradients in a steepest-descent algorithm. The
optimal model m∗ minimizes the regularized sum of the squared residuals, such as

ǫ =
1

2

sum of squared residuals︷ ︸︸ ︷
||W(Lm − dobs)||2 +

λ

2
||Wmm||2, (22.1)

to get the regularized least squares formula for m∗:

m∗ = [LTWTWL+ λWT
mWm]−1LTWTWdobs, (22.2)

where W (Wm) is the data weighting matrix that downweights unreliable parts of the data (model).
For non-linear problems such as FWI, the forward modeling operator L is an implicit function of
m. In contrast, migrating seismic data is a linear problem because the background velocity is fixed
and L is independent of the reflectivity model m.
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Figure 22.1: Workflows for a) Physics-only inversion, b) pure-data ML (Yang, 2021), and
c) skeletal-pure-data ML. The dashed rectangles indicate that the enclosed system trains

on many examples to get the optimal weights w that minimize ||H†
w −mML||2.

The computational workflow for the general FWI inversion algorithm or least squares migration
algorithm is illustrated in Figure 22.1a where, for pedagogical simplicity, we set W = I andWm = 0.
These deterministic algorithms are completely physics based because they compute the gradient
descent updates using solutions to the wave equation.

The prediction of a model by a trained stochastic neural network is completely devoid of physics.
It is an inversion in the sense that the weights w are obtained by training to predict the given output
ytrain = H†

wd
train from the input data dtrain. In this case, the L2 objective function for the neural

network is

ǫML = ||H†
wd

train − ytrain||2, (22.3)

where (dtrain,ytrain) = (input, output) represents the training pair for the neural network and H†
w

represents the non-linear forward modeling operator of the NN, which is a function of the layer’s
weights denoted by the vector w. The goal is to find the optimal weights w∗ of the neural network
s.t.

w∗ = argmin
w

||H†
wd

train − ytrain||2, (22.4)

which is typically achieved by a gradient-descent algorithm. For example, the input data dtrain

might be land resistivity measurements along an array of electrodes for many different resistivity
models ytrain, which is the output. The elements of the resistivity vector ytrain are the resistivity
values in a 2D or 3D grid in the subsurface.

Once the optimal weights w∗ are computed for a sufficiently comprehensive set of training pairs,
then the resistivity model y predicted from the recorded field data dfield is given by

y = H†
w∗dfield. (22.5)
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To be consistent with the notation in equation 22.2, the symbol for, e.g. the resistivity model, y in
equation 22.3 is replaced by the model parameter mML to give the pure-data ML objective function
for training:

ǫML = ||H†
wd−mML||2, (22.6)

whose computational workflow is depicted in Figure 22.1b. If the input data are skeletalized and
then trained by a NN algorithm, then its workflow is depicted in Figure 22.1c.

Some successful examples that only use raw data pairs for training include recognizing differ-
ent bird types in section 10.13 or rock cracks images in Chapter 11, filtering migration images in
Chapter 5, or estimating the optimal stacking velocity from the stacks of common midpoint gathers
in Chapter 17. A seismic example of a pure-data ML inversion is illustrated in Figure 22.1 (Yang,
2021), who synthetically trained a neural network to predict the locations of point sources from
passive seismic data computed along a string of geophones. The point sources emulated localized
rock failures associated with a synthetic hydrofrac experiment.

Using a data-pure neural network for solving geophysical problems does not always meet with
success. For example, Xi et al. (2020) trained a neural network purely on synthetic data to predict
faults in seismic images, but the NN failed when applied to field data as illustrated in Figure 10.38c.
Other examples include the failure of DL-predicted resistivity models for simulating EM wavefields
in logging while drilling or characterization of transient electromagnetics (Jin et al., 2019; Shariari
et al., 2020; Colombo et al., 2021).

22.2 Incomplete Training and Physics-Informed ML

The failure of a pure-data ML algorithm is typically caused by incomplete training of the network.
Incomplete training, where the training set is limited in its diversity and number of examples, is
inevitable for high-dimensional data spaces because increasing the dimension of the data space leads
to a shrinkage of the distance between the nearest and farthest data points (Durrant and Kában,
2009). This shrinkage can be fatal for inversion methods that use a limited number of diverse training
examples and employ a distance metric to measure the difference between the predicted and observed
data. Thus, achieving a marginal improvement in generalizing a NN requires an exponential increase
in the number of training examples. As Bishop (1995b) states: ”increasing the input space dimension
without enhancing the quantity of available information reduces the model’s power and may give rise
to the curse of dimensionality.”.

22.2.1 Data Skeletonization and ML

Can one reduce the dimension of the data space to improve the generalization of a neural
network? Yes, the input data should be skeletonized into smaller dimensional data which still
retains essential characteristics sensitive to model changes. This well-known principle is used in
many areas of geophysics where, for example, only the traveltimes of selected events are inverted by
the wave equation to get the velocity model (Luo and Schuster, 1991a and 1991b; Yilmaz, 2001).
Other dimension reduction methods are PCA and SVD in Chapter 16. The cost, however, is often
a loss of model resolution. Resolution can be improved by gradually including more types of events
in iterative traveltime inversion or higher frequencies in the data for multiscale inversion (Bunk et
al., 1995).

The workflow for skeletonizing data and then feeding it into a NN is depicted in Figure 22.1c.
An example of skeletonized inversion is discussed in section 5.3 where complicated surface waves are
simplified by a FK transform. In this case, the dominant Rayleigh modes are coherently localized
along a prominent dispersion curve for the fundamental mode. The local windows that define these,
hopefully, simple dispersion curves are obtained by a trained NN algorithm. Chapter 23 uses a
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Figure 22.2: Diagram from illustrating physics-related constraints as a function of data size
(Karniadakis et al., 2021).

physics-based traveltime tomography algorithm to invert synthetic traveltime data for the velocity
tomogram. These blurry tomograms are used as input to a CNN algorithm to denoise the tomogram
and get higher resolution images of point slowness anomalies. The CNN is previously trained on
synthetic data to reduce the artifacts in the tomogram.

An example of skeletonizing the data by a physics-based algorithm is in Chapter 24. Here, the
complexity of the seismic traces is reduced by a physics-based migration algorithm that focuses the
reflection energy in the data domain to the reflectors mmig in the image domain. The role of the
CNN algorithm is to denoise the input migration image and estimate the pseudo-reflectivity sections.

22.3 Physics-Informed Machine Learning

In the pure-data ML case, the weights for the ML algorithm are obtained by extensive training
to minimize the ML objective function. This type of algorithm requires an enormous number1

of training examples for high-dimensional data (Durrant and Kában, 2009). On the other hand,
a deterministic algorithm avoids training, but suffers from the problem of getting stuck in local
minima because the input data are so complex. The more wiggles in the trace, the more complexity
and local minima in the objective function (Bunks et al., 1995; Schuster, 2017). Combining both
a ML and a physics-based inversion strategy can provide the best of both worlds where, ideally,
the constraints of the ML model encourage the gradient-descent algorithm to search near the global
minimum.

Constraining the data to honor the physics during or after ML training is a class of deep learning
algorithms known as physics-informed ML (PIML). It can seamlessly integrate data and abstract
mathematical operators, including PDEs with or without missing physics (Karniadakis et al., 2021).
The sparser the data set, the more the need for physics constraints as illustrated in Figure 22.2.
A significant benefit of PIML is that it can provide accurate solutions in the presence of noisy or
incomplete training data, including the extrapolation of training data to unseen models.

For example, if the input field data resemble some of the trained data, then the iterative gradient-
descent algorithm might be steered to be near a trained model. This model is presumably near the
desired model, so the gradient descent can descend to it without, ideally, getting stuck in a local
minima.

1Some practitioners use 5-10 training examples per dimension as an empirical rule-of-thumb for training.
If the input image contains 106 pixels, this means that O(107) training pairs are needed for training!
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22.3.1 Sequential ML+Physics Inversion

To reduce both the dimension and complexity of the input to a wave-equation inversion al-
gorithm, Chen and Schuster (2020) introduced a hybrid ML and physics-based inversion strategy.
Their strategy is to train an autoencoder to condense important features of input seismic traces
into a small-dimensional latent vector z. The elements of this latent vector z are then inverted for
the velocity model by a gradient-descent method that uses solutions to the wave equation for both
forward modeling and backprojection.

Figure 22.3a illustrates the workflow of this physics-informed ML algorithm. Chapters 14 and 25
provide the mathematical details and examples for this procedure applied to crosswell and refraction
data.

22.3.2 Simultaneous ML+Physics Inversion

Instead of a sequential use of ML training followed by a physics-based inversion algorithm,
Figure 22.3 illustrates the parallel minimization (Columbo et al., 2021a and 2021b) of the ML and
physics-based objective functions:

ǫML+Physics =

physics inversion︷ ︸︸ ︷
α||Wphysics(Lm− d)||2 +

ML inversion︷ ︸︸ ︷
β||bfWML(H†dobs −mML)||2 +

joint︷ ︸︸ ︷
γ||Wjoint(m−mML)||2 .

(22.7)

Here, the weights (Wphysics,WML,Wjoint) are used to downweight unreliable parts of the data or
model parameters, and the joint misfit term is used to encourage the ML and physics-driven models
to be the same. The positive scalar variables (α, β, γ) moderate the relative importance of the three
misfit functions.

A gradient-descent strategy with alternating updates of w and m is used to find the optimal
model m. First, the model m is fixed and the weights w in the NN are computed to minimize
the objective function ǫML+Physics. Then the updated weights w are fixed and the model m is
found by gradient descent that minimizes ǫML+Physics. The term ||Wjoint(m−mML)||2 encourages
agreement between the deterministic m and stochastic mML models. This alternating use of the
different objective functions is repeated until acceptable convergence. Examples of this procedure
for geophysical inversion are presented in Columbo et al. (2021a, 2021b).

22.4 Automatic Differentiation

Finally, Chapter 26 presents the concept of automatic differentiation, which computes the exact
values of the partial derivatives associated with a complicated function. These derivatives are used
to update the weights of a neural network during tarining by a gradient-descent algorithm. A benefit
of AD is that it can be used to compute the gradients associated with CNNs where the input consists
of skeletonized data. This avoids the derivation of complicated gradient formulas for such problems.
The penalty, however, is an increase in computational cost compared to using formulas to update
the model parameters.

22.5 Summary

The concept of physics-informed ML inversion is presented where a physics-based inversion
algorithm is combined with a ML algorithm. Once the ML algorithm is trained, then the ML
prediction of a model from new field data is typically much less costly than that from a physics-
based inversion algorithm. Unfortunately, the ML training is often incomplete so that the ML model
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Figure 22.3: Workflow for a) sequential and b) simultaneous estimation of the optimal
model m that minimizes both the ML and physics-based objective functions.

mML obtained from the field data is insufficiently accurate. However, it is hoped that mML is close
enough to the global minima so that its neighborhood can be explored by the physics-based gradient
algorithm to quickly find the global minimum.

Another hybrid strategy is sequential, where ML is first used to reduce the dimension of the data,
and then a physics-based inversion is used to estimate the optimal model. Dimensional reduction
of the data often reduces the chances of getting stuck in a local minimum, but at the possible cost
of losing some resolution. Searching for improvements to these hybrid strategies is an active area of
research.



Chapter 23

Tomographic Deconvolution

A tomographic deconvolution procedure is presented for high-resolution imaging of velocity
anomalies between reflecting interfaces. The key idea is to first use standard tomography to in-
vert reflection, refraction or transmission traveltimes for the background slowness tomogram. A
convolutional neural network (CNN) model is then trained to estimate the inverse to the blurred
tomogram s(x)tomo to get the actual slowness model s(x), where s(x) consists of small scatterers in
the background velocity model. The synthetic training pairs consist of (s(x)tomo, s(x)), where s(x)
represents the actual slowness model associated with the scatterers. We call this CNN a tomograph-
ic deconvolution (TD) operator because it deconvolves the blurring artifacts in traveltime slowness
tomograms. This procedure is similar to that of migration deconvolution which deconvolves the mi-
gration butterfly artifacts in migration images. Results with a limited number of synthetic examples
show the effectiveness of this procedure in significantly sharpening the tomographic images of small
scatterers. These results suggest that the task of computing the TD operator is theoretically much
simpler than that of general ML training of FWI operators. However, the effectiveness of TD with
general slowness models and field data is still an open question for research.

23.1 Introduction

The seismic forward modeling operator L computes the reflection traces d from the slowness
model m by

Lm = d, (23.1)

wherem = msmooth+mscatt is composed of the low-wavenumber smooth velocity modelmsmooth and
the high-wavenumber velocity variations mscatt. In the context of seismic migration or traveltime
tomography, equation 23.1 is often an overdetermined, ill-posed and inconsistent set of equations.

To reduce the artifacts associated with inconsistent and overdetermined equations, we often
compute the least squares solution given by (Yilmaz, 2001)

mtomo = [LTL]−1LT

Lm︷︸︸︷
d ,

=

tomographic PSR︷ ︸︸ ︷
[LTL]−1LTL

m︷ ︸︸ ︷∑

i

mi, (23.2)

where a regularization term is often used to stabilize the solution and L is the Earth’s actual
modeling operator. Here, we assume that d can be decomposed into a summation of modeled
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slowness anomalies

d =
∑

i

Lmi, (23.3)

where mi is the i
th localized slowness anomaly. These anomalies can be combined together to form

a larger slowness anomaly m =
∑

i mi such as a large scattering body.
The Hessian inverse [LTL]−1 is often too expensive to compute so an iterative regularized gra-

dient method (Lailly, 1983; Tarantola, 1987) is used to estimate the solution:

m(k+1) = m(k) − α[LT

residual=r(k)

︷ ︸︸ ︷
{Lm(k) − dobs}+λm(k)], (23.4)

where k is the iteration index, λ > 0 is the regularization term (Tikhonov and Arsenin, 1977; Scales
et al., 1990), the step length is α > 0, and a preconditioning operator is sometimes chosen to be

a diagonal matrix where Cii = [LTL]
−1

ii . In practice, either an efficient preconditioned conjugate
gradient (Scales, 1987) or a quasi-Newton method (Nocedal and Wright, 1999) can be used instead
of the steepest decent procedure in equation 23.4.

In the context of traveltime tomography, m is the slowness model and d defines the picked
traveltimes of transmission, refraction and/or reflection traveltimes (Bishop et al., 1985; Langan et
al., 1985; White, 1989; Zhu and McMechan, 1989; Delprat-Jannaud and Lailly, 1993; Hole and Zelt,
1995; Stefani, 1995; Langan et., 1997; Bube and Langan, 1997; Zhang and Toksöz, 1998; Yilmaz,
2001; Bube and Langan, 2008; Kotsi et al., 2019). The operator L represents the forward modeling of
traveltimes by either ray tracing or a numerical solution to the wave equation (Woodward, 1989, 1992;
Luo and Schuster, 1991). Despite the efforts to stabilize and precondition the gradient methodology,
the final tomogram is always filled with artifacts associated with either incomplete data and/or
physics. Such artifacts can be caused by, for example, a limited source-receiver aperture, uneven
density and/or angular diversity of rays in each slowness cell, strong velocity contrasts that prevent
many rays from entering areas of interest, and an irregular and coarse distribution of sources and
receivers (Schuster, 2017).

Gautam et al. (2021) proposed a non-linear deconvolution filter F that can suppress some of
these artifacts in the slowness tomogram mtomo in equation 23.2, i.e.

m ≈ F (mtomo), (23.5)

where m is the actual slowness model and the deconvolved tomogram F (mtomo) is a more accurate
rendering of m than given by the standard tomogram mtomo. According to equation 23.2, the
deconvolution filter in equation 23.5 is given by

F = ([LTL]−1LTL)−1, (23.6)

where L can be roughly approximated by the computer-based operator L. The deconvolution filter
F ( ) is also denoted as the inverse to the tomographic point-scatterer response (PSR). This filter is
computed by training a convolution neural network (CNN), where the input is the tomogram mtomo

and the output is the sum of localized slownesses m ≈∑imi. Here, the index i indicates different
locations of the localized slowness anomalies mi.

23.1.1 Previous Work

Equation 23.2 implies that the deconvolution operator F can be efficiently found by only finding
the inverse operator to localized tomographic PSRs of individual anomalies. If the background
velocity variations are not strong, then the localized PSRs can be assumed to be spatially invariant
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over a small region centered about the anomaly. These anomalies only differ from one another in
their location and strengths. In this way training a CNN to find F ( ) can be significantly more
efficient than training on a huge number of randomly selected slowness models. This is the same
strategy used to develop efficient and effective migration deconvolution filters for migration (Hu et
al., 1998 and 2001; ; Yu et al., 2006; Aoki and Schuster, 2009). Related migration deconvolution
filters are developed by Fletcher et al. (2016), Cavalca et al. (2018), and Guitton (2004). They
are all inexpensive alternatives to iterative least squares migration (LSM) (Lailly, 1983; Tarantola,
1987; Schuster, 1993; Nemeth et al., 1999; Chavent and Plessix, 1999; Duquet et al., 2000; Kühl and
Sacchi, 2003; Wang et al., 2016 and many others) where at least 4 iterations are usually required to
provide a reasonable estimate of the actual reflectivity distribution.

The migration deconvolution efforts are related to those for waveform inversion by machine
learning methods. For example, Araya-Polo (2018) and others (Yang and Ma, 2019; Park et al.,
2020) train a neural network to invert the input traces for the velocity model. This is an ambitious
goal because a successfully trained network would require millions of training examples that account
for the huge number of possible data sets and geology models (Karpatne et al., 2017). A means
for reducing this computational cost is by processing the input into velocity semblance panels (Sun
et al. 2021), which are then used as part of the input training data. The semblance panels distill
important information about the velocity into a more compact form, and so can possibly lead to
more accurate and efficient results. Nevertheless, this brute-force approach is often challenged by
high computational costs, uncertain effectiveness and the inability to generate a diverse range of
velocity models that represents the wide spectrum of possible earth models.

A strategy for generating a wide variety of velocity models is to use GANs. Sun et al. (2021)
propose velocity inversion by U-Net-like architectures trained with pseudo-randomly-generated ve-
locity models and then, with transfer learning, re-trained with GAN-generated synthetic velocity
models. Results demonstrate that the prediction accuracies for both salt geometries and background
velocities can be largely improved with the proposed hybrid workflow. However, the final models
are not in acceptable agreement with the desired ones if the training models are far from the true
models.

In comparison, the approach of TD uses a physics-based tomographic operator to compute the
tomogram, which computes the traveltime tomographic response of the subsurface velocity model.
Only the point-source artifacts of the tomographic operator and their elimination are used to train
the neural network. Similar to MD, TD assumes that the point-scatterer responses are spatially
invariant over a localized region of space. This reduces the huge number of training models required
for proper training. The TD procedure is a sequential use of physics-based and machine learning
operations that can be iteratively repeated to give new starting models. This hybrid approach of
using inverse operators based on physics and ML is related to the approaches of Columbo et al.
(2021), Alyousuf et al. (2021) and others who use objective functions that are a composite of ML
and physics-based misfit functions.

The next section presents the theory of TD. The fundamental concept of the tomographic point-
scatterer response (PSR) is defined, and then its inverse is obtained using a neural network model. A
convolutional neural network is used and the workflow for its implementation is described. Then the
numerical results are presented for tomographic deconvolution of tomograms computed by traveltime
inversion of reflection data and refraction data.

23.2 Theory of Tomographic Deconvolution

The first Fresnel zones for transmission and reflection arrivals are illustrated in Figure 23.1b for
a single source-receiver pair. These zones are defined as the points visited by rays that can be traced
from the source to the receiver with a traveltime greater than or equal to the central ray traveltime
at time t and less than t + T0/2. Here, T0 is the dominant period of the source (Schuster, 2017).
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Figure 23.1: a) Horizontal reflector model along with the white direct and black reflection
raypaths. b) Specular reflection and transmission wavepaths obtained by reverse time mi-
gration of a trace recorded at the geophone (quadrilateral) and excited by a bandlimited
source (star). The gray-shaded migration ellipse has foci at the source and receiver. Figures
courtesy of Ge Zhan.

These first Fresnel zones are also denoted as wavepaths (Woodward, 1989, 1992; Luo, 1991).

For the TD problem, we assume that the location of the reflector and the background velocity is
known, and the unknown is the location and extent of the green velocity anomaly in Figure 23.1b.
This unknown anomaly is the only part of the model that generates a traveltime residual in the data.
For a single source-receiver pair, this means that the velocity is updated all along the rabbit-ear
wavepath in Figure 23.1b because this is the zone which largely influences the phase of the reflection
arrival (Huang and Schuster, 2014). The green velocity anomaly is at the intersection of the rabbit
ears on the reflector so that the resulting slowness tomogram m(k+1) = m(k) − αLT∆r(k) will take
the appearance of a pair of rabbit ears. This is what we call the point-scatterer response (PSR) of
the tomographic operator for a single traveltime residual. The shape of this response will change
depending on the location of the scatterer relative to the reflector boundary and the number of traces,
as illustrated in Figures 23.2a-23.2b. Figure 23.2c is the ideal deconvolved tomogram F (mtomo) in
equation 23.5, where the rabbit-ear artifacts are removed by the deconvolution operator F to obtain
the actual shape of the scatterer.

23.2.1 Migration Deconvolution versus Tomographic Deconvolution

The PSR of the migration operator takes the shape of a butterfly centered at the location of
the localized scatterer (Schuster and Hu, 2000). For a sufficiently dense source-receiver spacing and
wide acquisition aperture, these artifacts are mostly localized to be within several wavelengths of
the anomaly. This means that the cross-talk noise from distant butterfly artifacts is minimal, so a
local linear migration deconvolution operator can effectively suppress artifacts (Hu et al., 2001; Yu
et al., 2006). This is not the case with the rabbit-ear artifacts of the tomographic PSR, where the
tomographic artifacts associated with a single scatterer can occupy a large portion of the model.
These artifacts can vary dramatically for different locations of the slowness anomaly. Therefore, TD
filters require a non-linear inverse filter, such as provided by a CNN.

23.2.2 Tomographic Deconvolution Workflow

The tomographic deconvolution workflow consists of 4 steps.
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d(t)1

a) Tomo. Refl. Image with 1 ZO Trace

mtomo=[ LTL]-1LTd1

b) Tomo. Image with 2 ZO Traces

mtomo=[ LTL]-1LTd1 + [ LTL]-1LTd2

d(t)1
d(t)2

rabbit ear 1st

specular Fresnel zone

specular refl. 1st

Fresnel zone

interface

image source

c) Deconvolved Tomogram

m = F(mtomo)

F(mtomo)

Figure 23.2: Tomographic models mtomo = [LTL]−1LTd inverted from specular reflection
traveltimes picked from a) one and b) two ZO traces. The slowness model is updated by
smearing the traveltime residuals to be within the Fresnel zone bounded by the thick black
line in b) that forms the rabbit ears. c) is the deconvolved tomogram F (mtomo).

• Collect traveltime reflection or refraction data and invert by traveltime tomography to get the
smooth background slowness model mtomo.

• Train the CNN model with synthetic reflection or refraction data to find F (mtomo) in Fig-
ure 23.2c. The background slowness model can be obtained by smoothing mtomo, or the
original tomogram can be used. The input to the training consist of small ’point’ slowness
anomalies located at different positions in the model. The size of these point anomalies is not
less than one to two wavelengths in size if ray tracing is used for forward modeling.

• Once the CNN model is properly trained and validated, it is applied to the tomogram mtomo

to get mdecon = F (mtomo), where the tomographic artifacts are suppressed and m ≈mdecon.

• Predicted data are computed dpred = Lmdecon and a sanity test is used to validate whether
mdecon accurately predicts the recorded traveltime data d.

23.2.3 CNN Architecture

The CNN model in Figure 23.3 consists of a contracting path and an expansive path (which gives
it the U-shaped architecture). The contracting path consists of six ”Down Blocks”, where each block
is made up of two repeated convolutional operations, each followed by a ReLU and a max-pooling
operation. During the contraction, the spatial information is reduced while feature information is
increased. The expansive pathway is made up of six ”Up Blocks”, where each block combines the
features and spatial information through a sequence of transpose convolutions and concatenations
with high-resolution features from the contracting path, followed by two convolutional operations.
At the bottom-most part (just where the Down Blocks end), there’s a ’bottleneck block’ which is
made up of two back-to-back convolutional operations. The thresholding operators are ReLU.

The training of the CNN model uses synthetic reflection traveltime data computed by a reflection
ray-tracing code, and then inverted by an iterative gradient method that minimizes the L1 data misfit
function. The slowness models, for example, are localized slowness anomalies in Figures 23.4a and
23.4d, and the tomograms mtomo are shown in Figures 23.4b and 23.4e. The supervised output
are the desired slowness models in Figures 23.4a and 23.4d. More than a thousand training pairs
(mtomo,m) are used to the train the CNN model in Figure 23.3. Each training model is a localized
slowness anomaly with a different location of the slowness anomaly. This model is validated using
about 200 out-of-the-training set pairs.
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a)         Velocity Model                   b)     Velocity Tomogram                 c) Deconvolved Tomogram km/s

Figure 23.3: U-Net architecture. Each red, green and blue box consists of an output in
the form of a multi-channel feature map with the number of channels increasing to 512 at
the ’bottleneck’ block. The blue arrows denote the input and outputs to/from different
blocks/layers, and the black arrows define the skip connections.

23.3 Numerical Results

Numerical results are now presented for deconvolving tomograms by the TD operator F com-
puted by a CNN. The reflection traveltime data are computed by reflection ray tracing in a two-layer
model with embedded slowness anomalies. A source and receiver spacing of 10 m is used, and there
are 199 sources located on the surface. Each source shoots into 200 receivers so 39,800 traveltimes
are generated for each simulation. It is assumed that the background medium is a two-layer model
with a horizontal density contrast and having the same homogeneous velocity in each layer; the
depth of the horizontal reflector is known. The localized slowness anomalies have a small contrast in
velocity so ray bending is negligible, and the training is computed for localized slowness anomalies
located randomly between the reflecting interface and the recording surface.

Similar tests are also conducted for refraction tomography. A source and receiver spacing of 10
m is used, and 50 sources (40 m apart) are placed on the surface with 200 receivers associated with
each source. Apart from this, ray bending is used during ray tracing for refraction results.

23.3.1 Reflections: Single Anomaly Models

Several tests are conducted using models with a single slowness anomaly. The CNN is trained
on 5000 pairs of slowness tomograms and the actual slowness models similar to the ones shown in
Figure 23.4a and Figure 23.4d.

Figure 23.4a shows a reflector model with a yellow velocity anomaly centered above the horizontal
reflector at z = 1000 m. These traveltimes are inverted using a preconditioned L1 traveltime
tomography algorithm to give the slowness tomogram in Figure 23.4b. Notice the rabbit-ear artifacts
associated with the slowness anomaly. Applying the TD filter F ( ) in equation 23.6 to this tomogram
gives the result shown in Figure 23.4c. The second row in Figure 23.4 is similar to the first row
except the slowness anomaly in Figure 23.4d is smaller sized and lowered from about 450 m to 750
meters in depth.
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Figure 23.4: a) Slowness model, b) slowness tomogram after inverting 30,900 reflection
traveltimes and c) the deconvolved tomogram. The second row of images are similar to the
first row except the yellow slowness anomaly in d) is lowered in depth.

The same CNN was also tested on velocity models with multiple anomalies. For the case where,
the two anomalies were very close, the results were not satisfactory. The main reason for this was the
presence of overlapping rabbit-ear artifacts, which was resolved by training the CNN on additional
velocity models which had multiple anomalies. The results for this test are discussed in the next
section.

23.3.2 Reflections: Multiple Anomaly Models

To get good results on models with multiple anomalies, the CNN trained on an additional 10,000
pairs of slowness tomograms and actual slowness models. The training dataset contains multiple
anomalies at random locations (Figure 23.5). The similarity (Figure 23.6) between the loss functions
for the training and validation sets suggests that the model is well trained without overfitting . In
Figures 23.7 and 23.8, the first column of images represents the out-of-the-training set models in
which the CNN was tested. The deconvolved tomograms in the third column suggest that TD
can significantly improve the resolution of the slowness tomograms shown in the middle column of
images. Many other examples (not shown) were tested and the vast majority of results suggested
that the deconvolved tomograms provide significant improvement in resolution compared to the
original tomograms. The cases where there was no improvement are discussed in the next section.

23.3.3 Models that Break the Deconvolution Filter

It is well known that the best resolution of a raypath is perpendicular to the ray (Schuster,
2017). Therefore slowness variations in depth are not well resolved for reflection data with narrow
incident angles. In fact, the 2D Fourier transform of a horizontal slowness layer that is λ0 thick
is dominated by the spectral energy at kz = 2π/λ0. In contrast, the reflection rays are devoid of
horizontal or nearly horizontal raypaths, so they are unable to accurately recover the kz = 2π/λ0
component of the model spectrum (Schuster, 2017). This is illustrated in Figure 23.9 where two
oscillatory interfaces at different depths in Figures 23.9a and 23.9d give about the same traveltime
data. This means that there are many models that satisfy nearly the same data so that there is
not a unique solution to the traveltime equations, as illustrated by the tomograms in Figures 23.9b
and 23.9e. Therefore, it is not surprising that the deconvolution operator gives poor results in
Figures 23.9c and 23.9f. The null space of LTL is non-empty.
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Figure 23.5: a) True slowness model with two anomalies and b) is the corresponding inverted
slowness tomogram. The second and third row of images are similar to the first row except
there are four yellow slowness anomalies in c) and e).
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Figure 23.6: The training and validation loss functions plotted against iteration num-
ber. These data were computed for the training set consisting of 10,000 pairs of slowness
tomograms and actual slowness models.

Figure 23.7: Same as Figure 23.4 except the input slowness models consisted of multiple
anomalies stacked vertically one on top of another.
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Figure 23.8: First column of images depicts the actual slowness models, the second column
shows the traditional slowness tomograms and the third column presents the deconvolved
tomograms.

Figure 23.9: Same as the previous figure except the input slowness models consist of an
oscillatory low-velocity layer at different depths.
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Figure 23.10: First column depicts the actual slowness models, the second column shows
the refraction tomograms and the third column displays the deconvolved tomograms for
refraction data.

23.3.4 Refractions: Multiple Anomaly Models

The CNN is now trained on refraction events generated in models with velocity increasing in
depth. Similar to the reflections models, the refraction models also contain small velocity anomalies
between the deep refractor interface and the free surface as shown in Figure 23.10. Unfortunately,
the range of incidence angles of refractions is not as diverse as those from reflections, so the image
resolution from refraction tomography in the middle column of Figure 23.10 is not as accurate as that
from reflection tomography. Nevertheless, the deconvolved tomograms showed reasonable resolution
as shown by the results in the third column of Figure 23.10.

23.3.5 Refractions: Fault Anomaly Models

The CNN is also extensively tested on models with faults. The training dataset consists of
velocity models with varying faults lengths and locations. Figure 23.11 shows the test results for
faults with random lengths, orientations and locations. The third row of tomograms demonstrates
that the CNN can deconvolve complex subsurface structures.

To make the test even more complex, the CNN was tested on velocity models where faults start
at the surface and extend deeply into the subsurface. The deconvolved tomograms in Figure 23.12
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Figure 23.11: First column of images depicts the actual fault models, the second column
shows the refraction tomograms and the third column provides the deconvolved refraction
tomograms.

suggest that the trained CNN is equally effective with data recorded over these types of models.

23.4 Summary

The theory of TD is presented where the tomogram is deconvolved of artifacts to give a high-
resolution estimate of the localized velocity anomalies in a reflecting layer. The assumptions are
that ray bending can be neglected in the slowness anomalies and that the anomalies are no smaller
than about a wavelength in order to satisfy the high-frequency approximation of ray tracing. To
go beyond this approximation we should use a bending-ray tomography code or a wave-equation
tomography method. If the model with the anomalies is partly in the null space of [LTL] then this
method will not be able to recover the null space components.

Tomographic deconvolution is similar to more general procedures that train a network with
(input, output) = (synthetic seismic data, velocity model), except the input for TD is the standard
tomogram which is assumed to consist of point-scatterer artifacts of the tomographic operator. Thus,
the task of computing the TD operator should be theoretically much simpler than that of general
ML training of FWI operators.

To ensure that the CNN does not overfit the training data, a diverse suite of training models
should be used and the convergence curves for both the training and validation data should be
similar. In addition, a sanity test is recommended after computing the deconvolved tomogram.
That is, the final deconvolved tomogram should be used to generate synthetic traveltimes. These
traveltimes can be compared to the recorded ones to ensure that the L2 residual of the deconvolved
tomogram is equal to or less than that from the input tomogram.

The computational requirements for training the CNN are high in this feasibility study, but it
is straightforward to reduce costs by reusing the forward modeling Green’s functions as described
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Figure 23.12: Same as previous figure except a different model model.

by the generalized diffraction migration procedure in Schuster (2017). Other short cuts can be used
as well such as transfer training. Tomographic deconvolution can also be used for transmission
tomography and refraction tomography.

There are two significant difficulties with the TD: high computational cost in training the CNN
and lack of testing on field data. Forward modeling with thousands of forward computations for
training is not feasible for large 3D velocity models and limited computational resources. Also, the
results here were for the idealized case and did not account for the noisy nature and the complexities
of finite-frequency wave propagation in complex models. Both of this issues must be addressed before
TD can be successfully implemented on real data.
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Chapter 24

Neural Network Least Squares
Migration

The forward pass of a multilayered convolutional neural network can be recast as the solution to
the problem of sparse least squares migration (LSM). The CNN filters and feature maps are shown
to be analogous, but not equivalent, to the migration Green’s functions and the quasi-reflectivity
distribution, respectively. This provides a physical interpretation of the filters and feature maps
in deep CNN in terms of the operators for seismic imaging. Unlike the standard LSM method
that finds the optimal reflectivity image, neural network LSM (NNLSM) finds both the optimal
quasi-reflectivity image and the quasi-migration Green’s functions. These quasi-migration-Green’s
functions are also denoted as the convolutional filters in a CNN and are similar to migration Green’s
functions. The advantage of NNLSM over standard LSM is that, if the training efforts are ignored,
its computational cost is significantly less and it can be used for denoising coherent and incoherent
noise in migration images. Its disadvantage is that the NNLSM quasi-reflectivity image is only an
approximation to the actual reflectivity distribution. However, the quasi-reflectivity image can be
used as a super-resolution attribute image for high-resolution delineation of geologic bodies.

24.1 Introduction

Deep convolutional neural networks (CNNs) have been recently used for solving geophysical
problems, such as seismic first-arrival picking (Yuan et al., 2018; Hu et al., 2019), seismic inter-
pretation (Wu et al., 2019a, 2019b; Shi et al., 2019), and seismic imaging (Xu et al., 2019; Sun et
al., 2020; Kaur et al., 2020). Interpretation examples include salt classification (Waldeland et al.,
2019; Shi et al., 2019), fault detection (Huang et al., 2017; Xiong et al., 2018; Wu et al., 2019a,
2019b; Zheng et al., 2019), reservoir characterization (Karimpouli et al., 2010; Cao and Roy, 2017;
Zhu et al., 2017), and seismic lithofacies classification (Ross and Cole, 2017; Liu et al., 2019) with
semi-supervised learning (Di et al., 2020). Other applications include the use of neural networks
for well-log interpolation (Saggaf, and Nebrija, 2003; Salehi et al., 2017; Pham et al., 2020), seismic
data interpolation (Mandelli et al., 2018; Mandelli et al., 2019; Wang et al., 2019), velocity model
building (Araya-Polo et al., 2018; Richardson, 2018), well-log ties (Bader et al., 2019), synthetic
well-data generation (Rolon et al., 2009), autoencoders for unsupervised facies analysis (Qian et
al., 2018), and supervised horizon tracking (Peters et al., 2019a, 2019b). Recently, an unsupervised
autoencoder method with regularization was developed by (Shi et al., 2020) to track target horizons.

There are many types of neural network or machine learning methods, selections ranging from
generative adversarial networks for seismic interpolation (Siahkoohi et al., 2018), residual networks
for traces missing at regular intervals (Wang et al., 2020), Monte Carlo and support vector regression
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(Jia et al., 2018) for data interpolation, autoencoders (Wang et al., 2020; Shi et al., 2020) for
target horizons tracking, and recurrent neural networks for well-log interpolation (Pham et al., 2019,
2020). The design of geophysical CNN architectures has largely been based on empirical evidence
from computer vision research, insights from the principles of artificial intelligence and heuristic
experimentation. Heuristic experimentation is most often used to decide the parameter design1

for the CNN architecture, which has both merits and liabilities. The merit is that trial-and-error
testing with different architecture parameters is likely to give excellent results for a particular data
set, but it might not be the best one for a completely different data set. This shortcoming in using
empirical tests for parameter selection partly results from the absence of a rigorous mathematical
foundation (Papyan et al., 2016; Papyan et al., 2017a, 2017b) for neural networks in general, and
CNN in particular.

To mitigate this problem for CNN-based imaging algorithms, we now present a physical inter-
pretation of the CNN filters and feature maps in terms of the physics-based operators for seismic
imaging. With such an understanding, we can use a physics-based rationale for the better design of
CNN architectures in seismic migration and inversion.

Donoho (2019) points out that ”machine learning has a troubled relationship with understanding
the foundation of its achievements well and its literature is admittedly corrupted by anti-intellectual
and anti-scholarly tendencies”. Progress in advancing the capabilities of deep neural networks will
be severely stymied unless its mathematical foundations are established. As a first step in this
direction, Papyan et al. (2016) proposed that the forward modeling operation of CNN could be
recast as finding the sparsest model m under the L1 norm subject to honoring the data misfit
constraint ||Γm− d||22 ≤ β:

Given : Γ,d and Γm = d+ noise,

F ind : m∗ = argmin
m
||m||1,

subject to ||Γm− d||22 ≤ β (24.1)

where m∗ is the optimal solution of equation 24.1, Γ is the dictionary matrix, d represents the
signal, and the scalar β is the specified noise tolerance. The iterative solution to this problem is
a series of forward-modeling operations of a neural network, where the mathematical operations of
each layer consist of two steps: a weighted summation of input values to give the vector z followed
by a two-sided soft thresholding operation denoted as σ(z) (Papyan et al., 2016).

The sparse constraint problem defined in equation 24.1 is commonly seen in geophysics, for
example, the least square migration (LSM) with a sparse constraint. LSM is an important seismic-
imaging technique to produce images with better balanced amplitudes, fewer artifacts and better
resolution than standard migration (Lailly, 1983; Tarantola, 1987; Schuster, 1993; Nemeth et al.,
1999; Chavent et al., 1999; Duquet et al., 1999; Feng and Schuster, 2017; Schuster, 2017). The
sparse constraint is one of the important regularization terms used in solving the ill-conditioned
least-squares problem (Sacchi and Ulrych, 1995; De Roeck, 2002; Kühl and Sacchi, 2003; Wang
and Sacchi, 2005) and sparse LSM (SLSM) has been demonstrated to be effective for mitigation of
aliasing artifacts and crosstalk in LSM (Wang and Sacchi, 2005; Herrmann et al., 2009; Dutta, 2017;
Witte et al., 2017; Li et al., 2018). The image-domain SLSM finds the sparsest reflectivity m∗ with
sparse constraints to minimize the objective function ||Γm−mmig||22, where Γ is the Hessian matrix
and mmig is the migration image. Here, we can see SLSM shares the same problem as that defined
in equation 24.1. Following the work of (Papyan et al., 2016), we show that the sparse solution
to the LSM problem reduces to the forward modeling operations of a multilayered neural network.
The CNN filters and feature maps are shown to be analogous, but not equivalent, to the migration

1The design of a CNN architecture selects, for example, the number of CNN layers, the number of
filters/layer, the size of the filters, the type of activation functions, the number of skip layers, the stride
length and whether a layer acts as a decoding or encoding operation.
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Green’s functions (Hessian) and the reflectivity distribution.
The standard SLSM algorithm requires the numerical solutions to the wave equation, which

is computationally costly. Motivated by the connection between sparse LSM and CNN, Liu et al.
(2020) propose the neural network version of sparse LSM, which does not require the numerical
solutions to the wave equation and is faster than standard SLSM. Instead of just finding the optimal
reflectivity m∗, we optimize for both the quasi-reflectivity m and the quasi-migration-Green’s func-
tions Γ. These quasi-migration-Green’s functions approximate the role of migration Green’s function
(Schuster and Hu, 2000) and are denoted as the convolutional filters in a convolutional neural net-
work. As discussed in Appendix 24.6, the migration Green’s function is the point-scatterer response
of the migration operator. The final image is denoted as the neural network least squares migration
(NNLSM) estimate of the quasi-reflectivity distribution that honors the L1 sparsity condition. The
next section shows the connection between the multilayer neural network and the solution to the
multilayer NNLSM problem. This is followed by the numerical examples with the synthetic models
and field data from the North Sea.

24.2 Theory of Neural Network Least Squares Migration

The theory of standard image-domain LSM is first presented to establish the benchmark solution
where the optimal reflectivity function minimizes the image misfit under the L2 norm. This is then
followed by the derivation of the sparse least squares migration (SLSM) solution for a single-layer
network. The final two subsections derive the NNLSM solution for single-layer and multilayer
networks, respectively.

24.2.1 Least Squares Migration

The least squares migration (LSM ) problem can be defined (Nemeth et al., 2009; Schuster,
2017) as finding the reflectivity coefficients mi in the N×1 vector m that minimize the L2 objective
function ǫ = 1

2 ||Γm−mmig||22,

m∗ = argmin
m
{1
2
||Γm−mmig||22}, (24.2)

where Γ = LTL is the symmetric N ×N Hessian matrix, L is the forward modeling operator, and
LT is the migration operator. Here, mmig = LTd is the migration image computed by migrating
the recorded data d with the migration operator LT . Alternatively, the image-domain LSM problem
can also be defined as finding m that minimizes ǫ = 1

2 (m
TΓm−mTmmig), which has a more well-

conditioned solution than the one in equation 2. However, we will use equation 24.2 as the definition
of the LSM problem in order to be consistent with the notation from Papyan et al. (2017a, 2017b).
The kernel associated with the Hessian matrix LTL is also known as the point scatterer response
of the migration operator or the migration Green’s function (Schuster and Hu, 2000). It is a square
matrix that is assumed to be invertible, otherwise a regularization term is incorporated into the
objective function.

A formal solution to equation 24.2 is

m∗ = Γ−1mmig, (24.3)

where it is too expensive to directly compute the inverse Hessian Γ−1. Instead, a gradient method
gives the iterative solution

m(k+1) = m(k) − αΓT (Γm(k) −mmig), (24.4)

where α is the step length, Γ is symmetric, and m(k) is the solution at the kth iteration. Typically,
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a regularization term is used to stabilize the solution; for example, the sparse constraint which will
be introduced in the next subsection.

24.2.2 Sparse Least Squares Migration

The sparse least squares migration (SLSM) in the image domain is defined as finding the reflec-
tivity coefficients mi in the N × 1 vector m that minimize the objective function ǫ (Perez et al.,
2013):

ǫ =
1

2
||Γm−mmig||22 + λS(m), (24.5)

where Γ = LTL represents the migration Green’s function (Schuster and Hu, 2000), λ > 0 is
a positive scalar, mmig = LTd is the migration image, and S(m) is a sparseness function. For
example, the sparseness function might be S(m) = ||m||1 or S(m) = log(1 + ||m||22).

The solution to equation 24.5 is

m∗ = argmin
m

[1
2
||Γm−mmig||22 + λS(m)

]
, (24.6)

which can be approximated by an iterative gradient descent method:

m
(k+1)
i = m

(k)
i − α

[
ΓT

r=residual︷ ︸︸ ︷
(Γm−mmig) +λS(m)′

]
i
,

= m
(k)
i − α[ΓT r+ λS(m)′]i. (24.7)

Here, S(m)′i is the derivative of the sparseness function with respect to the model parameter mi and
the step length is α. Vectors and matrices are denoted by boldface lowercase and uppercase letters,
respectively. If S(m) = ||m||1, the iterative solution in equation 24.7 can be recast as

m
(k+1)
i = soft(

[
m(k) − 1

α
ΓT (Γm(k) −mmig)

]
i
,
λ

α
), (24.8)

where, soft is the two-sided soft thresholding function (Papyan et al., 2016) derived in Appendix 24.7
(see equation 24.22). Here, Γ = LTL is computed by solving the wave equation to get the forward
modeled field and back-propagating the data by a numerical solution to the adjoint wave equation.

Equation 24.8 is similar to the forward modeling operation associated with the first layer of the
neural network in Figure 24.1. That is, set k = 0, m(0) = 0, α = 1, and let the input vector be
the scaled residual vector r = −(Γm(0) −mmig) = mmig so that the first-iterate solution can be
compactly represented by

m(1) = soft(ΓTmmig, λ). (24.9)

Here, the input vector r = mmig is multiplied by the matrix ΓT to give z = ΓT r, and the elements
of = z are then thresholded and shrunk to give the output m = soft(z, λ). If we impose a positivity
constraint for z and a shrinkage constraint so λ is small, then the soft thresholding function becomes
that of a one-sided threshold function, also known as the Rectified Linear Unit or ReLU function.
To simplify the notation, the soft(z, λ) function or ReLU(z) function is replaced by σλ(z) so that
equation 24.9 is given by

m(1) = σλ(Γ
Tmmig). (24.10)

For the ReLU function there is no shrinkage so λ = 0. However, Γ in equation 24.10 is computed
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Figure 24.1: The forward modeling procedure for a multilayer CNN is equivalent to the
multilayer sparse solution.

by forward and backward solutions to the wave equation. Unlike a neural network, the physics of
wave propagation is included with the sparse LSM solution in equation 24.8.

24.2.3 Neural Network Least Squares Migration

We now propose the neural network version of SLSM that finds both Γ∗ and m∗ which minimize
equation 24.5, which is equivalent to the convolutional sparse coding (CSC) problem. We denote
the optimal solution m as the neural network least squares migration (NNLSM) image. Here, we
assume that the migration image mmig can be decomposed into components that have the form
Γ1m1, where m1 represents a sparse quasi-reflectivity structure for the 1th CNN layer in Figure 24.1
and Γ1 has a convolutional structure. The solution can be found by using the Alternating Direction
Method of Multipliers (ADMM) method either in the Fourier domain (Heide et al., 2015) or in
the space domain (Papyan et al., 2017b), which alternates between finding Γ∗ (dictionary learning
problem) and then finding m∗ (sparse pursuit problem). The key difference between least squares
sparse inversion and NNLSM is that Γ is not computed by numerical solutions to the wave equation.
Instead, the coefficients of Γ are computed by the usual gradient-descent learning algorithm of a
convolutional neural network. For this reason, we denote m∗ as the quasi-reflectivity distribution
and Γ∗ as the quasi-migration Green’s function.

Appendix 24.8 shows the general solution for NNLSM for a single-layer neural network, where the
optimal Γ∗ is composed of the quasi-migration Green’s functions, which are denoted as convolutional
filters in the machine learning terminology (Liu and Schuster, 2018; Liu et al., 2018). Each filter
is used to compute a feature map that corresponds to a sub-image of quasi-reflection coefficients in
the context of LSM.

We now compute the NNLSM image for a 1D model, where we assume mmig is a N-dimensional
vector which can be expressed as,

mmig =

k0∑

i

mγi ∗m′
1i. (24.11)

Here, mγi is the ith local filter with length of n0, m′
1i is the ith feature map, “*” denotes the

convolution operator and k0 is the number of the filters. Alternatively, following Figure 24.2a,
equation 24.11 can be written in matrix form as mmig = Γ1m1 = Γ′

1m
′
1 (Papyan et al., 2017a,
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2017b), where Γ1 is a convolutional matrix where the columns contain the k0 filters with all of their
shifts. Γ′

1 is a concatenation of banded and circulant 2 matrices, which is the same as Γ1 except
that the order of the columns is different. m′

1 is a concatenation of the feature map vectors m′
1i for

i = 1, 2, · · · , k0.
The advantage of NNLSM is that only inexpensive matrix-vector multiplications are used and no

expensive solutions to the wave equation are needed for backward and forward wavefield propagation.
As will be seen later, convolutional filters that appear to be coherent noise can be excluded for
denoising the migration image.

Figure 24.2: a) Single-layer NNLSM and b) multilayer NNLSM for a one-dimensional mi-
gration image mmig.

2We shall assume throughout this paper that boundaries are treated by a periodic continuation, which
gives rise to the cyclic structure.
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24.2.4 Multilayer Neural Network LSM

The multilayer NNLSM is a natural extension of the single-layer NNLSM. For NNLSM, the
migration image mmig can be expressed as mmig = Γ1m1 (Figure 24.2a), where there are k0 filters
in Γ1 and k0 sub-quasi-reflectivity images in m1. Following Sulam et al. (2018), we can cascade
this model by imposing a similar assumption to the sparse representation m1, i.e., m1 = Γ2m2,
for a corresponding convolutional matrix Γ2 with k1 local filters and a sparse sub-quasi-reflectivity
image m2, as depicted in Figure 24.2b. In this case, the filter size is n1 × k0 and there are k1
sub-quasi-reflectivity images in m2.

Similar to the derivation by (Papyan et al., 2017a) and (Sulam et al., 2018), the multilayer
neural network LSM problem is defined as the following.

Find: mi,Γi such that

m∗
1 = arg min

m1,Γ1

[1
2
||Γ1m1 −mmig||22 + λS(m1)

]
,

m∗
2 = arg min

m2,Γ2

[1
2
||Γ2m2 −m∗

1||22 + λS(m2)
]
,

...

m∗
N = arg min

mN ,ΓN

[1
2
||ΓNmN −m∗

N−1||22 + λS(mN )
]
, (24.12)

where Γi is the ith Hessian matrix in the ith layer. The first iterate solution to the above system of
equations can be cast in a form similar to equation 24.10, except we have

m∗
N ≈ σλ (ΓT

N σλ(Γ
T
N−1(...σλ(Γ

T
1 m

mig)...), (24.13)

which is a repeated concatenation of the two operations of a multilayered neural network: matrix-
vector multiplication followed by a thresholding operation. In all cases, we use a convolutional neural
network where different filters are applied to the input from the previous layer to give feature maps
associated with the next layer, as shown in Figure 24.1.

For a perfect prediction of the migration image, mmig can also be approximated as mmig =
Γ1Γ2 . . .ΓNmN . We refer to Γ(i) as the effective filter at the ith level,

Γ(i) = Γ1Γ2 . . .Γi, (24.14)

so that
mmig = Γ(i)mi. (24.15)

The next section tests the effectiveness of NNLSM on both synthetic data and field data.

24.3 Numerical Results

We now present numerical simulations of NNLSM. Instead of only determining the optimal
reflectivity m as computed by SLSM, the NNLSM method computes both the quasi-reflectivity m
and the elements of the Hessian matrix Γ = LTL. Each block of Γ is considered to be the segment
response function (SSF) of the migration operator rather than the point spread function (PSF). If
the actual Green’s functions are used to construct Γ then each column of the Hessian matrix is the
point scatterer response of the migration operator (Schuster and Hu, 2000). In contrast, the NNLSM
Hessian is composed of blocks, where each block is the segment scatterer response of the migration
operator. An example will be shown later where a reflections from a segment of the reflector are
migrated to give the migration segment response of the migration operator. The computational cost
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Figure 24.3: a) Three-layer velocity model, b) RTM image, and c) migration image (blue
curve) at X=0.5 km, where the red curve is the normalized reflectivity model.

for computing SSF’s is several orders of magnitude less than that for PSFs because no solutions to
the wave equation are needed. The penalty, however, is that the resulting solution m is not the true
reflectivity, but a sparse representation of it we denote as the quasi-reflectivity distribution.

Using the terminology of neural networks, we can also denote the sparse sub-quasi-reflectivity
images as feature maps. Each block in Γ will be denoted as a filter. Therefore the vector output of
Γm can be interpreted as a weighted sum of filter vectors mγi weighted by the coefficients in m,
where mγi is the i

th column vector of Γ.

24.3.1 Three-layer Velocity Model

The interpretation of feature maps and filters can be understood by computing them for the
Figure 24.3a model. The grid size of the model is 101×101, and the grid interval is 10 m in both the
x and z directions. There are 26 shots evenly spaced at a distance of 40 m on the surface, and each
shot is recorded by 101 receivers with a sampling interval of 10 m. Figure 24.3b show the reverse
time migration (RTM) image.

The first test is for a 1D model where we extract the image located at X= 0.5 km, which is
displayed as the blue curve in Figure 24.3c. The red curve in Figure 24.3c is the reflectivity model.
Assume that there is only one filter in Γ and it extends over the depth of 400 m (41 grid points). We
now compute the NNLSM image by finding the optimal m and Γ by the two-step iterative procedure



24.3. NUMERICAL RESULTS 711

Figure 24.4: a) Learned filter, b) modified filter, and c) feature map (blue) and reflectivity
model (red).
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Figure 24.5: a) Learned and b) modified features.

denoted as the alternating descent method (see Liu et al. (2018) and Liu and Schuster (2018)). The
computed filter mγi is shown in Figure 24.4a where the phase of the filter γi is nonzero. If we
use a filter with a non-zero time lag to calculate its feature map m, the phases of the feature map
and the true reflectivity m will be different. So, we need to modify the time lag and polarity of
the basis function Γ̃i. The modified basis function is shown in Figure 24.4b, and its coefficients are
displayed as the blue curve in Figure 24.4c. Compared with the true reflectivity m (red curve in
Figure 24.4), the feature map can give the correct positions but also give the wrong values of the
reflectivity distribution.

Next, we perform a 2D test where the input is the 2D migration image in Figure 24.3b. Three 35×
35 (grid point) filters are learned (see Figure 24.5a). The modified filters are shown in Figure 24.5b.
Appendix 24.9 describes how we align the filters by using the cross-correlation method. The feature
maps of these three filters are displayed in Figures 24.6a-24.6c. Figure 24.6d shows the sum of these
three feature maps. It is evident that the stacked feature maps can estimate the correct locations
of the reflectivity spikes.

24.3.2 SEG/EAGE Salt Model

The multilayer NNLSM procedure (see equation 24.12) is now applied to the migration image
associated with the 2D SEG/EAGE salt velocity model in Figure 24.7a. The grid size of the model
is 101 grid points in both the z- and x-directions. The grid interval is 40 m in the x-direction
and 20 m in the z-direction. Figure 24.7b shows the reverse time migration (RTM) image. The
multilayer NNLSM consists of three convolutional layers: the first one contains 15 basis functions,
i.e., filters, of size 11×11 grid points, the second one consists of 15 basis functions with dimensions
11×11×15, and the last one contains contains 15 basis function of dimensions 11×11×15. Equation
24.12 is solved for both mi and Γi (i ∈ 1, 2, 3) by the two-step iterative procedure denoted as the
alternating descent method. The multilayered structure is shown in Figure 24.8, where the black
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Figure 24.6: Feature maps for the features a) 1, b) 2, and c) 3 shown in Figure 24.5. The
stacked feature map is shown in d). Here, the white lines show the locations of non-zero
points and the yellow lines indicate the locations of the reflectivity distributions.
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dots in mi represent the nonzero values of the quasi-reflectivity distribution. The effective basis
functions computed for these layers are shown in Figures 24.7c-24.7e, where the yellow, red and
green boxes indicate the sizes of the effective basis functions, which can be considered as quasi-
migration Green’s functions. It indicates that the basis functions of the first layer Γ1 contain very
simple small-dimensional edges, which are called “atoms” by Sulam et al. (2018). The non-zeros of
the second group of basis functions Γ2 combine a few atoms from Γ1 to create slightly more complex
edges, junctions and corners in the effective basis functions in Γ(2). Lastly, Γ3 combines atoms from
Γ(2) in order to reconstruct the more complex parts of the migration image. The corresponding
stacked coefficient images, also known as feature maps, are shown in Figures 24.7f-24.7h, which
give the quasi-reflectivity distributions. The reconstructed migration images are shown in Figures
24.7i-24.7k.

For comparison, we computed the standard LSM image using the deblurring method described in
Chen et al. (2017) and Chen et al. (2019). Here, the deblurring filter size is 17x17 grid points (black
boxes in Figure 24.9) and computed for a 50x50 grid (red boxes in Figure 24.9) of evenly spaced
point scatterers with the same migration velocity model as used for the data migration in Figure
24.7a. The standard LSM images for the first and 50th iterations are shown in Figures 24.10b and
24.10c, respectively, next to the NNLSM image in Figure 24.10d. It is clear that the NNLSM image
is better resolved than the LSM image, although there are discontinuities in some of the NNLSM
interfaces not seen in the LSM image. Some of the detailed geology is lost in the LSM image as
seen in the wiggly interface in the red-rectangular area of Figure 24.10. The practical application
of the NNLSM image is that it might serve a super-resolved attribute image that can be combined
with other attributes to delineate geology. For example, combining the depth-slice of the NNLSM
image with a spectral decomposition image can help delineate the lithological edges of meandering
channels.

NNLSM can filter out random and coherent noises in the migration image after reconstructing
the migration image by eliminating the noisy learned basis functions and their coefficients in the
NNLSM image. For example, Figure 24.11a shows the RTM image with a sparse acquisition geometry
so that the image contains a strong acquisition footprint. The reconstructed migration image in
Figure 24.11b shows significant mitigation of this noise in Figure 24.11a. However, the migration
swing noise is still prominent near the red arrows in Figure 24.11b. Such noise is reconstructed from
the noisy basis function shown in Figure 24.12a and the coefficients in Figure 24.12b. Figure 24.12c
is the image reconstructed by correlating the basis function in Figure 24.12a with the coefficients in
Figure 24.12b. After filtering out the basis functions from noise, the reconstructed image is shown
in Figure 24.11c, which is free from aliasing noise at the locations indicated by the red arrows.

24.3.3 North Sea Data

We apply the NNLSM method to field data collected in the North Sea (Schroot and Schutten-
helm, 2003), where the time migration image is shown in Figure 24.13a. The time axis is gridded
with 213 evenly-spaced points and there are 301 grid points along the x-axis. We compute 21 13-by-5
(grid point) convolutional basis functions, i.e. filters γi for (i = 1, 2, ...21), by the NNLSM procedure
(see Figure 24.13b). These filters approximate the dip-filtered migration Green’s functions, and the
basis function is marked as the yellow boxes in Figure 24.13a and 24.13b. The stacked feature maps
(quasi-reflectivity distribution) are displayed in Figure 24.13c. It is evident that the stacked feature
maps can provide a high-resolution migration image. After reconstruction from the learned filters
and feature maps, the migration image is shown in Figure 24.13d with less noise.

Finally, we apply NNLSM to a time slice of the migration image, which is shown in Figure 24.14a,
and the image size is 301 by 301 gridpoints. Figure 24.14b shows the 21 13×5 filters estimated by
the NNLSM procedure. The stacked feature map is displayed in Figure 24.14c, which may be
used as a super-resolution attribute image for high-resolution delineation of geologic bodies. The
reconstructed migration image is shown in Figure 24.14d and we can see there is less noise.
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Figure 24.7: a) 2D SEG/EAGE salt model, b) RTM image, c)-(e) learned effective filters
Γ(1), Γ(2) and Γ(3), (f)-(h) stacked quasi-reflectivity coefficients for m1, m2 and m3, (i)-(k)
reconstructed migration images Γ(1)m1, Γ

(2)m2 and Γ(3)m3.

Figure 24.8: Decomposition of the migration image of the 2D SEG/EAGE salt model in
terms of the multi-layer filter Γi and pre-stacked quasi-reflectivity coefficient mi, where the
black dots in mi represent the nonzero reflectivity values.
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Figure 24.9: a) Reference model and b) its migration image for the standard deblurring
LSM method.

Figure 24.10: a) RTM image, b) the first and c) 50th iteration results by LSM with deblur-
ring, and d) NNLSM image.
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Figure 24.11: a) RTM image, b) reconstructed image with all basis functions, and c) recon-
structed image with selected basis functions.

Figure 24.12: a) Basis function from noise, b) the coefficients, and c) reconstructed image.
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Figure 24.13: a) Migration image computed from the F3 offshore block data, b) learned
filters, c) stacked feature maps and d) migration image after filtering.

24.4 Discussion

The forward modeling for a multilayered neural network is shown to be equivalent to a single-
iterate solution of a multilayered LSM problem. This assumes positivity and shrinkage constraints
on the soft thresholding operation, so it reduces to the ReLU operation. This equivalence relates
the physics of seismic imaging to architectural features in the neural network.

• The size of the filters in the first layer should be about the same size as 1-2 wavelengths
for the depths of interest, which are validated by numerical experiments. In this case, the
filter is interpreted as an approximation to the migration Green’s function, except it is that
for a reflecting segment. Thus, we interpret the approximate migration Green’s function as
a migration segment spread function (SSF) rather than a migration point spread function.
Sulam et al. (2018) classifies each feature in the first layer as an atom which takes on the role
of a SSF.

• The output of the first layer provides the small scale, i.e., high-wavenumber, features associated
with the input data. For an input migration image, the feature maps of the first layer resemble
sub-quasi-reflectivity maps of the subsurface. Adding the sub-quasi-reflectivity maps together
gives a close approximation to the actual reflectivity model as shown in Figures 24.6d and
24.7f.

• The output of the second layer is a weighted sum of the first-layer features, which create
sparser feature maps. Sulam et al. (2018) classifies the concatenation of the filters from
the first and second layers as molecules (see equation 24.14). In the migration problem, the
resulting filters are SSFs for even larger segments of the original reflector boundaries. The
feature maps of the third layer are a weighted sum of the second layer’s features to produce
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Figure 24.14: a) Time slice of the migration image computed from the F3 offshore block
data, b) learned filters, c) stacked feature maps and d) migration image after filtering.
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Figure 24.15: The relationship between sparse inversion and CNN, where the sparse inver-
sion methods include sparse LSM, NNLSM, and blind deconvolution.

even the sparsest feature maps. For migration, the final feature maps are very sparse while
the concatenated filters are associated with large-scale features of the migration image.

• The computational cost of computing NNLSM images is significantly less than that for LSM
images because no solutions of the wave equation are needed. For example, we consider the
2D FDTD forward modeling of the acoustic equation with an eighth-order scheme in space
and a second-order scheme in time, and its computational complexity is O(ntn

2) for one shot,
where n is the number of grid points in one direction and nt is the number of the time steps.
According to Plessix (2007), nt is approximate 30 n to satisfy the stability condition and
to make sure there is enough recoding time when vmax/vmin ≃= 3, where vmax and vmin

are the maximum and minimum velocities, respectively. So, The complexity of 2D FDTD
forward modeling of the acoustic equation is O(nsn

3) where ns is the number of the shots.
The complexity of LSRTM is O(6nsN

itern3) (Schuster, 2017), where N iter is the iteration
number. For NNLSM, the complexity is O(N itern2 log n) (Heide et al., 2015) and can be
reduced to O(N itern2) if a local block coordinate-descent algorithm is used (Zisselman et al.,
2019).

The 1D NNLSM can be interpreted as a blind deconvolution (BD) problem in seismic data
processing (Kaaresen and Taxt, 1998; Bharadwaj et al., 2018). It can be seen in Figure 24.5 that
the filter of NNLSM is the source wavelet of BD and the coefficients of NNLSM are the quasi-
reflectivity coefficients of BD. However, NNLSM can have more than one filter and the filters can
be 2D or 3D filters. We show the relationship between BD, sparse LSM, NNLSM, and CNN in
Figure 24.15.

NNLSM is an unsupervised learning method. Compared to a supervised learning method, it does
not heavily depend on the huge amount of training data. However, it may need human intervention
for inspecting the quality of the quasi-reflectivity images and we need to align the filters to get more
consistent quasi-reflectivity.
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In Figure 24.14, we apply 2D NNLSM to a time slice of the 3D North Sea Data. The 2D NNLSM
method can be extended to a 3D implementation to learn a set of 3D filters. Incorporating the third
dimension of information from 3D filters will likely lead to a better continuity of the reflectors in
Figure 24.14c. However, the computational cost will increase by more than a multiplicative factor
of n.

24.5 Conclusions

Neural network least squares migration finds the optimal quasi-reflectivity distribution and quasi-
migration-Green’s functions that minimize a sum of migration misfit and sparsity regularization
functions. The advantages of NNLSM over standard LSM are that its computational cost is signifi-
cantly less than that for LSM and it can be used for filtering both coherent and incoherent noise in
migration images. A practical application of the NNLSM image is as an attribute map that provides
super-resolution imaging of the layer interfaces. This attribute image can be combined with other
attributes to delineate both structure and lithology in depth/time slices of migration images. Its
disadvantage is that the NNLSM quasi-reflectivity image is only an approximation to the actual
reflectivity distribution.

A contribution of our work is that we show that the filters and feature maps of a multilayered
CNN are analogous to the migration Green’s functions and reflectivity distributions. For the first
time we now have a physical interpretation of the filters and feature maps in deep CNN in terms
of the operators for seismic imaging. Such an understanding has the potential to lead to better
architecture design of the network and extend its application to waveform inversion. In answer to
Donoho’s plea for more rigor, NNLSM represents a step forward in establishing the mathematical
foundation of CNN in the context of least squares migration.

24.6 Appendix: Migration Green’s Function

Schuster and Hu (2000) show that the poststack migration (Yilmaz, 2001) image m(x)mig in the
frequency domain is computed by weighting each reflectivity value m(z) by Γ(x|z) and integrating
over the model-space coordinates z:

for x ∈ Dmodel : m(x) =

η
∫
Dmodel

dz

Γ(x|z)︷ ︸︸ ︷∫

y∈Ddata

dyω4G(x|y)2∗G(y|z)2m(z), (24.16)

where η represents terms such as the frequency variable raised to the 4th power. The migration
Green’s function Γ(x|z) is given by

for x, z ∈ Dmodel : Γ(x|z) =
η
∫
y∈Ddata

dyω4G(x|y)2∗G(y|z)2. (24.17)

Here we implicitly assume a normalized source wavelet in the frequency domain, and Dmodel and
Ddata represent the sets of coordinates in, respectively, the model and data spaces. The term
G(x′|x) = eiωτxx′/||x − x′|| is the Green’s function for a source at x and a receiver at x′ in a
smoothly varying medium3. The traveltime τxx′ is for a direct arrival to propagate from x to x′.

3If the source and receiver are coincident at x then the zero-offset trace is represented by the squared
Green’s function G(x|x′)2.
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The physical interpretation of the kernel Γ(x′|x) is that it is the migration operator’s4 response
at x′ to a point scatterer at x, otherwise known as the MGF or the migration Green’s function
(Schuster and Hu, 2000). It is analogous to the point spread function (PSF) of an optical lens for a
point light source at x in front of the lens and its optical image at x′ behind the lens on the image
plane. In discrete form, the modeling term [Γm]i in equation 24.16 can be expressed as

[Γm]i =
∑

j

Γ(xi|zj)mj . (24.18)

with the physical interpretation that [Γm]i is the migration Green’s function response at xi. An
alternative interpretation is that [Γm]i is the weighted sum of basis functions Γ(xi|zj) where the
weights are the reflection coefficients mj and the summation is over the j index. We will now
consider this last interpretation and redefine the problem as finding both the weights mi and the
basis functions Γ(xi|zj). This will be shown to be equivalent to the problem of a convolutional
neural network.

24.7 Appendix: Soft Thresholding Function

Define the sparse inversion problem as finding the optimal value x∗ that minimizes the objective
function

ǫ =
1

2
||z− x||22 + λ||x||1, (24.19)

where the L1 norm demands sparsity in the solution x. An example is where z is a noisy M × N
image such that z = x+noise, and we seek the optimal vector x that satisfies equation 24.19. Here,
the noisy M ×N image has been flattened into the tall MN × 1 vector z.

The stationary condition for equation 24.19 is

∂ǫ

∂xi
= (xi − zi) + λ

∂||x||1
∂xi

,

= 0, (24.20)

where

∂||x||1
∂xi

= 1 for xi ≥ 0; ∂||x||1
∂xi

= −1 for xi < 0. (24.21)

Equations 24.20-24.21 can be combined to give the optimal x∗ expressed as the two-sided ReLU
function

xi = soft(zi, λ) =





zi − λ if zi ≥ λ
0 if |zi| < λ

zi + λ if zi < −λ



. (24.22)

More generally, the iterative-soft-threshold-algorithm (ISTA) that finds x∗

x∗ = argmin
x

[1
2
||z−Wx||22 + λ||x||1

]
, (24.23)

4This assumes that the zero-offset trace is generated with an impulsive point source with a smoothly
varying background velocity model, and then migrated by a poststack migration operation. It is always
assumed that the direct arrival is muted and there are no multiples.
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is

x
(k+1)
i = soft

(
x(k) − 1

α
WT (Wx(k) − z),

λ

α

)
i
. (24.24)

There are several more recently developed algorithms that have faster convergence properties than
ISTA. For example, FISTA (Fast-ISTA) has quadratic convergence (Beck and Teboulle, 2009).

24.8 Appendix: Neural Network Least Squares Migration

The neural network least squares migration (NNLSM) algorithm in the image domain is defined
as solving for both the basis functions Γ̃(xi|xj) and m̃j that minimize the objective function defined
in equation 24.5. In contrast, SLSM only finds the least squares migration image in the image
domain and uses the pre-computed migration Green’s functions that solve the wave equation.

The NNLSM solution is defined as

(m̃∗, Γ̃
∗
) = arg min

m̃, Γ̃

[1
2
||Γ̃m̃−mmig||22 + λS(m̃)

]
, (24.25)

where now both Γ̃
∗
and m̃∗ are to be found. The functions with tildes are mathematical con-

structs that are not necessarily identical to those based on the physics of wave propagation as in
equation 24.5.

The explicit matrix-vector form of the objective function in equation 24.25 is given by

ǫ =
1

2

∑

i

[∑

j

Γ̃(xi|zj)m̃j −mmig
i

]2
+ λS(m̃). (24.26)

and its Fréchet derivative with respect to Γ̃(xi′ |zj′ ) is given by

∂ǫ

∂Γ̃(xi′ |zj′ )
=

∑

j

(Γ̃(xi′ |zj)m̃j − m̃mig
i′ )m̃j′ . (24.27)

The iterative solution of equation 24.25 is given in two steps (Olshausen and Field, 1996).

1. Iteratively estimate m̃i by the gradient descent formula used with SLSM:

m̃
(k+1)
i = m̃

(k)
i − α[Γ̃

T
(Γ̃m̃−mmig)]i − λS(m̃)′i. (24.28)

However, one migration image mmig is insufficient to find so many unknowns. In this case
the original migration image is broken up into many small pieces so that there are many
migration images to form examples from a large training set. For prestack migration, there
will be many examples of prestack migration images, one for each shot, and the compressive
sensing technique denoted as VISTA (Ahmad et al., 2015) is used for the calculations.

2. Update the basis functions Γ̃(xi|zj) by inserting equation 24.27 into the gradient descent
formula to get

Γ̃(xi′ |zj′)(k+1) = Γ̃(xi′ |zj′ )(k+1) − α ∂ǫ
∂Γ̃(xi′ |zj′ )

,

= Γ̃(xi′ |zj′ )(k+1)

−α(
{∑

j Γ̃(xi′ |zj)m̃j

}
−mmig

i′ )m̃j′ . (24.29)
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It is tempting to think of Γ̃(x|x′) as the migration Green’s function and m̃i as the component
of reflectivity. However, there is yet no justification to submit to this temptation and so we
must consider, unlike in the SLSM algorithm, that Γ̃(x|x′) is a sparse basis function and
m̃i is its coefficient. To get the true reflectivity then we should equate equation 24.18 to∑

j Γ̃(xi,xj)m̃j and solve for mj .

24.9 Appendix: Alignment of the Filters

To align the learned filters, we first choose a “target” filter, which is denoted as a 2D matrix A
with the size of M ×N . Then we try to align all the other filters with the target filter through their
cross-correlation. For example, if we choose one filter denoted as matrix B with the same size as A,
we can get the cross-correlation matrix C with its elements defined as,

Ci+M,j+N =

M∑

m=1

N∑

j=1

am,n · bm+i,n+j , (24.30)

where −M < i < M and −N < j < N . ai,j , bi,j and Ci,j indicate the element at position (i, j) in
matrices A, B and C, respectively. The location of the maximum absolute value of the elements
in matrix C indicates how much should we shift filter B to filter A in each direction. Figure 24.16
shows the calculation of the cross-correlation matrix C for two filters A and B. c1,0 (or C4,3) is the
maximum absolute value of the elements in matrix C, which indicates filter B should be shifted 1
position along the first direction. Here, we need to pad zeros along all the dimensions of filter B
before shifting it, which is displayed in Figure 24.17.

Figure 24.18a shows the learned filters with a size of 17 × 9 from the migration image of the
SEG/EAGE salt model. Filter No. 7 (yellow box) is chosen as the target filter. The aligned filters
are shown in Figure 24.18b without zero padding and the stacked feature maps from the original
and aligned filters are displayed in Figures 24.18c and 24.18d, respectively. It is evident that the
reflector interfaces from the aligned filters are more continuous especially in the red box compared
with those of the original filters.
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Figure 24.16: Calculation of the cross-correlation matrix C.
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Figure 24.17: Diagram that illustrates the circular shifting of padded filter B.
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Figure 24.18: a) Learned filters from the migration image of SEG/EAGE salt model; b)
the aligned filters; stacked feature maps of the c) original and d) aligned filters, where the
yellow boxes show the sizes of the filters for the filters, respectively.
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Chapter 25

Wave Equation Inversion and
Neural Networks

The previous chapter presented an example where the latent variables in an autoencoder were
used to invert for the velocity model from seismic data. Now we present the theoretical details for
this methodology, denoted as Newtonian machine learning (NML), and apply it to crosswell and
refraction seismic data. We compare its performance to that of full waveform inversion (FWI),
where the advantage of NML over FWI is it is more robust and has less of a tendency in getting
stuck at local minima. This is because NML only needs to explain a sparse representation of a low-
dimensional latent-space representation of the input data. This is far less demanding than FWI’s
difficult task of explaining all of the wiggles in every arrival. The disadvantage of NML is that it
sometimes provides a tomogram with theoretically less resolution than the ideal FWI tomogram. In
this case, the NML tomogram can be used as an excellent starting model for FWI.

25.1 Introduction

Full waveform inversion is very ambitious, it seeks an earth model m that explains every com-
plicated wiggle in a large set of very wiggly seismograms denoted by d (Tarantola, 1987). A basic
assumption is that the forward modeling operator L (see Figure 25.1a) is a ”good enough” repre-
sentation of the actual physics of wave propagation in the Earth. Such ambitions and assumptions
can sometimes lead to getting stuck in local minima, slow convergence and tomograms with unac-
ceptable errors. To partly mitigate these problems a multiscale strategy (Bunks et al., 1995) can
be employed. As an alternative, we present wave-equation inversion of skeletonized data. Here,
the large complicated data set is reduced to skeletonized data d̃ which are much less complicated
yet still contain essential information about the model parameters of interest. This means that the
skeletonized data lead to a less complicated objective function that does not contain so many local
minima associated with the one for FWI.

To invert the skeletonized data, skeletonized wave-equation inversion (SWI) uses numerical so-
lutions to the wave equation to update the model by back-propagation of the weighted skeletonized
data residual (Luo and Schuster, 1991a, 1991b; Lu et al., 2017). The result is a largely robust
inversion algorithm free of layered media or high-frequency approximations. The main benefits are
that the inversion algorithm is less prone to getting stuck in a local minimum, but at the cost of a
reduction in model resolution. However, the inverted tomogram can be used as the starting model
for FWI because it is likely to be sufficiently close to the actual earth model.

Recent examples (Lu et al., 2017) of skeletonized wave-equation inversion include the following
cases.

729
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1. Inversion of Q(x) from diving waves and surface waves. Here the skeletonized data d̃
are the peak frequencies associated with the arrivals of diving waves or surface waves, and the
output model is Q(x) (Li et al., 2017b; Li et al., 2018d; Li et al, 2019c).

2. V(x) inversion by migration velocity analysis. The skeletonized data d̃ are the depth
residuals or static shifts associated with plane-wave migration images in the common image
gather domain (Guo et al., 2017).

3. Inversion of V (x) from the dispersion curves of surface waves. Here, the input
skeletonized data d̃ are the dispersion curves of surface waves in the k − ω domain and the
output model is the shear velocity for Rayleigh waves, Love waves, and the P-velocity model
for near-surface guided waves (Li et al., 2017a).
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Figure 25.1: System diagrams for a) FWI, b) SWI, and c). a neural network. The neural
network and SWI are similar in that the input data are skeletonized features of the raw
data strongly influenced by small changes in the model. However, the neural network is
first trained to get an estimate of W, which is then used to estimate the target model m
from untrained data.

The skeletonization strategy of SWI is similar to that of neural networks, where a complex data set
is often reduced to its essential features (Bishop, 2006). These skeletonized ”features” are input into
the system of neural network layers depicted in Figure 25.1c. Here, the original data can be very
complex but complexity can be reduced by an unsupervised learning algorithm such as a principle
component analysis, singular value decomposition (Bishop, 2006) or some statistical measure of
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Figure 25.2: System diagram for the probabilistic neural network for classifying thin sections
(from Patel and Chatterjee, 2016).

important features (Patel and Chatterjee, 2016). In principle, these less complex features are still
rich in information about the model. As an example, Figure 25.2 depicts the workflow for classifying
rock types using a supervised learning method (Patel and Chatterjee, 2016). Here the original input
data consist of images d of thin sections and their classification m, each one classified as a type
of limestone by a geologist. For example, if there are three types of classified rocks then the 3 × 1
target model vector m = (m1, m2, m3) might be assigned m = (1, 0, 0) if it is a pure limestone,
m = (0, 1, 0) if it is a weathered rock, and m = (0, 0, 1) if it is a shale-limestone. In practice, the
assignment is over a range of classification numbers and m is a 7×1 vector according to Figure 25.2.

To simplify the input data, the thin-slice images are skeletonized into histograms of red, blue,
and green colors. These histograms are further skeletonized into second-order (variance), 3rd-order
(skewness), and 4th-order (kurtosis) statistical parameters for each color histogram. The examples
from this skeletonized training set are denoted as (d̃,m), where for each image the input is a 9× 1
vector of statistical values from the three histograms. For pedagogical simplicity we avoid the
superscript notation that denotes the ith example from the training set. After sufficient training
with N training examples, the coefficients of the neural network are inverted for and used to classify
thin sections from out of the training set. In their case history, Patel and Chatterjee achieved more
than a 90% accuracy in the classification of thin sections taken from outside the training set.

25.2 Theory for Wave Equation Inversion of Skeletonized
Data

The starting point for wave-equation inversion of skeletonized data is to define an objective
function

ǫ =
1

2

N∑

j=1

(d̃j − d̃obsj )2, (25.1)

where d̃j is the predicted data for jǫ[1, 2, ..N ] and the obs superscript denotes the observed skeletal
data. Different norms can be employed, and different objective functions can be used such as a
correlation objective function. For simplicity of exposition, we do not include regularization or
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preconditioning terms and assume that d̃j is always real. Note, dj without the tilde denotes the raw

data but d̃j with the tilde describes the data skeletonized from the raw data.

An iterative gradient descent method can be used to find the model parameters that best explain
the data in the least squares sense:

m
(k+1)
i = m

(k)
i − α

N∑

j=1

rj=residual︷ ︸︸ ︷
(d̃j − d̃obsj )

Fre′chet︷ ︸︸ ︷
∂d̃j
∂mk

, (25.2)

where α is the step length and m
(k)
i is the model parameter of interest in the ith cell at the kth

iteration. If the skeletal data value d̃i is not explicitly contained in the wave equation, e.g. reflection
traveltimes are not explicit variables in the wave equation, then a connective function Φ(d̃j ,mk) is

required to get a formula for the Fréchet derivative
∂d̃j

∂mk
. For example, Luo and Schuster (1991a)

proposed the crosscorrelation between the observed and predicted pressure traces for wave-equation
traveltime inversion. Li et al. (2017a) presents examples where the correlation is between the
observed and predicted magnitude spectra of dispersion curves from surface waves. There are many
other examples, some of which are described in Lu et al. (2017). Once the connective function is
properly defined then the implicit function theorem (Luo and Schuster, 1991) can be used to define
the formula for the Fréchet derivative:

∂d̃j
∂mk

= A
∂Pj

∂mk
, (25.3)

where A is a scalar that acts as a normalization term and Pj is defined as a fundamental field variable

that explicitly appears in the wave equation. Fortunately, the formula for the Fréchet derivative
∂Pj

∂mk

of a fundamental field variable is straightforward to derive by the adjoint-state method. For acoustic
data, the field variable is the pressure field recorded at the surface and the formula for its Fréchet
derivative is well known. If more than one type of unknown is inverted for the multidimensional
implicit function theorem can be used to compute the Fréchet derivatives for each type of model
parameter (described by B. Guo in Schuster, 2017). Note, if di is substituted for Pi and mi denotes
the velocity value in the ith cell then the update formula in equation 25.1 is that for FWI.

25.2.1 Feature Extraction

The most important step, or goal, in SWI is the identification of skeletonized features that are
simple and also greatly influenced by changes in the model parameter of interest. Towards this goal
we look to the past where theoreticians identified skeletal data and derived asymptotic formulas
that connected the skeletal data with the model parameter of interest. An obvious example is that
of asymptotic ray-based tomography where, under the high-frequency approximation, traveltimes
can be quickly generated by tracing rays through a sufficiently smooth model (Aki and Richards,
2002). Another example is frequency-domain inversion which inverts important signal features such
as phase and/or amplitudes of arrivals for a sparse set of frequencies. If the physics of the problem
is well understood, then the identification of the skeletonized data can be straightforward. If the
physics between skeletal data and the model parameters is not well understood, then the sensitivity
of the skeletal Frećhet derivative can be estimated by a combination of intuition and numerical
sensitivity tests.

Can we go one step further by asking a machine learning algorithm to identify an important
skeletal data set. Once identified, these skeletonized data can be inverted by a SWI method. For
example, Figure 25.3 suggests a hybrid machine learning and SWI algorithm where an unsupervised
machine learning method can be used to extract simplified but important features in the data set.
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Then the SWI method and the implicit function theorem can be used to discover the skeletal Frećhet
derivative to be used in the update formula in equation 25.2. One possibility is that the skeletonized
data can be obtained by principle component analysis (PCA) and the connective function is the
spatial crosscorrelation between the observed and predicted PCA images. These PCA images can
be localized in space. Can a general machine learning algorithm be used to identify the connection
between skeletal features which are most sensitive to the model parameters of interest (Schuster,
2018)? This might be possible using a suitable training set obtained with numerically simulated
data in realistic models.

In the next section, we use an autoencoder’s latent-space variables as the skeletonized features
of the data. The implicit function theorem is then used to derive the misfit gradient in equation 25.3
that can be used invert for the velocity model. This procedure (Chen and Schuster, 2020; Chen et
al., 2020b; Yu et al., 2020) is denoted as Newtonian machine learning (NML).
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Figure 25.3: System diagram for a hybrid machine learning and SWI algorithm. Here,
the skeletonized data d̃ can be obtained by, for example, a principle component analysis
(PCA), where the connective function is the crosscorrelation between the observed and
predicted PCA images. Machine learning combined with WI gives rise to a Newtonian
machine learning algorithm, where the optimal skeletonized features are learned from the
data and then inverted by numerical solutions to the wave equation. Figure from Schuster
(2018).

25.3 NML Theory

An nt× 1 seismic trace can be viewed as a data point in a nt-dimensional space, where nt is the
number of time samples in the trace. In this case, FWI finds the velocity model that minimizes the
L2 distance between the observed and predicted data points in an nt-dimensional space. Similarly,
the NML method finds the velocity model that minimizes the L2 distance between the n×1 observed
and predicted latent-space (LS) vectors, where n << nt is much smaller than nt.

Figure 25.4 illustrates the idea of the NML method. An autoencoder (AE) compresses the
high-dimensional observed and predicted seismic trace to a two-dimensional LS. The L2 distances
between the observed and predicted LS vectors can be used to quantify the accuracy of the inverted
model.
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Figure 25.4: The demonstration of NML misfit function when LS dimension equals two. (a)
If the inverted velocity is incorrect, it appears a large spatial distance in the two-dimensional
latent space. (b) If the inverted velocity model is correct, the distance goes to zero.
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Misfit function

The NML misfit function can be written as

ǫ =
∑

s

∑

r

∑

k

∆zk(xr,xs)
2, (25.4)

where ∆z represents the difference between the observed and predicted LS vectors. The source and
receiver locations are represented by xs and xr, respectively, and s and r indicate the source and
receiver indices. Here, the subscript k indicates the dimension index of the LS feature vector.

The gradient γ(x) can be obtained by taking the derivative of the misfit function ǫ with respect
to the velocity parameter v(x) as

γ(x) = − ∂ǫ

∂v(x)
= −

∑

s

∑

r

∑

k

[(
∂∆zk(xr,xs)

∂v(x)

)T

∆zk(xr ,xs)

]
. (25.5)

Equation 25.5 shows that the velocity gradient is computed for each of the coordinates in the LS,
and the final NML gradient γ(x) is obtained by summing all of these components of the gradient.
The details for deriving the gradient formula are given in Appendix 25.8

25.4 NML Inversion of Crosswell Data

A portion of the Pluto model is selected as the true model (shown in Figure 25.5a) to test the
NML method. A crosswell acquisition system is used to generate the seismic data, where the source
well is deployed at x = 10 m and contains 59 shots with a 30 m shot interval. Each shot has 177
receivers evenly distributed along the receiver well, which is located at x = 1750 m. A 20 Hz Ricker
wavelet is used as the seismic source, and we assume the initial velocity model is linearly increasing
with the minimum and maximum velocities equal to 3100 m/s and 3700 m/s, respectively. An
acoustic finite-difference modeling method is used to generate the observed data based on the true
model.

In the first step, we design a three-layer AE with a single-dimensional LS (la=1) to extract the
kinematic information of the seismic data. The NN matrices for the first, second, and third encoder
layers have dimensions of 2000× 200, 200× 15, and 15 × 1, respectively. The decoder architecture
is the mirror of the encoder network. The training dataset is composed of the early arrivals in the
recorded traces. We train this AE (la=1) network for 50 epochs using the Adam optimizer, and
achieved a training accuracy of 91%. Once the training is complete, we fix the parameters of this
AE (la=1) network during NML (la=1) inversion. Figures 25.5c and 25.5d show the first iteration
gradient and inverted velocity model of the NML (la=1) inversion, which are dominated by low-
wavenumber velocity updates. However, the detailed velocity structures are missing in the NML
(la=1) inverted model. These are missing because the single-dimensional LS feature is too small to
represent the amplitude information in the seismic data.

In the next step, we use the NML (la=1) inverted model as the starting model to further recover
the high-wavenumber velocity details. We build a new AE that has the same encoder and decoder
network as in the previous AE. But we set its LS dimension to ten, which is the optimal LS dimension
found by the ”data reconstruction error versus LS dimension” curve in Figure 25.6. The training
set is composed of the original observed traces, and the same training strategy is used for this AE
(la=10) network training. Figure 25.7a shows the first iteration gradient of NML (la=10) which
is dominated by the high-wavenumber updates. The inverted model of NML (la=10) (shown in
Figure 25.7b) shows a dramatic resolution increase compared to the NML (la=1) inverted result.
This resolution increase is because the ten-dimensional LS feature vector can better preserve the
entire data content compared to the one-dimensional LS feature that was used in NML (la=1)
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inversion.

Figure 25.5: (a) The true and (b) initial velocity model. (c) The first iteration gradient and
(d) inverted velocity model of NML (la=1) method.

To evaluate the performance of the NML (la=10) inversion, we also use FWI to reconstruct a
high-resolution model. Here, the starting velocity model for FWI is the NML (la=1) tomogram.
Figures 25.7c and 25.7d show the first iteration gradient and inverted velocity model of FWI, which
shows the same level of image resolution compared to the NML (la=10) tomogram. Therefore we
can conclude that NML (la=10) can well recover the high-wavenumber velocity details by inverting
a multi-dimensional LS feature vector, and the inverted model is as good as the FWI result for this
model. Moreover, NML (la=10) requires a much smaller storage space than FWI (about 200 times
smaller), because only the low-dimensional LS features of the observed data need to be stored.

25.4.1 Assessing the Optimal Dimension of the Latent Space

Two AEs are used, one with a two-dimensional LS and the other with a four-dimensional LS.
The seismic traces in Figure 25.8a are used to train these two AEs. Figure 25.8b shows the decoded
waveform of the AE (la=2) network and suggests that the first-arrival energy has been well recovered,
but some reflection events are missing. These omissions indicate that the two-dimensional LS is too
small to preserve the whole reflection energies. The missing reflection events can be clearly seen in
Figure 25.8c which is computed by subtracting the decoded data (la=2) from the input data. Here
la=2 represents a two-dimensional LS.
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Figure 25.6: The normalized data reconstruction error versus latent-space dimension, where
the normalized L2 norm of the data residual is the reconstruction error. The black arrow
points to the optimal latent-space dimension point.

Figure 25.8d shows the decoded waveforms of the AE (la=4) where both the first-arrival and
reflection energies have been well recovered. The data residual shown in Figure 25.8e is much smaller
compared to Figure 25.8c. Therefore we can conclude that an AE with a larger LS has a stronger
ability in recovering the input data information than an AE with a smaller LS dimension.

However, there is little improvement of the AE data reconstruction when the LS dimension
reaches a certain level. Figure 25.6 shows the residual curve of the data reconstruction error versus
the LS dimension, where the reconstruction error drops rapidly when the LS dimension goes from
one to three. But it barely changes when the LS dimension is larger than three, which means the
three-dimensional LS is the optimal dimension that should be used to represent the whole input
data information. The optimal LS dimension of 3 is approximately at the elbow of this curve, which
can be used to assess the optimal dimension of the LS.

25.5 NML Inversion of Refraction Data

Seismic refraction data can also be inverted by NML (Yu et al., 2020). In this case the sources
and receivers are deployed on the Earth’s free surface, and refraction data are the first arrivals
refracting from a layer interface where the velocity of the underlying layer is faster that of the
overlying layer.

As an example, Yu et al. (2020) tested NML on refraction data recorded next to the Gulf of
Aqaba on the Saudi Arabian peninsula shown in Figure 25.9a. A 12-lb hammer striking a plate on
the ground is used as the seismic source, and each source excitation was recorded by 120 vertical-
component receivers placed along a line. The source and receiver spacings are 2.5 m, where each
source was excited next to a receiver position. The white receiver line in Figure 25.9a is 300 m long,
and an example of a recorded CSG recorded is shown in Figure 25.9b.

The AE architecture in Figure 25.10 is used to generate the latent-space vectors, where Dim1 =
2400 is the same number of samples in an input trace. Empirical tests showed that Dim2 = 800 and
Dim3 = 150 were sufficient for useful results. The dimensions of the encoding matrices W1, EW2

and W3 are, respectively, 800× 2400, 150× 800, and 1× 150. Similar to the crosswell examples, the
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Figure 25.7: (a) The first iteration gradient and (b) inverted velocity model of NML (la=10)
inversion. (c) The first iteration gradient and (d) inverted velocity model of FWI.

velocity tomograms for using a latent-space dimension of 2 are much more accurate than those for
a latent-space dimension of 1.

We only are interested in inverting the early arrivals so the data in Figure 25.11a are muted to
give the processed data in Figure 25.11b. Noisy wavelets can be tamed by transforming the source
wavelets in Figure 25.11b into envelopes to get the Figure 25.12a shot gather. The AE architecture
in Figure 25.10 is used to get the AE output shown in Figure 25.12b. Here, a 1-dimensional latent
space is used to give the latent-space vectors shown in Figure 25.12c.

A two-dimensional latent-space representation of the windowed seismic data is shown in Fig-
ure 25.13 The seismic data and their different features were inverted to give the velocity tomograms
in Figure 25.14. A variety of different methods were used to invert the data. The wave-equation
traveltime inversion (WT) method is used to compute Figure 25.14a, where the input windowed
data were bandpass filtered peaked at 50 Hz. The starting model is a linear gradient velocity model
(Yu et al., 2020). The same data were inverted by the NML method to give the tomogram in Fig-
ure 25.14b. The envelope inversion is shown in Figure 25.14c and the FWI tomogram is displayed in
Figure 25.14e. These results were obtained after 20 iterations. The first four inverted tomograms,
especially the first and the fourth tomograms in Figure 25.14a and Figure 25.14d indicate the pos-
sible location of the Aqaba fault location at X = 125 m and Z = 20 m, as indicated by the red line
that crosses the white receiver line in Figure 25.9a. The result is also consistent with the travel-time
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(c) Data residual (la=2)
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(d) Decoded data (la=4)

20 40 60 80

Traces

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e 
(s

)

(e) Data residual (la=4)
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Figure 25.8: a) The decoded waveform and b) data residual when the latent-space dimension
is equal to two. c) The decoded waveform and d) data residual when the latent-space
dimension is equal to four. e) The decoded waveform and (f) data residual when the latent-
space dimension is equal to six.
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b) Aqaba Data CSG #1
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Figure 25.9: a) Aerial view of Aqaba area with the 300-m white line indicating the seismic
line. The black region indicates the Gulf of Aqaba, and b) depicts a raw CSG. Figure from
Yu et al. (2020).
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Figure 25.10: Autoencoder architecture for inverting for the velocity tomogram from the
latent-space vectors of windowed seismic data. Figure from Yu et al. (2020).
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Figure 25.11: a) Processed CSG #1, and b) windowed first arrivals. Figure from Yu et al.
(2020).
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a) Envelope of First Arrival CSG #1
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Figure 25.12: a) Envelopes of first arrivals in Figure 25.11b, b) the envelopes decoded by
a trained 1D AE, and the c) the encoded latent-space points z for all of the traces and a
function of the source and receiver coordinates. Figure from Yu et al. (2020).
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Figure 25.13: Similar to Figures 25.12a and 25.12c except a 2D latent space is used. Here,
b) is for z1 and c) is for z2 in the latent space vector z = (z1, z2). Figure from Yu et al.
(2020).
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Figure 25.14: Tomograms inverted by a) the 50 Hz wave equation traveltime (WT) inversion
method (Luo and Schuster, 1991a), b) AE inversion with a 1D latent space and a 50-Hz
bandpass filter applied to the data, c) envelope inversion, d) AE inversion with a 2D latent
space, and e) FWI. Figure from Yu et al. (2020).

tomogram by Hanafy et al. (2014).

The reconstructed early arrivals from each of the tomograms in Figure 25.14 are computed by
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a finite-difference modeling method and the results are shown in Figure 25.15. Here, the predicted
arrivals are subtracted from the actual arrivals to get the residual CSGs in Figure 25.16. It is clear
that the 2D NML residual in Figure 25.16d has the smallest residual compared to the other methods.
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Figure 25.15: Windowed CSGs generated from the a) WT, b) 1D AE, c) envelope, d) 2D
AE and e) FWI tomograms in the previous figure. These CSGs should closely match the
early arrivals in the raw data in Figure 25.9. Figure from Yu et al. (2020).

Distance X (m)

T
im

e 
(s

)

 a) Data Residual With WT

75 150 225 300

0.1

0.2

0.3

Distance X (m)

T
im

e 
(s

)

 b) Data Residual With AE Inv. (1D)

75 150 225 300

0.1

0.2

0.3

Distance X (m)

T
im

e 
(s

)

 c) Data Residual With Envelope Inv.

75 150 225 300

0.1

0.2

0.3

Distance X (m)

T
im

e 
(s

)

 d) Data Residual With AE Inv. (2D)

75 150 225 300

0.1

0.2

0.3

Distance X (m)

T
im

e 
(s

)

 e) Data Residual With FWI

75 150 225 300

0.1

0.2

0.3

Figure 25.16: Residual CSGs associated with the data generated by the a) WT, b) 1D AE,
c) envelope, d) 2D AE and e) FWI methods. Figure from Yu et al. (2020).

The data misfit curves with the five algorithms are presented in Figure 25.17. These curves show
that the WT and 2D AE methods converge the quickest to a small data residual.

25.6 Summary

The theory of multidimensional NML is presented. NML uses machine learning to extract the
skeletonized and important features of seismic data, and then Newton’s laws are used to invert
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Figure 25.17: Comparisons of data residuals vs iteration number for different methods.

for the model parameters. This is a special case of skeletonized wave-equation inversion (Luo and
Schuster, 1991b) where a ML method (Schuster, 2018) is used to generate the skeletonized data. For
the examples presented in this chapter, the latent-space vectors in an AE are inverted to estimate
the velocity model from refraction and crosswell data. In general any ML method such as PCA
might be used to skeletonize the data.

Inversion of higher-dimensional latent-space vectors typically gives more accurate tomograms
compared to inversion of lower-dimensional latent-space vectors. A multiscale approach is recom-
mended where the velocity model of lower-dimensional vector is used as the starting model for NML
with higher-dimensional latent vectors. The optimal dimension of the latent-space vector is esti-
mated by increasing the dimension of the latent space until there is little change in the final data
residual.

Empirical tests suggest that the advantages of NML over FWI are that it requires less memory
and appears to be more robust. The main disadvantage is that, theoretically, NML provides less
resolution than FWI for low-dimensional latent spaces. In this case, the NML tomogram can be
used as the starting model for FWI. The testing of NML is in its early stages, and undoubtedly
improvements will be needed in order for NML to be effective with complicated and noisy seismic
traces. One such improvement is to include regularization of the latent-space vectors in the AE
objective function (Oring et al., 2020).

25.7 Exercises

1. Devise the NML inversion algorithm for a linear PCA ML method. Derive the formula for
the gradient.

2. Devise the NML inversion algorithm for a non-linear PCA ML method. Derive the formula
for the gradient.

3. Derive the AE formulas for the objective function and the gradient where the regularization
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term is ||z||2. Discuss the benefits of using regularization for both the z and the velocity-model
parameters for NML inversion.

4. Derive the AE formulas for the objective function and the gradient where the regularization
term is

∑
i(zi − zi−1)

2. What is the physical meaning of this regularization term in terms of
smoothness? Discuss the advantages of using this type of regularization for inversion in the
context of the interpolation paper by Oring et al. (2020).

5. Derive the formula for the gradients of the AE objective function and data misfit functions
using a total variation regularization (Estrela et al., 2016) of the latent space vectors and the
velocity model vectors.

6. Devise an NML inversion algorithm using the U-Net. Discuss the benefits of using a U-Net
architecture instead of an AE architecture for the NML method.

25.8 Connective Function

To compute the gradient γ(x), a connective function is required to connect the perturbation of
the LS vector ∆z with respect to the velocity perturbation ∆v(x). We define a connective function
that measures the similarity between the observed and predicted seismic traces:

F (z̃; v) =

∫
pobsz−z̃(xr , t;xs)p

pred
z (xr , t;xs)dt, (25.6)

where ppredz (xr, t;xs) indicates the predicted trace recorded at the receiver location xr for a source at
xs. The subscripts vector z represents the LS vector of the trace. Similarly, pobsz−z̃(xr, t;xs) represents
the observed seismic trace for the same source-receiver location where the LS feature vector is z− z̃.
Here, z̃ represents the shift between the observed and predicted feature vectors, which becomes zero
(z̃ = (0, 0, ..., 0)) if the predicted velocity model is sufficiently accurate, otherwise z̃ 6= (0, 0, ..., 0).

The goal is to 1) find the optimal LS feature shift z̃ = (∆z1,∆z2, ...,∆zn) that maximizes
equation 25.6; then 2) recover the accurate velocity model by finding the shift vector that minimizes
the gradient of equation 25.6. The optimal shift can be found by solving equation ∇F (z̃)|z̃=∆z = 0
as

∇F (z̃)|z̃=∆z = (
∂F

∂z̃1
,
∂F

∂z̃2
, ...,

∂F

∂z̃n
)

=

∫
ppredz (xr, t;xs)

(
pobsz−∆z

∂z̃1
,
pobsz−∆z

∂z̃2
, ...,

pobsz−∆z

∂z̃n

)
dt = 0. (25.7)

We can re-write equation 25.7 as a system of equations

∂F

∂z̃1
=

∫
ppredz

pobsz−∆z

∂z̃1
dt = 0

∂F

∂z̃2
=

∫
ppredz

pobsz−∆z

∂z̃2
dt = 0.

...

∂F

∂z̃n
=

∫
ppredz

pobsz−∆z

∂z̃n
dt = 0. (25.8)

Combining equation 25.8 with the multi-variable implicit function theorem (Guo, 2016), we can get
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the gradient formula for each LS dimension as




∂∆z1
∂v

∂∆z2
∂v
...

∂∆zn
∂v


 =




∂2F
∂z̃2

1

∂2F
∂z̃1∂z̃2

... ∂2F
∂z̃1∂z̃n

∂2F
∂z̃2∂z̃1

∂2F
∂z̃2

2
... ∂2F

∂z̃2∂z̃n
...

...
. . .

...
∂2F

∂z̃n∂z̃1
∂2F

∂z̃n∂z̃2
... ∂2F

∂z̃2
n




−1 


∂2F
∂z̃1∂v
∂2F
∂z̃2∂v
...

∂2F
∂z̃n∂v



, (25.9)

where

∂2F

∂z̃k∂v
=

∫
∂pobsz−∆z(xr, t;xs)

∂z̃k

∂ppredz (xr , t;xs)

∂v
dt, (25.10)

and

∂2F

∂z̃2k
=

∫
∂2pobsz−∆z(xr, t;xs)

∂z̃2k
ppredz (xr , t;xs)dt,

∂2F

∂z̃k∂z̃i
=

∫
∂2pobsz−∆z(xr, t;xs)

∂z̃k∂z̃i
ppredz (xr , t;xs)dt. (25.11)

25.8.1 Gradient

Substituting equation 25.9 into equation 25.5, we can get the gradient formula of NML for an
n-dimensional LS vector as

γ(x) = −
∑

s

∑

r

〈



∂2F
∂z2

1

∂2F
∂z1∂z2

. . . ∂2F
∂z1∂zn

∂2F
∂z2∂z1

∂2F
∂z2

2
. . . ∂2F

∂z2∂zn
...

...
. . .

...
∂2F

∂zn∂z1
∂2F

∂zn∂z2
. . . ∂2F

∂z2
n




−1 


∂2F
∂z1∂v(x)

∂2F
∂z2∂v(x)

...
∂2F

∂zn∂v(x)



,




∆z1
∆z2
...

∆zn




〉
. (25.12)

If we assume zk and zi are weakly correlated, then ∂2F
∂zk∂zi

≈ 0 for k 6= i. Then equation 25.12 can
be re-written as

γ(x) = −
∑

s

∑

r

〈



E1 0 . . . 0
0 E2 . . . 0
...

...
. . .

...
0 0 . . . En




−1



∂2F
∂z1∂v(x)

∂2F
∂z2∂v(x)

...
∂2F

∂zn∂v(x)



,




∆z1
∆z2
...

∆zn




〉
,

= −
∑

s

∑

r

∑

k

Ek
∂2F

∂z̃k∂v
∆zk

= −
∑

s

∑

r

∫ ∂ppred(z1,z2)
(xr ;xs)

∂v

(∑

k

∂pobs(z1−∆z1,z2−∆z2)
(xr ;xs)

∂z̃k
Ek∆zk

)
dt. (25.13)

The Fréchet derivative ∂p
∂v of the first-order acoustic equation can be written as (Chen and Schuster,

2020)
∂p

∂v
= −2ρvgp(xr, t;x, 0) ∗ ∇ · v(x, t;xs), (25.14)



746 CHAPTER 25. WAVE EQUATION INVERSION AND NEURAL NETWORKS

where ρ and v represent the density and propagation velocity, respectively. The particle velocity is
indicated by v, and gp is the Green’s function. Here, ∗ means temporal convolution. Substituting
equation 25.14 into equation 25.13 allows the multi-dimensional NML gradient to be expressed as

γ(x) =
∑

s

∑

r

∫
dt
(
2ρvgp(xr, t;x, 0) ∗ ∇ · v(x, t;xs)

)
∆pz(x, t;xs), (25.15)

where ∆pz(x, t;xs) =
∑

k

∂pobs
(z1−∆z1,z2−∆z2)(xr;xs)

∂z̃k
Ek∆zk denotes the adjoint-source at the receiver

location. For each LS feature dimension, a local adjoint-source is computed by weighting the LS

feature difference ∆zk with the partial derivative of the shifted observed seismic trace
∂pobs

z−∆z
(xr;xs)

∂z̃k
,

and then scale it by using the weighting parameter Ek. The final adjoint-source ∆pz(x, t;xs) can be
obtained by summing all the local adjoint-sources together. Once we have the gradient, the velocity
model can be updated by using the steepest descent formula as

v(x)k+1 = v(x)k + αkγ(x)k, (25.16)

where k represents the iteration index and αk indicates the step length.



Chapter 26

Automatic Differentiation

Automatic differentiation (AD), aka computational differentiation (Linnainmaa, 1976; Sam-
bridge et al., 2007; Margossian, 2018; Sun et al., 2020), computes the exact value of the derivative of
a complicated function. It uses the chain rule to break up the derivative of a complicated composite
function f(g(h(x))) into a chain of simple derivatives: for example, ∂f

∂x = ∂f
∂g

∂g
∂h

∂h
∂x . The instructions

for carrying out these simple derivatives are well known and can be transformed into coded instruc-
tions. If h(x) = x2 then the computer instruction would be to compute dx2/dx by multiplying the

value of x by 2. to get the exact value of ∂f(x)
∂xi

up to floating-point roundoff. This is equivalent
to the results presented in Chapter 6.3. However, AD is more general in that it is used to produce
exact values of partial derivatives for almost any complicated function. AD is now commonly used
to compute the gradients associated with both FANS and CNNs (Baydin et al., 2018).

26.0.1 Automatic Differentiation Algorithm

The automatic differentiation algorithm will be presented by computing the gradient ∇g of

g(x, y, z) = (x + y) · (y + z), (26.1)

where (x, y, z) are variables. The standard procedure for getting the components of the gradient is
to differentiate g(x, y, z) w/r to the independent x, y, and z variables:

∂g(x, y, z)

∂x
= y + z;

∂g(x, y, z)

∂y
= x+ 2y + z;

∂g(x, y, z)

∂z
= x+ y. (26.2)

In a neural network, however, the expressions for the gradients of the objective function g are very
complicated and their computation can be inefficient. Instead, we use the approach in the previous
section where the chain rule was recursively used to find the partial derivatives of composite functions.
This recursion is the key to computational efficiency because the derivative calculations from the
shorter links of the chain are reused for computations in the longer parts.

The following four steps describe the automatic differentiation algorithm for obtaining the gra-
dients of equation 26.1.

1. Decomposition of g(x) into Primitive Functions. The first step is to create a formula
for g(x, y, z) to be a composition of primitive functions, where the analytical derivative of each
primitive, i.e. simpler, function is already known. For example, we can redefine the terms of
equation 26.1 as

p(x, y) = x+ y; q(y, z) = y + z, (26.3)

747
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so g(x, y, z) becomes the composite function

g = g(p(x, y), q(y, z)) = p · q, (26.4)

where g is now a composite function1 of the functions p(x, y) and q(y, z). A NN can have
many layers so there is a multiple nesting of composition functions such as g = g(h(i(j(x)))) =
g ◦ h ◦ i ◦ j(x), for the functions g(x), h(x), i(x), j(x).

2. Computational Graph. Figure 26.1b is the computational graph that depicts the sequential
flow of feedforward operations for computing the primitive functions in equation 26.4. The
symbol in each node represents a mathematical operation that is applied to the variables that
enter the node from the left. The output of this node operation gives the node variable, aka
an intermediate variable. For example, p = x+ y is the node variable for the top node in the
middle hidden layer and q = y + z is for the one below it. Starting from the input layer on
the left and executing the algebraic operations from left to right is denoted as feedforward
modeling in Chapter 6.

b) Forward Computational Graph

p = x+y

g = pq

x

y

z

a) Forward Equations

q = y+z

Figure 26.1: a) Feedforward composite equations and b) computational graph for computing
equation 26.4 by AD.

3. Fréchet Derivatives and the Chain Rule. The goal of AD is to automatically compute
the exact partial derivatives of the output g(x, y, z) w/r to the input variables x = (x, y, z).
This is efficiently accomplished by breaking up g(x, y, z) = g(p, q) into a chain of primitive
functions, where the local derivative of each one is known and its computation can be easily
coded.

As an example, the chain rule applied to equation 26.4 is

global︷︸︸︷
∂g

∂x
=

regional︷︸︸︷
∂g

∂p

local︷︸︸︷
∂p

∂x
, (26.5)

1The notation for a composite function is defined as f = f(h(x)) = f ◦ h(x). Here, h is nested in the
argument of f( ).
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where the global derivative ∂g/∂x characterizes the sensitivity of the output variable g to
changes in the input variable x. This global derivative can be decomposed into a product of
local and regional derivatives. The regional derivative ∂g

∂p measures the sensitivity of g from
the g node to the p node, where gp spans a shorter path than gx in Figure 26.1. An even
shorter sensitivity path is that for the local derivative ∂p

∂x which determines the sensitivity of
p to changes to its neighboring node at x. Decomposing the global derivatives into a product
of regional and local derivatives is the trick that makes AD work, as discussed in the section
on back substitution!

The ensemble of colored backpropagation arrows and partial derivatives for all six nodes are
depicted as in Figure 26.2b. For example, the blue reversed arrows denote the sensitivity
paths for partial derivatives in equation 26.5. The blue dashed line intersects three nodes so
three partial derivatives are required, one of which is equation 26.5 and the others are below.

global︷︸︸︷
∂g

∂p
=

regional︷︸︸︷
∂g

∂g

local︷︸︸︷
∂g

∂p
= q,

global︷︸︸︷
∂g

∂g
= 1, (26.6)

The decomposition of the partial derivatives along the blue dashed line is a simple concate-
nation of local and regional derivatives This is because only p(x, y) in g(p(x, y), q(y, z)) is a
function of x, so g(p) can be considered as a univariate function of x when y is fixed. Hence,
the univariate chain rule is used for equation 26.6.

In contrast, g(p(x, y), q(y, z)) is a multivariate function of y because both p(x, y) and q(y, z)
depend on y. Therefore, the multivariate Taylor’s theorem says that the partial derivative of
g(p, q) w/r to y should be

∂g/∂y =

regional︷︸︸︷
∂g

∂p

local︷︸︸︷
∂p

∂y
+

regional︷︸︸︷
∂g

∂q

local︷︸︸︷
∂q

∂y
, (26.7)

where the derivatives are denoted near the green and red arrows in Figure 26.2b. Equation 26.7
contains an extra term on the RHS compared to equation 26.5. This makes sense from the
Figure 26.2b diagram because a small variation δy at the y node will affect the values of both
the p and q variables, which in turn, will affect g. Therefore, ∂g/∂y in equation 26.7 will
be a weighted sum of the changes in the q and p nodes. Anytime we take a derivative of a
bivariate function g(p(y), q(y)) with respect to y then there will be two arrows (green and red)
bifurcating from the y node, which then come together at the g node in Figure 26.2b. See
exercise 4.

In summary, Figure 26.2b can be used to guide the chain rule in forming the partial derivatives
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b) Backpropagation Computational 
Graph

p = x+y

g = pq

x

y

z

a) Backpropagation Equations

q = y+z

Figure 26.2: a) Backpropagation equations and b) computational graph associated with
equations 26.8-26.13. The local partial derivatives on the RHS can easily be computed by
differentiating equations 26.3-26.4.

of g(p, q) w/r to each of the node variables:

ĝg =
∂g(p, q)

∂g
= 1; (26.8)

ĝp =
∂g(p, q)

∂p
= q; (26.9)

ĝq =
∂g(p, q)

∂q
= p; (26.10)

ĝx =
∂g(p, q)

∂x
=
∂g(p, z)

∂p

∂p

∂x
= ĝp; (26.11)

ĝy =
∂g(p, q)

∂y
=
∂g(p, z)

∂p

∂p

∂y
+
∂g(p, z)

∂q

∂q

∂y
= ĝp + ĝq, (26.12)

ĝz =
∂g(p, q)

∂z
=
∂g(p, q)

∂q

∂q

∂z
= ĝq, (26.13)

where the 6 × 1 vector of global Fréchet derivatives α = (ĝg, ĝp, ĝq, ĝx, ĝy, ĝz) are also known
as adjoint variables. Note, there are six nodes in Figure 26.2b so there are six node variables
and six partial derivatives of g(p, q) with respect to the node variables2. Each of these adjoint
variables can be considered to be an unknown, and they can be found by solving the six
equations of constraint 26.8-26.13. The derivatives on the far left are the global derivatives

2The general procedure for constructing the partial derivative ∂g/∂w[n] for any node variable w[n] in the
nth layer of a NN is to write it as ∂g/∂w[n] = (∂g/∂w[n+1])(∂w[n+1]/∂w[n]) because ∂w[n+1]/∂w[n] can be
explicitly computed and ∂g/∂w[n+1] is obtained from the calculations in the neighboring deeper layer.
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and the products to the right are formed by multiplying a regional derivative with a local
derivative according to the chain rule. This is the key trick, the local derivatives can be
computed from the analytical derivatives3 of equation 26.4 and the global derivatives can be
computed by the back substitution procedure discussed below.

Equations 26.8-26.13 can be rearranged as the matrix-vector product Aα = β:

A︷ ︸︸ ︷


1 0 0 −1 0 0
0 1 0 −1 −1 0
0 0 1 0 −1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




α︷ ︸︸ ︷


ĝz
ĝy
ĝx
ĝq
ĝp
ĝg




=

β︷ ︸︸ ︷


0
0
0
p
q
1



. (26.14)

This is an upper-triangular matrix, so back substitution starting from the bottom row will
provide the values of the Fréchet derivatives at each node for any input vector β computed
from p = x+y and q = y+z. These will agree with the components of the gradient computed
by equation 26.2. See exercise 8.

4. Back substitution=Recursive Backpropagation. Backward substitution of the upper-
triangular matrix A starts at the bottom row, solves for the unknown global variable αN in
the last row, and then reuses this solution in solving for αN−1 in the second-to-last row. This
process is recursively repeated until all of the components of the partial-derivative vector α

are solved for. This is equivalent to the recursive procedure in Chapter 6.3 for computing the
Fréchet derivatives of a neural network. Start at the last layer, find the Fréchet derivatives,
and reuse this information for computing the Fréchet derivatives at the neighboring shallower
layer. This procedure is repeated backward towards shallower layers until it stops at the input
layer.

A Python code that implements the AD for obtaining the gradient of g = (x+ y)(y+ z) is given
below.

3For example, ∂p/∂x = 1, ∂p/∂y = 1, ∂q/∂y = 1 and ∂q/∂z = 1.
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Code 26.0.1. Python Automatic Differentiation of g(x, y, z) = (x+ y) · (y + z)

# Python code computes derivatives of G=(X + Y)*(Y + Z) by AD

# Written by Tushar Gautam

import numpy as np

X = 3.0

Y = 2.0

Z = 3.0

AD = auto_diff(X, Y, Z) # Defining object AD for the class auto_diff

dGwrtX, dGwrtY, dGwrtZ = AD.grad() # Retrieving derivatives from the method grad

# Printing the computed derivatives

print("dG/dX is ", dGwrtX)

print("dG/dY is ", dGwrtY)

print("dG/dZ is ", dGwrtZ)

# Output from the above print statements

# dG/dX is 5.0

# dG/dY is 10.0

# dG/dZ is 5.0

class auto_diff:

’’’

Defining a class which computes gradients using automatic differentiation

’’’

def __init__(self, X, Y, Z):

’’’

Initializing variables

’’’

self.X = X # Input global variable X

self.Y = Y # Input global variable Y

self.Z = Z # Input global variable Z

self.G = (X + Y) * (Y + Z) # Variable used to define equation from global variables

self.P = X + Y # Defining local variable P

self.Q = Y + Z # Defining local variable Q

def grad(self):

’’’

Method used to calculate gradients

’’’

dGwrtP = self.Q # Local Derivative (dG/dP)

dGwrtQ = self.P # Local Derivative (dG/dQ)

dPwrtX = 1 # dP/dX

dPwrtY = 1 # dP/dY

dPwrtZ = 0 # dP/dZ

dQwrtX = 0 # dQ/dX

dQwrtY = 1 # dQ/dY

dQwrtZ = 1 # dQ/dZ

# Using multivariate Taylor’s Theorem

dGwrtX = dGwrtP * dPwrtX + dGwrtQ * dQwrtX

dGwrtY = dGwrtP * dPwrtY + dGwrtQ * dQwrtY

dGwrtZ = dGwrtP * dPwrtZ + dGwrtQ * dQwrtZ

return dGwrtX, dGwrtY, dGwrtZ
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26.1 Modeling, Automatic Differentiation and Inversion

Automatic differentiation can also be used to find the Fréchet derivatives associated with seismic
data computed by finite-difference solutions to the wave equation. These Fréchet derivatives are then
used in the steepest descent formula for inverting the velocity model from seismic data. The next
section shows how the Fréchet derivatives can be computed by automatic differentiation of numerical
solutions to the wave equation.

26.1.1 Automatic Differentiation for the One-way Wave Equation

We now show how AD can be used to compute Fréchet derivatives from the one-way wave
equation

∂d(z, t)

∂t
= c(z)

∂d(z, t)

∂z
, (26.15)

where the acoustic velocity c(z) only varies in the z-coordinate and u(z, t) is the pressure field. An
explicit finite-difference solution to this equation (Yilmaz, 2001) is given by

dt+1
i = dti − αi(d

t
i+1 − dti), i ∈ {1, 2, ...N}, (26.16)

where a 1st-order forward-difference approximation is used for both the temporal and spatial deriva-
tives. Here, ci is the propagation velocity at the ith gridpoint, αi = ci∆t/∆z, and d

t
i is the pressure

field at the ith node at time step t. The goal is to compute the Fréchet derivative ∂d(zi,t)
t+1

∂ci
at each

grid point zi. More generally, this same procedure can be applied to finite-difference solutions to
the acoustic 2D wave equation described in Appendix 26.4.

Two stencils associated with the forward FD equation 26.16 are plotted in Figure 26.3a, and
their computational graphs are in Figure 26.3b. In this case we can denote the intermediate variables
for the red stencil pivoted at zi as

pti = dti+1 − dti,
qti = pti · αi,

rti = qti + dti+1,

dt+1
i = rti . (26.17)

For convenience, we set g = dt+1
i , p = pti, q = qti , r = rti and assume ∆t/∆z = 1 so αi = ci. In

this case, the sensitivity path for the Fréchet derivative ∂dt+1
i /∂ci is along the red dashed arrow

in Figure 26.3b. Here, we can decompose the global derivatives into products of regional and local
derivatives:

ĝr =
∂g(r)

∂r
= 1; (26.18)

ĝq =

regional︷ ︸︸ ︷
∂g(r(d, q))

∂r

local︷ ︸︸ ︷
∂r(d, q)

∂q
= 1; (26.19)

ĝv =

regional︷ ︸︸ ︷
∂g(r(d, q))

∂q

local︷ ︸︸ ︷
∂q(v)

∂v
= pĝq, (26.20)

where the local derivatives ∂r(d,q)
∂q = 1 and ∂q(v)

∂v = p are derived by differentiating the expressions
in equations 26.17.
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b) Forward Computational Grapha) FD Stencils
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Figure 26.3: a) Finite-difference stencils pivoted at time step t and depths zi and zi−2 and
b) computational graphs for the red and green stencils. Here αi = vi because we assume
∆x/∆t = 1.

Equations 26.18-26.20 can be expressed as the system of equations Aα = β with the upper-
triangular matrix:

A︷ ︸︸ ︷


1 −1 0
0 1 0
0 0 1




α︷ ︸︸ ︷


ĝv
ĝq
ĝr


 =

β︷ ︸︸ ︷


0
1
1


 . (26.21)

which can be solved for ĝv for all points zi for i ∈ {1, 2, ..., N}. Note, equation 26.20 ignores the
implicit dependency of the field variable dti on the velocity model ci. Otherwise taking the derivative
of g w/r to v would also involve taking the derivative of both p and α in the qti node. Ignoring this
bifurcated dashed line is akin to the Born approximation4 (see Exercise 13).

Figure 26.4 depicts the computational diagrams for FD solutions to the wave equation, which
resemble one of the recurrent neural networks (Hughes et al., 2019) discussed in Chapter 12. How-
ever, the FD solution does not contain the thresholding functions inherent in a recurrent neural
network.

26.1.2 Automatic Differentiation and Waveform Inversion

The Fréchet derivative ĝv = ∂gti/∂vj computed at every spatial gridpoint and time sample is to
get the optimal velocity model vi that accurately predicts the data d̄ti recorded on the surface. This

4Another plausibility argument is to apply a velocity perturbation to the acoustic wave equation. The
weak-scattering assumption ignores the higher-order terms in the perturbed wave equation, so it is identical
to the one-way wave equation in equation 26.15, except for a source term on the RHS. Hence, computing
the Fréchet derivatives associated with equation 26.15 is equivalent to assuming the Born approximation.
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FD Computational Graph = Recurrent Neural Network Diagram
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Figure 26.4: Computational graphs from Figure 26.3 arranged in order of increasing time
steps to the right so that it resembles the architecture of a recurrent neural network. The
top row of images correspond to expanding wavefronts that get larger with increasing time.

procedure (Virieux and Operto, 2009; Sun et al., 2020) is known as full waveform inversion (FWI).
For convenience we will assume a 1D velocity model along a line in z and the recorded data d̄ti are
along that same line, just like the model used in the previous section. These data take the form of
seismograms such as the one depicted in Figure 26.8b and are recorded along, for example, a well
with the source at the surface. A shot gather of traces is known as a vertical seismic profile (Yilmaz,
2001). We shall denote the recorded seismograms as d̄ti. The FWI L2 misfit function is

ǫ =
1

2

∑

t

∑

l

δl(d
t
l − d̄tl)2, (26.22)

where the summations are over the discrete time t and offset l indices of the traces, and δl = 1 if
l is an index for a recorded trace, otherwise δl = 0 The velocity model is updated by an iterative
gradient method, such as the steepest descent formula

v
(k+1)
i = v

(k)
i − α ∂ǫ

∂vi
,

= v
(k)
i − α

∑

t

∑

l

(dti − d̄tl)
∂dtl
∂vi

, (26.23)

where gv in equation 26.21 is exactly the Fréchet derivative
∂dt

l

∂vi
in the steepest descent formula.

The benefit of this approach compared to traditional FWI is that a general AD program can be
used to compute the components of the gradient vector for any type of wave equation (Sun et al.,
2020). AD also saves a great deal of time in manual coding compared to coding the explicit physics
of FWI. The drawback is that it is reported to sometimes require much more CPU time than the
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conventional backpropagation procedure for FWI. In addition, AD is blind to the physics of the
problem, so it cannot easily be adapted to expedite the convergence rate by utilizing innovations
from the physics.

26.2 Summary

The automatic differentiation procedure is presented which efficiently computes the Fréchet
derivatives of a complicated objective function. The key idea is to decompose the objective function
into a composite chain of primitive functions, where there is an analytical formula for the local
derivative of each composite function. Each primitive function is characterized by an intermediate
variable at a node of the composite chain. The partial derivatives of the objective function with
respect to the node variables are then expressed as a nested chain of local and regional derivatives,
where the value of the global derivative at each node is saved for reuse at longer portions of the
chain. Reusing these computed derivatives is the key to AD’s computational efficiency. For example,
AD only costs O(NM2) computations to get all of the Fréchet derivatives of an N link chain, where
it costs O(M2) calculations to compute a local derivative. If the global derivatives at each link are
not recycled then the average computational cost is O(NM2)/2 to get a global derivative at any
node; here, it is assumed that the 2D model is an M × M grid of points. Thus, the no-recycle
computation of the global derivatives at every node will be O(N2M2)/2. It is reported that AD is
used to efficiently compute the gradient values with Pytorch and other machine learning software.

The physics of wave propagation or backpropagation does not need to be understood in order
to write or implement a black-box AD code for seismic inversion. However, neglecting the funda-
mentals of optimization theory and the physics of wave propagation will likely prevent the user from
identifying and remedying problems with convergence and solution accuracy. As difficult as it might
be, similar insights should be sought when attempting to implement AD for any inversion problem
in geoscience.

26.3 Exercises

1. If

f(z) =
1

1 + ewz
; g(z) = wz. (26.24)

What is the formula for f(g(z))?

2. Draw the feedforward computational diagram for f(g(z)) in equation 26.24.

3. Take the derivative of g(z) = 1
1+e−wz w/r to z. Compare it to the derivative of g(h(z)) using

the chain rule where g(z) = 1/(1 + e−z) and h(z) = wz.

4. Given a multivariate function f(x, y) and two variables x = x(t) and y = y(t), use Taylor’s
theorem to show that

df(x, y)

dt
=

df

dx

dx

dt
+
df

dx

dx

dt
. (26.25)

Show how this can be used to derive equation 26.12.

5. For f(x, y) =
√
x2 + y2 and g(x, y) = lnx, draw the feedforward computational diagram for

f(g(x, y)). Do the same for f(f(x, y)).

6. Rewrite equation 26.1 as

g(x, y, z) = xy + xz + y2 + yz, (26.26)
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where h(x, y) = xy, i(x, z) = xz, j(y) = y2, and k(y, z) = yz. Is g = g(h(x, y), i(x, z)
, j(y), k(y, z)) a composite function? Draw the computational graph and compare to the
one drawn in Figure 26.1. Which one is more efficient in terms of computations for doing
feedforward modeling?

7. Use the chain rule to derive the gradient of g = g(h(x, y), i(x, z), j(y), k(y, z)) in equa-
tion 26.26. Compare the result to the formulas after taking derivatives of g(x, y) w/r to
x, y, z in equation 26.26.

8. Show that the values of the gradient in equation 26.2 agree with those computed by back
substitution in equation 26.14.

9. Read Appendix 27 to acquaint yourself with seismograms and the characteristics of wave
propagation. Run the MATLAB code 26.4 in Appendix 26.4 to compute snapshots of the
evolving wavefield. Identify the direct waves and reflected waves in the snapshots. Use the
plotting program plot in MATLAB to plot seismograms. Identify the reflections and direct
waves.

10. The comments in the MATLAB code 26.4 describe the stability and dispersion conditions.
Check to see if these conditions have been violated. Have they been violated? Now double
the value of dx. What happens to the wavelet in the seismograms?

11. Construct the composite function for a single time step in a 1D version of the finite-difference
formula in equation 26.30 and Figure 11. Also draw the computational graph for this composite
formula.

12. From exercise 11, draw the reverse arrows depicting the Fréchet derivatives ∂P/∂vi, where vi
is the velocity at the ith grid point in the 1D velocity model. Write down the equations of
constraint similar to those in equations 26.8-26.13.

13. Make the replacements d → d + δd and c → c + δc in equation 26.15. Assume that δc
is small enough so that the scattered field δd from this velocity perturbation is small as
well. Now assume that the quadratic perturbation terms in the perturbed wave equation
can be neglected, which is called the weak-scattering approximation. Discuss how this weak-
scattering wave equation leads to the conclusion that AD applied to the wave equation in
equation 26.15 implicitly assumes weak scattering.

26.4 Appendix: Finite Difference Solution to the Wave E-
quation

The 2D acoustic wave equation for a medium with no density variations is given by:

∂2p(x, t′)

∂x2
+
∂2p(x, t′)

∂z2
− 1

c(x, z)2
∂2p(x, t′)

∂t′2
= f(x, t′), (26.27)

where c(x, z) is the velocity model, p(x, t′) is the pressure field, and f(x, t′) is the inhomogeneous
source term. The continuous wave equation and its solution can be discretized onto an evenly
sampled grid in the space and time domains such that

(x, z, t′) ←→ (i∆x, j∆z, t∆t) where i, j, t are integers

p(x, z, t′) ←→ ptij ,

f(x, z, t′) ←→ f t
ij ,

c(x, z) ←→ cij , (26.28)
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Figure 26.5: Depiction of a 2-2 finite-difference (FD) stencil for the 2D acoustic wave
equation. The future value of the pressure at the (i, j) node (open dashed circle) is computed
from the present and past values of the pressure that neighbor the (i, j) node at the present
time t. The stencil can be shifted within the t plane to compute all of the pressure values
within the t + 1 plane. The pressure values at the boundaries of these planes must be
specified.

and for convenience we will assume that the vertical gridpoint spacing ∆z is the same as the hor-
izontal spacing ∆x. The discrete solution can be visualized with a 3D-data cube (see Figure 26.5)
with the x, z, and t axes. The depth of the data cube is given byM∆z = D, the width is N∆x = X ,
and the temporal extent is L∆t = T , where M, N and L are integers.

Pivoting (i.e., evaluating) the pressure field at (i, j, t) and approximating the second-order deriva-
tives in equation 26.27 by second-order correct central-difference approximations gives

∂2p

∂t′2
←→ [pt+1

ij − 2ptij + pt−1
ij ]/(∆t)2

∂2p

∂x2
←→ [pti+1j − 2ptij + pti−1j ]/(∆x)

2

∂2p

∂z2
←→ [ptij+1 − 2ptij + ptij−1]/(∆x)

2, (26.29)

yields the discretized wave equation and its associated stencil is shown in Figure 26.5. The time-
stepping scheme for these discrete equations is given by

for t = 2 : nt

pt+1
ij = 2ptij − pt−1

ij + a[pti+1j − 2ptij + pti−1j ] + a[ptij+1 − 2ptij + ptij−1]− (∆x)2af t
ij ,

end (26.30)

where a = (cij∆t/∆x)
2. Here, we assume that the initial conditions are p(x, t′ = 0) and ∂p(x, t′ =

0)/∂t′ for all (x, z), so that the source wavefield is generated by the body-force term f t
ij .

Figure 26.7 depicts the high-level computational graph for computing the pressure field P t+1

from two earlier values P t+1 and P t+1 and the velocity model v. The Laplacian ∇2 represents
the algebraic formula in equation 26.30, which can be decomposed into a detailed computational
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Figure 26.6: Depiction of forward light cone generated by a FD solution (several stencils
are depicted) to the wave equation for a point source at depth.
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Figure 26.7: High-level computational graph for computing the pressure fields P t after
specifying the velocity model v(x), denoted by the red letter v, and source wavelet f t. Here,
dt = P (x, 0, t) is the predicted pressure field at the geophone line for the offset coordinate
x and z = 0.



760 CHAPTER 26. AUTOMATIC DIFFERENTIATION

graph for a composite function. See exercise 11-12. The data recorded at the surface are denoted
as dtobs. and are subtracted from the predicted data at the surface P (x, 0, t)→ dt to get the residual
rt = dt − dtobs. The squared residual is summed over all the trace offset locations and time samples
to get the misfit function ǫ, which will be used in the next section for an inversion algorithm.

The following MATLAB code computes the 2-2 FD solutions to the 2D acoustic wave equation
with constant density.

Code 26.4.1. MATLAB FD Solution to the 2D Acoustic Wave Equation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (NX,NZ,NT) - input- (Horizontal,Vertical) gridpt dimens. of vel

% model & # Time Steps

% FR - input- Peak frequency of Ricker wavelet

% BVEL - input- NXxNZ matrix of background velocity model

% (dx,dt) - input- (space, time) sample intervals

% (xs,zs) - input- (x,z) coordinates of line source

% RICKER(NT) - input- NT vector of source time histories

% (p2,p1,p0) - calc.- (future,present,past) NXxNZ matrices of

% modeled pressure field

% (p0,p1) -output- Old and present pressure panels at time NT.

% REALDATA(NX,NT) -output- CSG seismograms at z=2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

c=4.0;FRE=20;figure(1)

NX=300;NZ=NX; dx=c/FRE/20;dt=.5*dx/c;

xs=round(NX/2.3); zs=round(NX/2);NT=600;

t=[0:1:NT-1]*dt-0.95/FRE;RICKER=zeros(length(t));

RICKER= (1-t .*t * FRE^2 *pi^2 ) .*exp(- t.^2 * pi^2 * FRE^2 ) ;

plot([0:NT-1]*dt,RICKER);

title(’Ricker Wavelet’);xlabel(’Time (s)’)

BVEL=ones(NX,NZ)*c;

BVEL(NX-round(NX/2):NX,:)= BVEL(NX-round(NX/2):NX,:)*1.2;

REALDATA=zeros(NX,NT);

p0=zeros(NX,NZ);p1=p0;p2=p0;

cns=(dt/dx*BVEL).^2;

for it=1:1:NT %Forward Time Looping

p2 = 2*p1 - p0 + cns.*del2(p1);

p2(xs,zs) = p2(xs,zs) + RICKER(it);

REALDATA(:,it) = p2(xs,:)’;

p0=p1;p1=p2;

if round(it/20)*20==it;p00=p0/max(abs(p0(:))+.001);

imagesc([1:NX]*dx,[1:NX]*dx,(p00+BVEL)); colorbar;

text((zs-3)*dx,(xs+3)*dx,’*’,’Fontsize’,16,’color’,’red’);

hold on;plot([0 dx*NX],[(xs-1)*dx (xs-1)*dx],’--y’);hold off

pause(.1);

end

end;

p1=p0;p0=p2;

title(’Snapshot of Acoustic Waves’);text(xs,zs,’*’,’Fontsize’,16);

xlabel(’X (km)’); ylabel(’Z (km)’)

figure(2);imagesc([1:NX]*dx,[1:NT]*dt,REALDATA’);xlabel(’X (km)’);ylabel(’Time (s)’)

title([’Seismograms along Horizontal Line at Depth ’,num2str(xs*dx),’ km’])

figure(3);plot([1:NT-1]*dt,diff(REALDATA(100,:),1));xlabel(’Time (s)’)

title(’Time Derivative of Pressure Seismogram’)

The output produces snapshots and seismograms such as those shown in Figure 26.8. No ab-
sorbing boundary conditions have been included in the above code so strong reflections will emanate
from the sides of the model, as if there is a free surface on each side with zero pressure conditions.
These unwanted reflections can be partly attenuated by applying a sponge zone and/or absorbing
boundary conditions Schuster (2017) to the bottom and side boundaries.

The fragment from the Python code for the finite-difference solution to the 2D acoustic wave e-
quation is below. An excellent tutorial on finite-difference solutions to the wave equation and its asso-
ciated Python codes is at http : //hplgit.github.io/INF5620/doc/notes/wave−sphinx/main wave.html.
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Figure 26.8: a) Snapshot and b) time derivative of the pressure seismogram recorded at
x = 1 km and z = 1.5 km. The point source location in a) is denoted by the red asterisk
and the receiver line is along the yellow dashed line.

Code 26.4.2. Python FD Solution to the 2D Acoustic Wave Equation (Hans Petter Lang-
tangen)

import numpy as np

cimport numpy as np

cimport cython

ctypedef np.float64_t DT # data type

@cython.boundscheck(False) # turn off array bounds check

@cython.wraparound(False) # turn off negative indices (u[-1,-1])

cpdef advance(

np.ndarray[DT, ndim=2, mode=’c’] u,

np.ndarray[DT, ndim=2, mode=’c’] u_1,

np.ndarray[DT, ndim=2, mode=’c’] u_2,

np.ndarray[DT, ndim=2, mode=’c’] f,

double Cx2, double Cy2, double dt2):

cdef int Nx, Ny, i, j

Nx = u.shape[0]-1

Ny = u.shape[1]-1

for i in xrange(1, Nx):

for j in xrange(1, Ny):

u[i,j] = 2*u_1[i,j] - u_2[i,j] + \

Cx2*(u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]) + \

Cy2*(u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]) + \

dt2*f[i,j]

# Boundary condition u=0

j = 0

for i in range(0, Nx+1): u[i,j] = 0

j = Ny

for i in range(0, Nx+1): u[i,j] = 0

i = 0

for j in range(0, Ny+1): u[i,j] = 0

i = Nx

for j in range(0, Ny+1): u[i,j] = 0

return u
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Chapter 27

Appendix: Geophysics Background

This appendix provides a high-level overview of the acquisition and processing procedures in
exploration seismology. It is presented at a high level in order to help the non-specialist understand
how they might benefit from machine learning applications. We also describe the seismic processing
procedure of diffraction migration that provides maps of the earth’s reflectivity distribution from
seismic data. It is inarguably the most important processing tool in exploration seismology.

27.1 Seismic Data Recording and Processing

The principal goal of exploration seismology is to map out oil and gas reservoirs and aquifers
by imaging the earth’s seismic reflectivity and velocity distributions. In this regard, exploration
geophysicists perform seismic experiments ideally equivalent to that shown in Figure 27.1, where
the source (red stars) excites seismic waves, and the resulting primary reflections are recorded by
a geophone (inset next to a coin) located at the source position. For this ideal zero-offset (ZO)
experiment we assume only primary reflections1 in the records and that waves only travel in the
vertical direction.

After recording at one location, the source and receiver are laterally moved by about 1/2 source
wavelength and the experiment is repeated at different ground positions. All recorded traces are
lined up next to one another and the resulting section is defined as the zero-offset (ZO) or poststack
seismic section, as shown on the rightside of Figure 27.1. This section resembles the actual geology,
where one side of the signal is colored red and the other is blue to help enhance visual identification
of the interface2. Note that the depth d of the first reflector can be calculated by multiplying the
two-way reflection time trefl by half the P-wave velocity v of the first layer, i.e., d = treflv/2.

Seismic images of the subsurface are used to understand the geology of the earth. For example,
Figure 27.2 shows both optical and seismic pictures of faults. These images reveal the characteristics
of buried faults that can aid geologists in deciphering the tectonic forces that shaped the earth. Faults
can also serve as impermeable traps for oil and gas deposits, waiting to be found by the explorationist
with the most capable seismic camera and digital processing algorithms.

1A primary reflection is a wave that propagates downward, reflects off a reflector, and propagates back
up to the surface, without any reverberations between layers.

2There are 4 hand-drawn seismograms on the right, but the actual seismograms are displayed in the
background. There are hundreds of seismograms displayed next to one another, but the separation between
each seismogram is not visible with this plotting format.
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Figure 27.1: Ideal zero-offset (ZO) experiment on the left and the ideal traces (4 line-drawn
traces) and actual ZO seismic sections to the right. Each trace is recorded by a geophone
coincident with the source position; and the red- (blue-) colored amplitudes correspond
to the particle velocity of the ground in the upward (downward) direction. An implicit
assumption here is that the specular reflection point is directly beneath the geophone,
which is incorrect for earth models with dipping structures or lateral velocity variations.
Thus, the need for migrating the data.



27.1. SEISMIC DATA RECORDING AND PROCESSING 767

5 m

a)              Road Cut

5 km

b)        Seismic Section

Figure 27.2: Geologic faults revealed by a) road cut and b) marine seismic section. The
length scales above are roughly estimated.

Seismic Sources

A land seismic source consists of a mechanical device or explosive located at s that thumps
the Earth (see Figure 27.3a) at time t = 0. A geophone (see Figure 27.3b) at g records the time
history of the vertical-particle velocity, denoted as the seismic trace d(g, t|s, 0). A marine source is
usually an array of air guns deployed as in Figure 27.4b. The lobe amplitudes in the Figure 27.1
traces are roughly proportional to the reflectivity strength m(x) of the corresponding reflector at
x = (x, y, z). Assuming a constant density and a layered medium, the reflectivity model m(x) is
sometimes approximated as

m(x) ≈ v(z + dz)− v(z)
v(z + dz) + v(z)

, (27.1)

where v(z) is the P-wave propagation velocity at depth z and dz is a small increment in depth. This
formula is also the reflection coefficient for a pressure wave normally incident on a flat reflector with
no density contrast.

Non-zero Offset Seismic Experiment

In practice, traces from a ZO experiment cannot generate the ideal seismic section because
the source also generates strong coherent noise and near-source scattering energy. In addition,
the waves are propagating in all directions and contain distracting noise such as multiples, surface
waves, scattered arrivals, out-of-the plane reflections, and converted waves. To account for these
complexities, geophysicists perform non-zero offset experiments where the vibrations are recorded
by many receivers as shown in Figure 27.4a. As before, each experiment consists of a shot at a
different location except hundreds of active receivers are spread out over a long line for a 2D survey
and a large area for a 3D survey. Figure 27.5 depicts a pictorial summary of a 3D marine survey,
along with the key equation m = L−1d that should be solved for the reflectivity model m(x, y, z).
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 a)         Vibroseis Truck                   b)    Geophones and Cables

Figure 27.3: a) Vibroseis truck and b) geophones attached to cables at a desert base camp.
Inset is a particle-velocity geophone that is about 9 cm long.
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Figure 27.4: a) 2D land and b) 3D marine (courtesy of www.blendspace.com) survey geome-
tries to record surface seismic profiles (SSPs). The hydrophone streamer for a marine survey
can be as long as 12 km with a 15-30 m hydrophone spacing. The typical 3D survey might
consist of several source boats and often more than a dozen parallel hydrophone streamers,
with a separation distance of up to 100 m. A survey where the sources and receivers are
along the free surface is known as a surface seismic profile (SSP) survey.
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Figure 27.5: Picture of a marine survey boat towing hydrophone streamers (insets along
right and lower left). A common shot gather recorded along one streamer is depicted in the
upper left inset with time increasing upward, where the data d = Lm are related to the
reflectivity model m by the wave-equation modeling operator L. A 3D reflectivity image
computed from Gulf of Mexico data is depicted along the faces of the cube. The goal of
seismic imaging is to estimate the earth model m from the data d by m = L−1d. Courtesy
of Sherif Hanafy.
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Reflection Amplitudes.

The arrival times of reflections are influenced by velocity, but the reflection amplitudes are
strongly controlled by density ρ and velocity v changes across an interface. The product I = ρv
is known as impedance, and the normalized difference (I2 − I1)/(I1 + I2) across an interface is the
reflection coefficient of a pressure wave at zero-incidence angle, where I1 and I2 are the impedances
above and below the interface. Figure 27.6a depicts a shot gather of traces recorded by a marine
experiment where refractions, diffractions, and reflections are extant.

Seismic Processing

For surveys over a mostly layered medium, data processing consists of the following steps:

1. Filtering of noise and near-surface statics corrections.

2. Reassembly of common shot gather (CSG) traces in Figure 27.6a into the common midpoint
gather (CMG) shown in Figure 27.6b.

3. The traces in the CMG are time shifted to align the common midpoint reflections with the
ZO reflection event in Figure 27.6c. The time shift that aligns the non-zero offset reflections
with the ZO reflection is known as the normal moveout operation (NMO).

4. Stack3 the traces in the time-shifted CMG to form a single trace at the common midpoint
position in Figure 27.6d. This stacked trace approximates a ZO trace at that position.

5. Repeat steps 3-4 for all midpoint gathers to give the seismic section shown in Figure 27.2b.
If the subsurface reflectivity is extremely complex then steps 2-5 are skipped and instead
the algorithm known as prestack migration (see section 27.2) is used. However, an accurate
migration image requires an accurate migration velocity model so we should first use travel-
time tomography (see Chapter 2), full waveform inversion, and/or migration velocity analysis
(Yilmaz, 2000) to estimate the migration velocity model.

In many exploration data sets, the above stacking process is skipped and instead the data are
migrated to form the reflectivity section.

Reflection Imaging

The problem with the ZO section is that it assumes that the reflections along the same hyperbola4

emanate from the same reflection point directly beneath the midpoint geophone. This is not true for
irregular layering or large lateral contrasts in velocity. Therefore, the reflections must be migrated
to their original reflection points before they are stacked. Relocating reflections recorded in x− t to
their points of origin in x − z is known as seismic migration. This yields an approximation to the
reflectivity distribution, otherwise known as the migration image m(x).

Key Problem with Migration Images

A key difficulty in obtaining an accurate migration image is the estimation of a sufficiently
accurate velocity model for migration. The migration velocity model is used to map reflection

3Summing, or stacking, N traces together gives a stacked trace, where the signal-to-noise ratio can be
enhanced by

√
N . This assumes that the coherent signals are aligned with one another from trace-to-trace

and the zero-mean additive noise is white.
4The primary reflections in Figure 27.6a have a hyperbolic moveout pattern in the shot gather because

the traveltime from a flat reflector at depth d honors the hyperbolic formula t(x) =
√

x2

v2 + 4d2

v2 . Here, v is

the effective velocity associated with the two-layer medium.



27.1. SEISMIC DATA RECORDING AND PROCESSING 771

T
im

e
D

e
p

th

a).  Common Shot Gather

T
im

e

b).  Common Midpoint Gather

common 

midpoint

D
e

p
th

common midpoint 

reflections

c). Normal Moveout Correction

T
im

e NMO

corrected

traces

D
e

p
th

d).          Stacked Trace

T
im

e
D

e
p

th

Figure 27.6: Simple processing steps for seismic data recorded over a layered medium, where
the layers are mostly horizontal. a) common shot gather where a single source is recorded
by all of the geophones to form a CSG of traces. b) The traces from many CSGs can
be reassembled to form a common midpoint gather (CMG) where a trace associated with
each source-receiver pair has the same source-receiver midpoint position on the surface.
The common subsurface reflection point is known as the common reflection point; if the
interface is dipping then rays associated with traces in the same CMG do not share a
common reflection point. c) Flattened traces after time shifting the CMP traces to align
with the zero-offset trace, aka NMO corrected traces. d) The stacked trace is formed by
adding the NMO corrected traces. In this case the fold is 7 and the signal/noise is enhanced
by a factor of

√
7 if there is only additive white noise in the traces. This stacked trace

approximates a zero-offset (ZO) trace where the source and geophone are coincident with
one another.
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events to their x − z reflection points. Large errors in this velocity model will lead to inaccurate,
defocused and sometimes unusable migration images. As an example, Figure 27.7 shows different
migration images obtained with variable velocity errors, where velocity errors should typically be
less than 5% in order to obtain an accurate rendering of the reflectivity model.

27.2 Diffraction Stack Migration

Integral equation migration is a popular seismic imaging method (Yilmaz, 2001) used in the oil
industry. It can be described as summing the weighted reflections in CSGs along pseudo-hyperbolas
associated with each trial image point at x to give the migration image m(x). This summation is
described by the diffraction stack migration formula

m(x) =
∑

A

∑

B

∑

ω

[iωD(B|A)e−iω(τAx+τxB)],

=
∑

A

∑

B

ḋ(B, τAx + τxB|A), (27.2)

where D(B|A) is the frequency-domain representation of the trace in Figure 27.8, its inverse Fourier
transform is given by d(B, t|A), and the summations run over the indices for the source A and
receiver B locations. For a homogeneous medium having velocity c the time for waves to propagate
from the source at A down to the scatterer at x0 and back up to the receiver at B is given by

τAx + τxB =

√
(xA − x0)2 + (zA − z0)2 +

√
(xB − x0)2 + (zB − z0)2

c
, (27.3)

where zA = zB = 0 for sources and receivers on a horizontal datum. This two-way traveltime
equation describes a hyperbola in xB− time coordinates for any image point at x and a source fixed
at A; the apex of the hyperbola is centered over the point scatterer at xo. If the reflection time on
the leftside of equation 27.3 is fixed at a specific time then the values of x that satisfy this traveltime
equation form an ellipse with the foci at A and B, as depicted in Figure 27.8.

The observed data for a single scatterer can be approximated by

D(B|A) = e−iω(τAxo+τxoB), (27.4)

where geometric spreading and the reflection coefficient are conveniently ignored. Substituting
equation 27.4 into equation 27.2 gives

m(x) =
∑

A

∑

B

∑

ω

[iωe−iω(τAx+τxB−τAxo−τxoB)]. (27.5)

If the trial image point at x coincides with the actual scatterer at xo then the summations of phases
constructively interfere with one another to give a large migration amplitude m(x). On the other
hand, if x is far from the actual scatterer then the predicted hyperbola will not match the actual
hyperbola of recorded events. The consequence is that the summations in equation 27.5 will be
largely incoherent and sum to a small number to be placed at the trial image point at x 6= x0.

This type of imaging is also known as diffraction stack migration (Yilmaz, 2001). For a single
source and single receiver the above equation becomes

m(x) = ḋ(B, τAx + τxB|A). (27.6)

In a 2D homogeneous medium, the reflection traveltime τref. = τAx + τxB associated with the trial
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Figure 27.7: Reverse time migration (RTM) and least squares reverse time migration (L-
SRTM) images for the Marmousi migration velocity model with an RMS velocity error of
a) ∆V = 4.45% and b) ∆V = 7.81%. Images courtesy of Gaurav Dutta.
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Figure 27.8: prestack migration is the smearing of trace amplitudes along the appropriate
fat ellipses in (x, z) for each source-receiver pair A − B (Yilmaz, 2001). Migration of
two traces in b) has better spatial resolution than migrating just one trace in a), and the
thickness of each fat ellipse at z = 0 is 0.5vT , where T is the dominant period of the source
wavelet.

scattering point at x can be expressed as

τref. = [
√
(xA − x)2 + (zA − z)2 +

√
(xB − x)2 + (zB − z)2]/v,

(27.7)

which, for τref. = cnst, describes an ellipse in model-space coordinates (x, z) with the foci at
A = (xA, zA) and B = (xB , zB). It follows from equation 27.6 that the reflectivity image m(x)
is approximated by smearing the trace amplitude at time τref. over the ellipse described by equa-
tion 27.7 in model space.

Smearing the seismic amplitude over an ellipse is shown in Figure 27.8a; here, the temporal interval
T of the trace’s source wavelet determines the thickness 0.5vT of the fat ellipse at z = 0. Some-
where along this ellipse is a scatterer that gave rise to the event at time τref. for the receiver at d.
The scatterer’s location can be better estimated by stacking (see equation 27.2) the ”smears” from
other traces into the model, as illustrated in Figure 27.8b. If the receivers are too far apart then
the steeply dipping parts of the migration ellipse do not cancel, and so produce coherent artifacts
defined as aliasing noise. Figure 27.9 shows a poststack migration image (where the source is at the
receiver) for a homogeneous velocity model with 6 scattering points. The lateral spatial resolution
of the image becomes worse with increasing depth.
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Figure 27.9: (Top) poststack data and (bottom) migration image where there are 6 point
scatterers indicated by the white stars. Note, the spatial resolution of the image increases
with decreasing depth of the scatterers.
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Figure 27.10: Illustrations of propagating a) Love waves, b) Rayleigh waves, and c) Stoneley
waves.

27.3 Surface Waves

A surface wave is an evanescent wave that mostly propagates along a surface (such as the Earth’s
free surface or the sea floor), and generally attenuates with increasing depth. If the velocity structure
of the medium is layered then different frequency components of the surface waves will propagate
laterally with different phase velocities along the horizontal direction. The horizontal phase velocity
at a specific frequency is a weighted average of the S-wave velocities down to, for Rayleigh waves,
about a third of the shear wavelength (z ≈ 1

3λ) below the free surface (Richert et al., 1970). Thus,
the average S-wave velocity to the depth of 1/3 the wavelength can be approximated by measuring
the associated phase velocities over different frequencies.

There are three types of surface waves that are of keen interest to the explorationists: Love
waves (see Figure 27.10a) recorded by horizontal geophones with horizontal-particle motion perpen-
dicular to the propagation direction, Rayleigh waves (see Figure 27.10b) recorded by vertical- and
horizontal-component geophones, and guided waves ( Haney and Stone, 2012; Aki and Richards,
2002; Zhao et al., 1994; Beresford and Janex, 2005; Gaiser and Vasconcelos, 2008; Boiero et al.,
2013) that propagate along the water-sediment interface in a borehole (denoted as Stoneley waves in
Figure 27.10c) or the sea floor (Scholte waves). Amplitudes of Rayleigh and Love waves exponential-
ly decrease with depth, thus the motion induced by their passage is limited to the shallow subsurface
for frequencies greater than 10 Hz. Love waves are simpler than Rayleigh waves in a layered medi-
um because their particle motion is horizontal and perpendicular to the direction of propagation.
Stoneley waves are another type of surface wave created along a solid-solid interface and are often
exploited in borehole seismic to infer the shear-wave velocities (Stevens and Day, 1986). Previous
research about surface waves focused on inverting the dispersion curve for the S-wave velocity profile
(Park et al., 1998; Xia et al., 1999, 2007), imaging lateral heterogeneities using backscattered waves
(Almuhaidib and Toksöz, 2015), and ground-roll reflection analysis (Sloan et al., 2015).

The particle motion for a Rayleigh wave in a layered medium is retrograde elliptical as denoted by
the black ellipse in Figure 27.10b. For a layered medium, different frequency components of surface
waves propagate with different velocities, which are known as a dispersive waves. The result is that
an impulse-like wavelet disperses as it propagates, where different frequency components arrive at
different times. This is illustrated in Figure 27.11a where the high-frequency surface waves propagate
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Figure 27.11: a) Common shot gather (CSG) and b) common offset gather (COG, offset=50
m) recorded by a land survey. The red dashed line in b) is an interpreted normal fault.

at the shallow-layer velocities with a steeper slope in the x− t domain than the low-frequency waves
propagating at the faster velocities at deep depths.

The lateral variations of the deeper velocities are indicated in the common offset gathers (COGs)
in Figure 27.11b where the dashed red line denotes a normal fault with slower downthrown-side
velocities. If the traces are decomposed into separate frequencies by a 2D FFT, then the fundamental-
mode dispersion curve can be picked in the wavenumber frequency (k − ω) domain (Figure 5.9b)
or the C(ω) − ω domain (Figure 5.9c). Here, C(ω) is the phase-velocity at frequency ω, D(k, ω)
is the spectrum of the traces, and n = 0 represents the fundamental mode of the Rayleigh waves.
Typically, the fundamental mode is denoted by the curve that coincides with the largest amount of
spectral energy near the C(ω) axis in Figure 5.9c.

27.3.1 Estimating Depth vs Frequency

The S-wave velocity model can be used to assess velocity anomalies along the near surface,
which can be used, for example, to identify drilling hazards and assign statics corrections (Xia et
al., 1999; Socco et al., 2010). Unfortunately, surface-wave characterization of the subsurface with
typical exploration surveys fails to reliably generate and record frequencies lower than 2 Hz. For
example, if the lowest frequencies recorded are no less than about 2 Hz and the average S-wave
velocity is slightly above 1000 m/s then surface waves are not sensitive to geology below the depth
z of 1/3 the dominant wavelength:

z ≈ λS
3

=
Vr
3f

=
1

3

1000 m/s

2 Hz
= 166 m, (27.8)

where f is the frequency and Vr is the Rayleigh-wave phase velocity at that frequency. This problem
can be mitigated by recording ambient noise such as in the Long Beach array (Lin et al., 2013) and
microtremor surveys where useful frequencies as low as 0.5 Hz can be used to probe more than a
kilometer below the free surface. But such ambient noise data usually requires weeks of recording
time.

27.4 Seismic Reflection Data as an LTI System: s(t) = r(t) ⋆

w(t)

The velocity structure of a 1-D layered earth with constant density can be described by v(z),
where v(z) is the propagation velocity as a function of depth. Assuming a uniform sampling in depth
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with a sampling interval of dz we have the propagation velocity vector v = [v(0), v(1) . . . , v(N)],
and the associated reflection coefficient vector as function of depth r = [r(0), r(1), . . . , r(N)] where:

r(i) = {v(i)− v(i− 1)}/{v(i) + v(i − 1)}. (27.9)

The time it takes a plane wave to go from the i dz depth to the (i+1)dz depth is dz/v(i). Thus the
2-way time t(z) that seismic energy takes to go from the surface to the Kth (i.e., z = dz K) depth
level and back up to the surface is:

K BOOM Geophone

+--- --------------------

+ | ^ v(1)

t(K*dz) = + 2*dz/v(j) V |

+ -------------------

+--- | ^

j = 1 V | v(2)

--------------------

.

.

.

--------------------

| ^ v(K)

V |

--------------------

Using t(z) we can get z(t); thus we can convert the reflection coefficient r(z) as a function of depth
to the reflection coefficient r(t) = r(z(t)) as a function of time. The physical meaning of r(t) is
that it is the impulse response of the 1-D layered earth for an impulsive source and a receiver at the
surface. It assumes no multiples, no attenuation and no transmission losses in the earth.

For example, if the earth model is of uniform velocity v = 1 km/s except for a layer with
reflectivity -.5 at z = 1 km then an impulsive source wavelet with amplitude A δn0 launched from
the surface will generate the following reflection response:

r(t) = [r(0) r(1) r(2) ...] = [A 0 − .5 · A 0 0 0...], (27.10)

where ∆t = 1 s. The first term r(0) = A is the direct wave and r(2) = −.5 ∗ A is the primary
reflection from the first layer interface.

If we consider the earth’s impulse response as LTI, the time history of the seismic source wavelet
as w(t), and the synthetic seismogram seismogram s(t) as the output, then s(t) = r(t) ⋆w(t), where
r(t) is the earth’s impulse response. This is known as the 1-D convolution model of a seismogram. Is
the earth really an LTI system? Does the earth system really satisfy linearity and scaling properties?
What experiments can you devise to test this hypothesis?

An example of computing the seismogram from a synthetic sonic velocity log is is given in
Figure 27.12 and a field data example is given in Figure 27.13.

The mathematical description for describing two-way traveltime as a function of depth in con-
tinuous variables is given by

t(z) = 2

∫ z

0

dz′/v(z′)′, (27.11)
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Figure 27.12: Synthetic (a). sonic log in depth, (b). sonic log in 2-way travel time , c).
impulse response r(t), d). 100 Hz wavelet w(t), e). seismogram s(t) = r(r) ⋆ w(t) and f).
associated magnitude spectrum.
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Figure 27.13: Field stacked section on far right and associated logs on left. Synthetic
seismograms (derived from well logs) are shown just to the left of stacked section and
correlate well with the recorded seismograms.
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where t(z) is the 2-way propagation time for energy to go vertically downward from the surface to
the horizontal reflector at depth z and back up to the surface in the 1D layered model. A MATLAB
script for this mapping from depth to time is given as

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Finds t(z) from v(z). Assumes

% v(z) starts at free surface.

% v(z) - input- sonic log as function of z

% dz - input- depth sampling interval of sonic log

% t(z) - input- 2-way time as function of z

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [time]=depth2time(v,dz)

nz=length(v);time=zeros(nz,1); time(1)=dz/v(1);

for i=2:nz; time(i)=time(i-1)+dz/v(i); end

time=time*2; plot(dz*[1:nz],time);

xlabel(’Depth (ft)’); ylabel(’Time (s)’)

title(’Depth vs 2-way Time’);figure

plot(time,v);xlabel(’Time (s)’);ylabel(’Velocity (ft/s)’)

The velocity model as a function of time v(t) (see Figure 27.12b) is usually unevenly sampled. To
perform convolutional forward modeling, we must convert to an evenly sampled function in time
v(t) = v(t(z))′; the MATLAB code for getting an even sampled function sampled at the sampling
interval ∆t from an unevenly sampled function is given in Appendix D.

Assuming that the velocity function v(t) is now an evenly sampled function, the evenly sampled
zero-offset (ZO) reflection coefficients as a function of time can be estimated by r(t) = (ρ(t)v(t) −
ρ(t−∆t)v(t−∆t))/((ρ(t)v(t)+ ρ(t−∆t)v(t−∆t)), which in MATLAB script becomes for constant
density:

y=diff(vpp);nl=length(y);dt=diff(time);add=vpp(1:nl)+vpp(2:nl+1);

rc=y(1:nl)./add(1:nl);stem(time(1:nl),rc(1:nl));

If the density profile is known then the density can be put into the above reflection coefficient
formula.

The bandlimited response of the medium for a plane wave input (with source wavelet w(t) as
shown in Figure 27.12d) into the surface is a combination of arrivals, including primary and multiple
reflections. If attenuation, transmission losses and multiples are excluded then the 1D convolutional
model of the seismogram s(t) is given by

s(t) =

∫ ∞

−∞

r(τ)w(t − τ)dτ, (27.12)

which is the definition of convolution of r(t) with w(t), often abbreviated as s(t) = r(t) ⋆ w(t).
The above formula can be derived by taking the special case of the impulse response where the

source wavelet is a Dirac delta function that is excited at time equal to zero: w(t) = δ(t), where the
delta function is defined as δ(t) = 0 if t 6= 0, otherwise δ(t) = 1 in the sense

∫
δ(t)∆t = 1. Plugging

this impulse wavelet into the above equation yields:

s(t) =

∫ ∞

−∞

r(τ)δ(t − τ)dτ,

= r(t), (27.13)

which describes the reflection coefficient series shown in Figure 27.12c. Thus, the 1D impulse re-
sponse of the earth under the above assumptions perfectly describes the reflection coefficient series
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as a function of 2-way traveltime. If the source wavelet were weighted by the scalar weight w(τi)
and delayed by time τi then w(t) = w(τi)δ(t − τi) then the delayed impulse response of the earth
would be

s(t)′ =

∫ ∞

−∞

r(τ)w(τi)δ(t− τi − τ)dτ,

= w(τi)r(t − τi), (27.14)

which is a weighted delayed version of the original impulse response in equation 27.12. If we were
to sum these two seismograms we would get, by linearity of integration,

s(t)′ + s(t) = w(τ0)r(t − τ0) + w(τi)r(t − τi), (27.15)

where τ0 = 0 and w(τ0) = 1. By the superposition property of waves (i.e., interfering wave motions
add together), we could have performed these two seismic experiments at the same time and the
resulting seismograms would be identical mathematically to equation 27.15. More generally, the
earth’s response to an arbitrary wavelet w(τ) is given by

s(t) =
∑

i

w(τi)r(t − τi),

≈
∫ ∞

−∞

w(τ)r(t − τ)dτ, (27.16)

and in the limit of vanishing sampling interval ∆t = τi+1−τi the approximation becomes an equality
(see Figure 27.12e). Under the transformation of variables τ ′ = t− τ equation 27.16 becomes

s(t) =

∫ ∞

−∞

w(t− τ ′)r(τ ′)dτ ′, (27.17)

which is precisely the convolution equation shown in equation 27.12. The equality of equations 27.16
and 27.17 also shows that convolution commutes, i.e., s(t) = r(t) ⋆ w(t) = w(t) ⋆ r(t). The
convolutional modeling equation was practically used by many oil companies starting in the 1950’s,
and is still in use today for correlation of well logs to surface seismic data.



Chapter 28

Probability Theory for Machine
Learning

The mathematical foundations of machine learning methods are grounded in the theories of
probability, statistics and optimization. The statistical approach for supervised learning defines
the functional relationship y = f(x,w) between the input data x and output y, while optimization
theory tells us how to find the optimal values of the model parameters w. Therefore, the geoscientist
who desires to deeply understand machine learning methods must also comprehend the salient
aspects of statistics and probability. This chapter presents a brief overview of many of the important
concepts of probability and statistics used in machine learning.

28.1 Random Variables, Sample Space, Events and Proba-
bility

A random event can be defined as the unpredictable outcome of an experiment, e.g., the flip
of a coin gives either tails (T) or heads (H). The random variable (RV) is a mapping, i.e. function
X(s), that assigns a real number r to each possible outcome, such as r = 0 for tails and r = 1 for
heads. The index s is the sample space index associated with a specific event. An uppercase letter
X(s) = X is used for the random variable in the case of a finite discrete set of distinct N outcomes.
The specific real values assigned to X are denoted as lower-case letters such as {r1, r2, . . . , rN}. For
example, the RV for the outcome of flipping a coin is given by

X(s) =

{
r1 = 1 if heads where s=1

r2 = 0 if tails where s=100,
(28.1)

where we assign an arbitrary scalar value r1 = 1 for heads and r2 = 0 for tails. Note, the RV X(s)
is a function of the index s where s = 1 is the index for a head and s = 100 is that for a tail. In
this example, we could have assigned the index s = 0 for a tail to get a more interpretable index,
i.e. s = r.

In the case of a finite discrete set of outcomes, the specific scalar values assigned to N distinct
outcomes of X are denoted as lower-case letters such as {r1, r2, . . . rN}. In general, a RV is a
function X(s) that assigns a real-valued number r to each distinct outcome s ∈ S. Assigning a real
number to each distinct event allows for the quantification of outcomes with numbers rather than
with words. This will then allow for the mathematical definition of the probability of outcomes in
terms of the RVs. value 1.

783
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Sample Space and Events. The sample space S is the set of all distinct outcomes of an experiment.
Each outcome can be thought of as a point in this sample space (DeGroot, 1975).

Example 1: Three Tosses of a Coin. Toss a coin three times and define the sample space as
consisting of the 23 possible outcomes. A point in S represents the unique outcome of the 3-toss
experiment and can be defined as a sequence of single-flip outcomes such as

s1 : HHH ; s2 : THH ; s3 : HTH ; s4 : HHT ;

s5 : HTT ; s6 : THT ; s7 : TTH ; s8 : TTT. (28.2)

Each possible 3-term sequence of heads and tails is assigned a number1 si, and X(si) can be de-
fined as the number of heads in that sequence indicated by the value of the sample-space index
si. If the number s7 = 7 is assigned to the event s7 : TTH , then the number of heads in s7 is
X(s7 = 7) = r7 = 1. This is an example where the sample space index s7 is not equal to the RV
value r7.

Example 2: Points in a Plane. If points (xi, yi) in a gridded plane are randomly selected accord-
ing to some probability distribution then each coordinate can be considered as a RV. An outcome
in the sample space S will be a two-dimensional point assigned to the real number si : (xi, yi), and
the number of distinct outcomes is equal to the number of points in the grid. The term (X,Y ) is an
example of a two-dimensional random vector. If three Cartesian coordinates (xi, yi, zi) are randomly
selected then the RV might be defined as the 3×1 vector (X,Y, Z), where X(si) = xi, Y (si) = yi and
Z(si) =

√
x2i + y2i . Here, we arbitrarily assigned Z to be the RV which is the distance of (xi, yi, 0)

from the origin for a point in a 3D coordinate system.
Subsets of S are called events. For example, if we flip two coins simultaneously then the sample

space consists of the mutually exclusive outcomes S = {HH,TT,HT, TH}. Each of these distinct
two-coin outcomes can be assigned a scalar value in sample space denoted by the lower-case symbols
{s1, s2, s3, s4}. As an example, we can define an event as the result of a two-coin flip where the first
coin has a head and is therefore the sample space is described by S̃ = {HH,HT }.

The sample space for flipping one coin in equation 28.1 can also be described by the set notation
S = {H,T } where the corresponding set of RVs is given by {X1, X2}. In this example, X1, X2 are
mutually exclusive binary variables that can be either 1 or 0. For example, if the flip is a head then
the outcome can be denoted as the 2×1 vector (1, 0). Similarly, a tail outcome is described by (0, 1),
and there are no more possibilities in the sample space. The event X1 cannot simultaneously occur
with the event X2, so these events are mutually exclusive, aka disjoint, such that X1

∧
X2 = {}.

28.1.1 Types of Events

There are three types of events.

• The RVs associated with events are classified as independent if they do not influence one
another. For example, the event of a single coin flip is either a head (H) or a tail (T) and
does not influence the outcome of a second coin flip. Another example is the event defined as
the simultaneous flip of two coins, which results in either HH , TT , HT or TH . Flipping the
two coins again will have an outcome independent of the first pair of coin flips. In the next
section, we describe this dependency for finite discrete events by the conditional probability
mass function.

• A dependent (or conditional) event is one which influences the other. For example, if X

1si can also be assigned a name instead of a number.
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is the event of being cloudy and Y is the event of rain, then X influences whether it will rain
Y . Thus Y is dependent on the existence of X .

• Two events are mutually exclusive, aka disjoint, if they can’t happen at the same time.
For example, we cannot flip a coin and get both a head and a tail.

28.1.2 Probability

A random variable has a value that represents the numerical outcome of a random phenomenon.
If the number of these numerical values is uncountably infinite, i.e. take on any value along a segment
of the real line, then this RV is denoted as a continuous RV. For example, the outdoor temperature
value for any given day. If, on the other hand, the RV can only take on a countable number of values
then this is denoted as a discrete RV.

For a discrete RV X , the probability P (X = x1) is the percentage that the outcome X = x1
occurs2 compared to all possible outcomes in the sample space S. For a discrete RV, P (X) is also
called a probability mass function (PMF).

For example, we can perform N coin flips, i.e. realizations, to get the number NT of tails, and
give an estimate of the frequency of tails FT and heads FH as

FT =
NT

N
; FH =

NH

N
=
N −NT

N
, (28.3)

where NH = N − NT is the number of heads in N experiments. Assigning x1 = 1 → Heads and
x2 = 0 → Tails, FT and FH are only estimates of P (xi) ∀ ∈ {0, 1} because a different set of N
realizations will likely give a slightly different estimate for P (xi).

As the number of experiments approaches infinity the frequency estimates become the probabil-
ities

lim
N→∞

FH = P (X = 1); lim
N→∞

FT = P (X = 0) = 1− P (X = 1). (28.4)

The frequency estimates have the properties of 0 ≤ FH , FT ≤ 1 and FH + FT = 1. Consequently,
0 ≤ P (x = 1), P (x = 0) ≤ 1 and

∑2
i=1 P (xi) = 1 for the PMF P (X).

A probability mass distribution P (X) lists the probability of all possible outcomes in the sample
space. For example, the RV might be the outcome of the roll of a 6-faced dice describe by the sample
space

S = {x1, x2, x3, x4, x5, x6}, (28.5)

listed in Table 28.1 for an unfair dice. Here, the 6 possible outcomes of the roll of an unfair 6-faced
dice are mapped to the numbers in the second column of Table 28.1, and their probability mass
function P (X) is given in the third column.

Continuous RV. If the random variable is a continuous variable then the probabilities can be
nonzero only if they refer to intervals, and these probability functions are known as probability den-
sity functions (PDFs). For example, the probability of an adult having a height between 1 meters

and 3 meters is no less than 98%, and is given by
∫ 3

1 P (x)dx. For most of our discussions we will
assume finite discrete variables and a PMF, and denote P (X) as a probability. If this probability
is for a continuous variable X then the probability density function will be denoted by lowercase
p(X). For a PDF, 0 ≤ p(X) and

∫∞

−∞
p(x)dx = 1. Unlike a PMF, the PDF p(x) > 1 can be larger

than the value 1 for certain values of x as long as
∫∞

−∞ p(x)dx = 1.

2The equation X = x1 = 1 says that the RV X takes the value x1 = 1.
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Table 28.1: Probability Mass Function P (X) for an Unfair Dice

# of Dots on Face Assigned Scalar for x P(x)

1 1 P (1)=1/6
2 2 P (2)=1/6
3 3 P (3)=1/6
4 4 P (4)=1/6
5 5 P (5)=2/6
6 6 P (6) = 0

Axioms of PMF

A probability mass function must satisfy three axioms:

• Axiom 1:

P (A) ≥ 0 for every event A. (28.6)

• Axiom 2:

P (S) = 1, (28.7)

where S is the entire sample space of events.

• Axiom 3: If A1, A2, ... are disjoint events then

P (∪∞i=1Ai) =

∞∑

i=1

P (Ai). (28.8)

For example, xi represents one of the six possible outcome values in the second column of
Table 28.1. In this case, each outcome is disjoint and so the sum of the probabilities in the
third column sum to the value 1, which is consistent with Axioms 2 and 3. That is, the
probability is 100% that one of the 6 faces is seen after one roll of the dice. Another example
is that summing the first three rows of the third column in Table 28.1 gives the value 1/2.
According to Axiom 3, this says that there is a 50% probability of the dice roll showing 1, 2
or 3 dots.

Mean and Variance. The average value X̄ of the outcome of a dice roll and its variance σ2 are
given by

X̄ =< X >=

I∑

i=1

P (xi)xi; σ2 =< (X − X̄)2 >=

I∑

i=1

P (xi)(xi − x̄)2, (28.9)

where < > indicates the expectation operator and I is the number of discrete values of the RV. We
often approximate the mean and variances by an averaging procedure over a finite sum of weighted
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samples, so we call these approximations the sample mean or sample variance. For example, if we
have 15 samples of the value x[k] then the sample mean 1

15

∑
x[k] is only an approximation to X̄ .

Multivariate Probability Distributions

A probability distribution whose sample space is one-dimensional (for example real numbers,
list of labels, ordered labels or binary) is called univariate, while a distribution whose sample space
is a vector space of dimension 2 or more is called a multivariate distribution. For a two-dimensional
random vector X = (X1, X2), such as the outcome of two coins being flipped simultaneously, the
two independent random variables are denoted as X1 and X2.

Table 28.2 describes the joint probability distribution for the two-dimensional random vector
(X,Y ) associated with flipping two fair coins. It assigns the number 1 if the coin is heads and the
number 0 if it is a tail. The RV for the first coin is X and Y is the RV for the second coin. We often
use the binomial distribution for classification of binary variables and multinomial variables.

Table 28.2: Joint Probability Mass Function P (X,Y ) for Simultaneous Coin Flips for Two
Fair Coins.

Outcome (X,Y ) P (X,Y )

HH (1,1) P(1,1)=1/4
HT (1,0) P(1,0)=1/4
TH (0,1) P(0,1)=1/4
TT (0,0) P(0,0)=1/4

Joint Probability Distributions.

The joint probability of two independent events X and Y occurring together at the same time
is given by

P (X,Y ) = P (X)P (Y ). (28.10)

It describes the likelihood, or frequency, of two events X and Y occurring at the same time. For
example, the joint probability of the outcome HT with a fair two-dice roll is given by

P (X,Y )|X=1,Y=0 = P (X)|X=1P (Y )|Y=0 =
1

2
× 1

2
=

1

4
, (28.11)

which agrees with P (1, 0) = 1/4 in the second row of Table 28.2.
The first condition for defining the joint probability P (X,Y ) is that both X and Y occur at the

same time3. The other is that X and Y must be independent of each other, so the outcome of one
does not influence the other. For example, rolling two dice gives outcomes in either dice that are
independent of one another.

Conditional Probability

A conditional distribution gives the probability of X contingent upon the values of the other
random variables. Assume two dependent events denoted by the RVs X and Y . Their frequency
of occurrence can be plotted as the disks in Figure 28.1, where P (X) = AX/A and P (Y ) = AY /A.
Here, A, AX , and AY denote the areas of the black box, blue disk and red disk, respectively. The

3https://medium.com/mlengineer/joint-probability-vs-conditional-probability-fa2d47d95c4a
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XY

Black = Boundary of Total Universe

red universe
blue

universe

X YX Y~

Figure 28.1: Regions outlining areas of the RVs X (blue disk) and Y (red disk). The area
of intersection X ∩ Y is denoted by the purple region and the total universe of events is
represented by the area bounded by the black rectangle. The union of X ∩ Y and X̃ ∩ Y is
the red circle region, where X̃ denotes the sample space outside of X.

total area of the black reference universe is denoted as A and contains all of the possible events in
the universe of experiments.

If X is known to have occurred then an event associated with the blue disk has occurred with
100% probability. Therefore, the reference area is no longer that of the black box but it is that of
the blue disk. In this case the conditional probability P (Y |X) of Y occurring if X has occurred is

P (Y |X) =
AY ∩ AX

AX
=

P (X,Y )︷ ︸︸ ︷
AY ∩ AX

A
[

P (X)︷︸︸︷
AX

A
]−1,

=
P (X,Y )

P (X)
. (28.12)

Rearranging equation 28.12 we have

P (X,Y ) = P (Y |X)P (X), (28.13)

which is known as a special case of the product rule in section 28.1.2. Interchanging X and Y in
equation 28.12 gives

P (X,Y ) = P (X |Y )P (Y ), (28.14)
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where P (X,Y ) = P (Y,X) and P (X |Y ) is not defined if P (Y ) = 0. If X and Y are independent
events the X should not depend on the occurrence of Y so P (X |Y ) = P (X). Therefore, equa-
tion 28.14 becomes P (X,Y ) = P (X)P (Y ).

Example: Seeing both Stars and the Moon. The conditional probability P (Y |X) gives the
frequency of event Y occurring if event X has occurred. This compares to the joint probability of
events that tells us how often both X and Y occur simultaneously. For example, in an area where
cloud cover occurs 90% of the time then we can see both the Moon and Stars at night less than 10% of
the time; i.e., P (M,S) < 0.1. However, the conditional probability P (S|M) is much more optimistic
because the reference universe is that we have seen the moon. For example, in the same cloudy area,
if we can see the moon then 98% of the time we also can see the stars; i.e. P (S|M) = 0.98. The
few times we can’t see the stars during a moon sighting is because wisps of clouds can obscure the
stars while the much brighter moon burns through the wisps. Note, P (M |S) < P (S|M) because
the moon is not always visible when fully obscured by the earth’s shadow, but the stars are always
unshadowed.

Example: Internships and Employment. As another example, assume that 70% (P (I)|I=1 =
0.7) of students get an Internship, and 49% (P (J, I)|I=1,J=1 = 0.49) of students get both an
Internship and a fulltime Job offer after they graduate. Here, we assume I, J = 1 indicates the
internship and job offer and I, J = 0 indicates neither.

What if the percent of students who received a full-time job offer P (J |I)|I=1,J=1 given that they
worked as an intern? From equation 28.12 we have

P (1|1) = P (J |I)|I=1,J=1 =
P (J, I)

P (I)
|I=1,J=1 =

0.49

0.7
= 0.7, (28.15)

which says 70% got a job offer after an internship compared to the [P (0|1) = 1−P (1|1)]×100 =30%
of the internees who did not get the full-time job.

General Product Rule for Conditional Probabilities: Chain Rule

The chain rule, aka the general product rule, can transform any joint distribution of many
random variables into products of conditional probabilities. For example, if X1, X2, X3 and X4

are RVs that satisfy the axioms of probability then the joint probability P (X1, X2, X3, X4) can be
expressed as a product of conditional probabilities:

P (X4, X3, X2, X1) = P (X4|X3, X2, X1)P (X3, X2, X1), (28.16)

= P (X4|X3, X2, X1)P (X3|X2, X1)P (X2, X1), (28.17)

= P (X4|X3, X2, X1)P (X3|X2, X1)P (X2|X1)P (X1), (28.18)

where equation 28.16 follows from the definition of joint probability in equation 28.14 by treating
{X3, X2, X1} as a single event. Equation 28.17 follows by treating {X2, X1} as a single event.

More generally, it is straightforward to decompose P (XK , XK−1, . . . , X1) into the product of K
conditional probabilities and a marginal probability to give the probability chain rule4:

P (XK , XK−1, . . . , X1) = P (XK |XK−1, . . . , X1)P (XK−1, . . . , X1),

= P (XK |XK−1, . . . , X1)P (XK−1|XK−2, . . . , X1)P (XK−2, . . . , X1),

= ΠK
k=1P (Xk|X1, X2, . . . , Xk−1), (28.19)

4The probability chain rule is also called the general product rule, where the joint distri-
bution P (XK , XK−1, . . . , X1) can be expressed as products of conditional probabilities (see http-
s://en.wikipedia.org/wiki/Chain rule (probability)).
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where P (Xk|X1, . . . , Xk−1) = P (X1) for k = 1 and P (Xk|X1, . . . , Xk−1) = P (X2|X1) for k = 2.
In other words, the probability chain rule allows us to transform a joint distribution of random
variables into products of conditional probabilities and a marginal distribution.

A special case of the product rule is

P (X,Y |Z) = P (Y |X,Z)P (X |Z), (28.20)

where we can consider Z as a silent variable for P̃ (X,Y ) = P (X,Y |Z). In this case the product rule
says P̃ (X,Y ) = P̃ (Y |X)P̃ (X), so replacing P̃ (∗) by the conditioned P (∗|Z) and replacing P̃ (Y |X)
by P (Y |X,Z) gives equation 28.20.

Computational Infeasibility for P (x1, x2, . . . , xK |y)
It is computationally infeasible to compute the conditional probability P (x1, x2, . . . , xK |y) by

sampling for large values of K. For example, assume K = 1000 and xi ∈ {0, 1} is a binary RV
for i ∈ {1, 2, . . . , 1000}. In this case there are 21000 unique combinations of (x1, x2, . . . , x1000). To
estimate the covariance matrix by sampling, we might require at least 10 sample averages for each
unique combination of {xi,xj}. Therefore 10 × 21000 training examples are needed for estimating
the covariance matrix by a counting method. In addition, we need to repeat this for every new class
of data such as Y ∈ {0, 1, 2, . . . , C}, where C > 2 is an integer. Thus, it is practically infeasible to
devise a training set with a sufficient number of examples to give an accurate counting estimate of the
conditional probability P (x1, x2, . . . , xK |y) or the elements of the covariance matrix. To overcome
this challenge we often assume conditional independence of the RVs, as described below.

Mutual Independence of {X1, . . . ,XK} Conditioned on Y

If we assume that all the features in {X1, X2, . . .XK} are mutually independent, conditional on
the category Y , then

P (Xi|Xi+1, . . . , XK , Y ) = P (Xi|Y ). (28.21)

This assumes Xi is only dependent on Y . The mutual independence of the Xi’s conditioned on
Y is known as naive conditional independence, which Naive Bayes’ Theorem uses to eliminate the
infeasible computation of multidimensional conditional probability tables. See Figure 28.2 for an
example and section 20.3 for the description of Naive Bayes’ Theorem.

Under the assumption of naive conditional independence expressed in equation 28.21, equa-
tion 28.19 becomes

P (Y,X1, X2, . . . , XK) = P (Y )P (X1|Y )P (X2|Y ) . . . P (XK |Y ),

= P (Y )ΠK
i=1P (Xi|Y ). (28.22)

The computation of the conditional probability table (CPT) for each term in equation 28.22 can
be orders of magnitude less expensive than computing the conditional probability table (see Fig-
ure 28.2) for P (Y,X1, X2, . . . , XK) in equation 28.19. This cost reduction is crucial for the practical
application of the Naive Bayes’ Theorem in section 20.3.

28.1.3 Law of Total Probability

Assume {Xn : n = 1, 2, 3, . . .} is a finite or countably infinite partition of a sample space X .
That is, Xn are pairwise disjoint events whose union is the entire sample space X . Also assume
that Y contains events in X . Therefore, the marginal probability PX(x) of X can be obtained from
the joint probability function P (X,Y ) by summing P (X,Y ) over the values that Y can take on.
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Figure 28.2: Conditional probability table (CPT) for P (Y |X1,X2) for Y ∈ {1, 2, 3, 4, 5},
X1 ∈ {1, 2, 3, 4}, and X2 ∈ {1, 2, 3}. There are Ny × Nx1 × Nx2 = 5 × 4 × 3 = 60 condi-
tional probability entries for P (Y |X1,X2) in this table. Each conditional probability value
might be estimated with 25 realizations, so the total number of realizations is equal to
25× 60 = 1500.
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Similarly, the marginal probability PY (y) can be obtained in a similar manner except the summation
of P (X,Y ) is over the X values:

PX(xi) =
∑

j

P (xi, yj); PY (yj) =
∑

i

P (xi, yj), (28.23)

which is called the sum rule by marginalization5. By definition of conditional probability, the joint
distributions in equation 28.23 can be replaced by conditional probabilities

PX(xi) =
∑

j

P (xi|yj)P (yj); (28.24)

PY (yj) =
∑

i

P (yj |xi)P (xi), (28.25)

which is called the Law of Total Probability. This law can be interpreted intuitively by noting that
the union of AX ∩ AY is the purple area in Figure 28.1 and AX̃ ∩ AY is the red area devoid of the

purple region. Therefore, the union of (AX ∩AY )/A = P (X,Y ) and (AX̃ ∩AY )/A = P (X̃, Y ) is the

red circular region P (Y ) = P (X,Y ) +P (X̃, Y ). By definition of conditional probabilities, it follows
that P (Y ) = P (Y |X)P (X) + P (Y |X̃)P (X̃), which is the Law of Total Probability.

Another example is in Table 28.3, which depicts the values of the joint probability function
P (X,Y ) for X ∈ {1, 2, 3} and Y ∈ {1, 2, 3, 4}. Notice how the summations over the elements of

the ith row of
∑4

j=1 P (xi, yj) are written in the right-hand margin of the ith row. Hence, the name
marginal probability.

If X and Y are independent RVs, then the marginal probabilities must satisfy the independence
test

P (xi, yj) = PX(xi)PY (yj). (28.26)

For example, from the table the marginal probabilities are PY (1) = 0.3 and PX(1) = 0.2, so their
product is PY (1)PX(1) = 0.06. This agrees with the joint probability function P (X,Y )|X=1,Y =1 =
P (1, 1) = 0.06 in the table. Testing all the joint probabilities with equation 28.26 shows independence
to be true with the values listed in Table 28.3.

We must also determine if the marginal probabilities sum to 1. Clearly, the sum of the marginal
probabilities PX(xi) over xi in the 6th column and 5th row is equal to 1. Similarly, the sum of the
marginal probabilities PY (yi) over yi in the 6th column and 5th row is also 1. Hence, X and Y are
independent RVs (DeGroot, 1975).

Another example is for picking refraction traveltimes in seismic traces by a class of students.
You divided the class into two groups: students in group X wear glasses so that the probability
of picking a correct traveltime event Z is P (Z|X) = 0.95, while the other group Y of students do
not wear glasses so P (Z|Y ) = 0.99. Group X is given P (X) =40% of the data and Group Y is
given the remaining traces, i.e. P (Y ) =60% of the data. What is the overall probability P (Z) of a
picked traveltime being correct? Picking traveltimes by students in groups X and Y are exclusive
events because they constitute picking different portions of the seismic data. Hence the Law of Total
Probability is appropriate so that

P (Z) = P (Z|X)P (X) + P (Z|Y )P (Y ),

= 0.95 ∗ 0.4 + 0.99 ∗ 0.6 = 0.974. (28.27)

Therefore, there is more than a 97% chance that the traveltime in a trace will be accurately picked.

5The subscript in PY (y) (or PX(x)) will often be silent so the marginal probability is implied by the
notation P (y) (or P (x)).
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Table 28.3: Joint Probability Mass Function P (X,Y ) and Marginal Probabilities PX(X)
and PY (Y ) (DeGroot, 1975).

P(X,Y) Y=1 Y=2 Y=3 Y=4 PX(X) =
∑4

j=1 P (X, yj)

⇓
X=1 0.06 0.02 0.04 0.08 PX(1)=0.20
X=2 0.15 0.05 0.10 0.20 PX(2)=0.50
X=3 0.09 0.03 0.06 0.12 PX(3)=0.30∑3

i=1 PX(xi) = 1

PY (Y ) = ⇒ PY (1)=0.30 PY (2)=0.10 PY (3)=0.20 PY (4)=0.40
∑4

i=1 PY (yi) = 1∑3
i=1 P (xi, Y )

28.2 Bayes’ Theorem

Equating equations 28.13 and 28.14 gives Bayes’ Theorem:

P (X |Y ) =
P (Y |X)P (X)

P (Y )
, (28.28)

where P (Y ) 6= 0, P (X) is the prior probability for X , P (Y ) is the evidence, P (X |Y ) is the posterior
probability computed after the prior P (X) is known and P (Y |X) is the likelihood. These terms are
discussed in more detail in Chapter 20.

28.2.1 Bayes’ Theorem and Cancer Example

Bayes’ Theorem shows the relation between the conditional probability P (X |Y ) and its reverse
form P (Y |X). This is useful when one only has access to the probabilities P (X), P (Y ), and P (Y |X)
from a table of conditional data, but one really needs the reverse conditional probability P (X |Y ).

Let’s apply this Bayes’ Theorem to a cancer example, where we replace Y by a positive cancer
test denoted T and a negative test by T̃ . We also replace X by C, which indicates we actually
have cancer and C̃ says we do not have cancer. For example, if the cancer test is positive, then the
worried patient is desperate to know the rate of false positives P (C̃|T ). All cancer tests have errors
and it would be great for the patient if P (C̃|T ) ≈ 0.3 where the chances of a false positive is very
high. This motivates one to undergo retesting before starting chemotherapy.

In this example, clinical tests will have supplied historical records that 1) gives the probability
P (T |C) that actually having cancer will give you a positive test, 2) the fraction of the population
with cancer P (C) and 3) the fraction of the population P (T ) that tested for true positives or false
positives. The Law of Total Probability says P (T ) = P (T |C)P (C) + P (T |C̃)P (C̃). Therefore, this
formula can be computed because historical records give the rates for true positives P (T |C) and
false positives P (T |C̃) as well as the fraction of the population with cancer P (C) and without cancer
P (C̃).

Therefore Bayes’ Theorem in equation 28.28 will give the rates for false positives P (C̃|T ) and
true positives P (C|T ), which are the uncertainty rates for testing. This is exactly what the worried
patients needs, start calculating!

Bayes’ Theorem can also be used to get the uncertainty in predicting rock properties and types
from geophysical measurements of well logs (Xu et al., 2016). As discussed in section 20.6, the
uncertainty in predicting rock types, oil or gas from well logs can be used to decide whether or not
to drill an expensive well.
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28.2.2 Bayes Theorem for K Disjoint Events

If P (Y ) is unknown, then it can be computed using the Law of Total Probability P (Y ) =
P (Y |X)P (X) + P (Y |X̃)P (X̃). If P (X) is known then P (X̃) = 1 − P (X). More generally, if there
are K disjoint events {X1, X2, . . . , XK} and the union of these events defines the sample space
(DeGroot, 1975), then the Law of Total Probability in equation 28.25 says that Bayes’ Theorem
becomes

P (Xk|Y ) =
P (Y |Xk)P (Xk)∑K
k=1 P (Y |Xk)P (Xk)

. (28.29)

Here, P (Y ) =
∑K

k=1 P (Y |Xk)P (Xk) from equation 28.25.

28.2.3 Bayesian Terminology

Bayes theorem is often described in terms of evidential data D and hypothesis H being true, so
that equation 28.28 can be re-expressed by setting X = H and Y = D:

posterior︷ ︸︸ ︷
P (H |D) =

likelihood︷ ︸︸ ︷
P (D|H)

prior︷ ︸︸ ︷
P (H)

P (D)︸ ︷︷ ︸
evidence

. (28.30)

The above terminology in the over- and under-bars is now explained and translated to some geo-
physical examples.

• Posterior Probability P(H|D). P (H |D) is the conditional posterior probability that the
hypothesis H , i.e. you have cancer, is true given that you observed the positive test data D.

Similarly, seismologists are interested in finding the hypothetical Earth model H → m that
explains the recorded seismic data D → d = Lm, where L represents the seismic forward
modeling operator. Therefore, P (m|d) represents the uncertainty of the model parameters
inverted from the data d.

• Likelihood P(D|H). The reversed conditional probability P (D|H) is called the likelihood,
and is the probability, i.e. likelihood, that your hypothetical Earth model can be used to
generate the recorded data D.

Seismic forward modelers assume a velocity modelH → m and then numerically solve the wave
equation in the computer to get the predicted data d. Assigning a probability distribution
P (H) to the earth model H allows one to perform many forward modeling experiments, i.e.
realizations of H , to get many data examples d. The sample mean and sample variance6 of
these simulated data d can then be computed, which can be used to get an analytical Gaussian
probability density function for the data.

• Prior P(H) and Evidence P(D). The prior belief that the probability P (H) of the hypoth-
esis being true is specified by the user, and the probability P (D) for the evidence being true
is also supplied. In the cancer example, P (H) is the fraction of the population with cancer
and P (D) is the fraction of the tested population that received either a false positive or a true
positive test. The prior belief for P (H) and evidence P (D) can be obtained by a combination
of acquired knowledge, experiments, and/or biased intuition!

6In practice, the data covariance matrix of the data is rarely computed so data RVs are assumed to be
uncorrelated.
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Figure 28.3: Gaussian probability distribution on the left for the real-valued RV x with var-
ious values of µ and σ. The right plot is that for a multivariate normal distribution function
for the RVs X and Y . Figure from https : //en.wikipedia.org/wiki/Normal distribution.

The exploration geophysicist can use readings from well logs to estimate the probability P (H)
of, as an example, rock velocities associated with shales. As shown in section 20.5, this prior
information can be used to regularize the inversion of the earth model from new data.

In summary, equation 28.30 says that the prior belief of the hypothesis P (H) can be updated
with new data evidence D by multiplying P (H) by the normalized likelihood P (D|H)/P (D) to get
the new belief P (H |D). This update is also known as the posterior probability.

28.3 Gaussian Probability Distribution

In general, the Gaussian continuous probability distribution f(x) for a continuous univariate RV
x is

f(x) =
1

σ
√
2π

exp(−1

2
[
x− µ
σ

]2), (28.31)

where µ is the mean and σ is the standard deviation. For a continuous RV, f(x) is also known as a
Gaussian probability density function.

The Gaussian distribution is plotted in Figure 28.3 for various values of the variance σ2 and
mean µ. A RV taken from a Gaussian distribution with mean µ and variance σ2 is described by

X ∼ N (µ, σ2). (28.32)

and is referred to as a unit normal Gaussian if µ = 0 and σ = 1.
The Gaussian function is a conjugate function, which means that the multiplication of two

Gaussians is also a Gaussian7, as shown in Figure 28.4. The product of the green P (Y |X) and blue
P (Y ) Gaussians gives the unnormalized posterior Gaussian P (Y |X)P (X) plotted as the red dashed
curve. This product is peaked in between the means of the green and blue curves and has a smaller
variance than either one. This gives a more refined estimate of the likely possibilities associated
with the data and the prior distributions in equation 28.28. Moreover, if the likelihood P (Y |X)

7According to https : //en.wikipedia.org/wiki/Conjugate prior#cite note − beta − interp − 4 if the
posterior distributions p(y|x) are in the same probability distribution family as the prior probability distri-
bution p(x), then the prior and posterior are then called conjugate distributions, and the prior is called a
conjugate prior for the likelihood function p(x|y). In other words, the posterior distribution is in the same
family as the prior and likelihood distributions.
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is computed from noisy input data or too few data then this could lead to erroneous or overfitted
estimates of the parameters of interest. The Bayesian estimate mitigates this problem by including
the prior in the computation of the posterior distribution P (X |Y ) ∝ P (X |Y )P (Y ). In other words,
the green curve P (Y |X) in Figure 28.4 might be too far to the right because of erroneous data or
overfitting , the blue curve P (X) is a sanity check, so the compromise is the red curve P (Y |X)P (X)
that is between the sensible prior and the error-prone green likelihood. We can include weighting to
the prior to overemphasize it so the posterior more resembles the prior than the likelihood8. As will
be discussed in section 20.5, this is known as regularization in the context of parameter estimation.

28.3.1 Central Limit Theorem

The Central Limit Theorem says that if many samples of independent RVs with finite mean
and variance are averaged, then their properly normalized sum tends toward a normal distribution
even if the original variables are not normally distributed. The theorem is a key concept in prob-
ability theory because it implies that probabilistic and statistical methods that work for normal
distributions can be applicable to many problems involving other types of distributions (https: //
en.wikipedia.org/wiki/Central limit theorem). For example, the sum of two normal RVs is also a
normal RV governed by a Gaussian distribution with mean µ1 + µ2 and variance σ2

1 + σ2
2 .

28.3.2 Multivariate Normal Distribution

The multivariate normal distribution, multivariate Gaussian distribution, or joint normal distri-
bution is a generalization of the one-dimensional (univariate) normal distribution to higher dimen-
sions. For correlated real-valued variables x = (x1, x2, . . . , xN ) with mean µ = (µ1, µ2, . . . , µN ), we
have the multivariate normal distribution plotted in Figure 28.3 and described by

f(x) =
1√

(2π)N |Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (28.33)

where N is the dimension of the data vector x, Σ is the covariance matrix with the ij components

[Σ]ij = Cov(xi, xj), (28.34)

where

Cov(xi, xj) = < xi − µi, xj − µj > . (28.35)

If the data RVs are uncorrelated, zero mean, and have the same variance σ2
d then the data covariance

matrix is a scaled identity matrix so that [Σ]ij = σ2
dδij .

A real random vector X = (X1, . . . , Xk)
T is defined as a standard normal random vector if all

of its components Xn are independent and each is a zero-mean unit-variance normally distributed
random variable. The standard normal RV can be compactly described as Xn ∼ N (0, 1) for all n.

Equation 28.33 is a function of the term
√
(x− µ)TΣ−1(x− µ), which is known as the Mahalanobis

distance that represents the distance of the test point x from the mean µ. For the special case k = 1,
the distribution reduces to a univariate normal distribution and the Mahalanobis distance reduces
to the absolute value of the standard score. In summary, the multivariate normal distribution is
often used to describe, at least approximately, any set of (possibly) correlated real-valued random
variables each of which clusters around a mean value.

8https://towardsdatascience.com/the-truth-about-bayesian-priors-and-overfitting-84e24d3a1153
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Figure 28.4: Red dashed curve depicts the posterior distribution computed by the scaled
product of the unnormalized blue prior P (X) and green likelihood P (Y |X) distributions.
Here, the scaling factor is equal to 3. The blue prior curve acts as a sanity check to the
erroneous green curve, which is an estimate of the likelihood distribution possibly corrupted
by data errors and/or overfitting .
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28.4 Sampling a Probability Distribution

It is often the case that a probability distribution is given in analytic, e.g. Gaussian density
function, or numerical form. The goal is to draw samples from this distribution such that the
frequency of drawn samples around some point honors the occurrence probability from the given
distribution. For example, flipping an unfair coin, i.e. p(heads) = 0.7andp(tails) = 0.3, and
sampling from the probability distribution will tend to give the correct probability distribution as
the number of coin flips increases. This illustrated in the Figure 19.1 example where the normalized
histogram of coin flips tends to the correct probability with an increase in the number of trials. In this
case, a uniform distribution U(0, 1) is approximated by a random number generator in MATLAB,
and any number drawn between 0.0and0.7 is assigned a heads, otherwise it is a tails. In this case, 20
random numbers are sequentially generated to give Figure 19.1a, which is an unacceptable accuracy
in drawing numbers that approximate the actual p(x). If the experiment is rolling an unfair dice,
then the the values of x are assigned to one of 6 unique intervals between 0 and 1, with the length
of each non-overlapping interval equal to the probability p(x). For more complicated multivariate
PDFs, this sampling strategy cannot be easily employed so we use the more sophisticated sampling
methods discussed in Chapter 21.

28.5 Maximum Likelihood Estimate and Neural Network Mod-

els

Learning the matrix coefficients of a supervised neural network (NN) is functionally equivalent
to learning the probability distribution P (Y |X,w), where w are the parameters of the NN model.
Why? If a NN model is well trained as a binary classifier for any given input x(n), it can accurately
predict the most likely outputs y(n) for all N training pairs. We can assign a probability to this
prediction as well, as explained in Chapter 4. This approximates the capability of knowing the
probability distribution P (Y |X,w) of an input RV and predicting its output RV Y .

For example, if x(n) is the nth input image vector and y(n) denotes the class of that input,
then the linear model that predicts this class is y(n) ≈ wTx(n). These observed data have random
errors so that the probability distribution for y(n) might be assumed to be governed by the Gaussian
distribution:

P (y(1), . . . , y(N)|x(1), . . . ,x(N),w) ∝ e−
1
2

∑N
n=1(w

Tx(n)−y(n))2/σ2

, (28.36)

where the RVs x(n) are uncorrelated, w is the model vector with unknown coefficients and σ2 is the
variance for any of the components of x(n). In this case the optimal coefficients in w that predict
y(n) from x(n) are given by the least squares solution w∗ that minimizes the sum of the squared
errors in the argument of the exponential. This is equivalent to maximizing the likelihood function
w/r to the parameters w

P (y(1), . . . , y(N)|x(1), . . . ,x(N),w) = ΠN
n=1P (y

(n)|x(n),w), (28.37)

which is also known as the maximum likelihood estimate (MLE). Here, the pairs (x(n), y(n)) are
assumed to be independent of the other pairs of RVs for n = {1, 2, . . . , N}.

From the frequentist point of view, there are no statistical representations for the model variable
w (Press et al., 2007, p. 777). Instead, frequentists interpret P (y(1), . . . , y(N)|x(1), . . . ,x(N),w)
in equation 28.37 as the probability of the data y(1), . . . , y(N) given the model w. This function
P (y(1), . . . , y(N)|x(1), . . . ,x(N),w) is known as the likelihood function.

The optimal model w∗ that maximizes the likelihood function in equation 28.37 is known as the
maximum likelihood estimate, where P (y(1), . . . , y(N)|x(1), . . . ,x(N),w∗) can be used as a discrim-
inative classifier for new input data x. A logarithm can be applied to equation 28.37 to give the
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log-likelihood function lnP (y(1), . . . , y(N)|x(1), . . . ,x(N),w), whose formula for the gradients can be
found with simpler algebraic formulas.

The observed data y have random errors, and so these errors increase the uncertainty in the
model w. How does the frequentist account for these model errors when they consider w to be a
deterministic variable? The propagation of errors from the data leaking into the model is accounted
for by assuming, for example, a linear model such that y = Lw + ǫ, where ǫ is a random noise
vector with the same dimension as y, L is an M ×N matrix9 that connects the M × 1 data vector y
with the N × 1 model vector w. For a zero-mean model µ = 0, the N ×N model covariance matrix
(Menke, 1984) is

Cov w = < δwδwT >,

= <

δw︷ ︸︸ ︷
[LTL]−1LTy

δwT

︷ ︸︸ ︷
yTL[LTL]−1 >,

= [LTL]−1LT

σ2
dataI︷ ︸︸ ︷

< yyT >L[LTL]−1,

= σ2
data[L

TL]−1, (28.38)

where δw = w − w̄, the least squares solution is δw = [LTL]−1LTy and zero-mean data with
constant variance σ2

data are assumed such that Cov y =< yyT >= σ2
dataI. Here, I is the N × N

identity matrix and the data are assumed to be uncorrelated.

In contrast to the frequentist approach, Bayesian inversion in section 20.5 computes both the
optimal model and the uncertainty associated with it. It also includes prior beliefs in the form of
probability functions that are similar to the role played by the model penalty function in regularized
inversion. The choice between using the frequentist or the Bayesian approaches to inversion often
appear to be a matter of taste for the user, where the Bayesian approach is mathematically more
rigorous while the frequentist approach with regularization is much more flexible in accounting for
prior beliefs about the model with many types of smoothness or sparsity regularizers.

Key Idea 28.5.1. Bayesian and Frequentist Philosophies

• Bayesian perspective: both data and parameters are RVs so they can be assigned
a probability distribution function (PDF). Therefore, Bayes’ Theorem can be used to
learn about probabilities, i.e. uncertainties, of both unobservable model parameters as
well as observable events.

• Frequentist perspective: Only the observable data are RVs governed by a proba-
bility distribution, so that the model parameters are deterministic and are not charac-
terized by a PDF (Press et al., 2007). However, the uncertainties associated with the
model parameters are caused by errors in the data, which can be obtained by comput-
ing the, e.g., model covariance matrix Cmodel. Here, Cmodel contains the data variance
information as seen in equation 28.38.

9We use an approximation in the equation y ≈ Lw because many geophysical data sets have noise in the
recorded data y so y 6= Lw denotes an inconsistent set of equations.
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28.6 Summary

We reviewed the important aspects of probability and statistics theory in machine learning.
These concepts include the Law of Total Probability, as well as joint, marginal, and conditional
probabilities. These theories are used extensively on VAEs, NNs, GANs, maximum likelihood opti-
mization, recurrent NNs, generative models and discriminative networks. Bayes’ Theorem is derived,
and many examples are used in Chapter 20 to illuminate its meaning. The Gaussian probability dis-
tribution is defined and its connection with maximum likelihood optimization is established. If the
probability distribution is defined as the Gaussian in equation 28.36 then the maximum likelihood
estimate is the same as the least squares solution where w is treated as a deterministic variable.
The leakage of data errors into the model can be quantified by forming the model covariance matrix,
which describes the uncertainty, i.e. variance, of each estimated model parameter.

Therefore, the MLE frequentist approach can give both the optimal model estimate and the
uncertainty associated with the estimated model parameters. As will be shown in section 20.5,
prior beliefs about the model can be introduced into the solution by incorporating a model penalty
term into the objective function, which is known as regularization. This is similar to the Bayesian
approach that updates the posterior prediction of the model’s conditional probability distribution
with the model’s prior probability distribution. The choice between using the frequentist or the
Bayesian approaches for inversion often appears to be a matter of taste and experience level for the
user.

28.7 Exercises

1. Show that equation 28.29 is equal to P (Y ) after applying
∑K

k=1 to both sides of the equation.
Explain why the denominator on the right-side of equation 28.29 is known as a normalization
factor.

2. Why can the expectation operator< > in equation 28.38 pass through the modeling operators
L and only be applied to the statistical data term yyT in equation 28.38?

3. For y = (y1, y2, y3)
T , show that the data covariance matrix < yyT > reduces to the 3 × 3

identity matrix I for zero-mean and uncorrelated data with unit variance.

4. Show that the MLE w∗ of equation 28.36 is the same as the least squares solution w∗ =
[LTL]−1LTy.
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• Deng, C., H. Pan, S. Fang, A. Konaté, and R. Qin, 2017, Support vector machine as an
alternative method for lithology classification of crystalline rocks: Journal of Geophysics and
Engineering, 14, 341–349.

• Denton, E., S. Chintala, A. Szlam, and R. Fergus, 2015, Deep generative image models using
a Laplacian pyramid of adversarial networks: arXiv:1506.05751.

• de Roeck, Y. H., 2002, Sparse linear algebra and geophysical migration: A review of direct
and iterative methods: Numerical Algorithms, 29, 283–322.

• Dertat, A., 2017, Applied deep learning-Part 4: Convolutional neural networks: https://
towardsdatascience.com/applied-deep-learning- part-4-convolutional-neural-networks-584bc134c1e2

• Dettmer, J. and S. Dosso, 2009, Model selection and Bayesian inference for high-resolution
seabed reflection inversion: The Journal of the Acoustical Society of America, 125, 706,
doi.org/10.1121/1.3056553.

• Dettmer, J., S. Dosso, and C. Holland, 2010, Trans-dimensional geoacoustic inversion: The
Journal of the Acoustical Society of America, 128, 3393–3405, doi: 10.1121/1.3500674.

• Deville de Periere, M., C. Durlet, E. Vennin, L. Lambert, R. Bourillot, B. Caline, and E. Poli,
2011, Morphometry of micrite particles in cretaceous microporous limestones of the Middle
East: Influence on reservoir properties: Marine Petroleum and Geology, 28, 1727-1750.

• Dharmi, D., 2019, Object detection-localization algorithms: Medium,
https://medium.com/@dhartidhami/object-detection-localization-algorithms-e55b19259cbf

• Di, H., M. Shafiq and G. AlRegib, 2017, Seismic-fault detection based on multiattribute
support vector machine analysis: 87th Annual International Meeting, SEG Technical Program,
Expanded Abstracts, 1949–4645.

• Di, H., Z. Li, H. Maniar, and A. Abubakar, 2020, Seismic stratigraphy interpretation by deep
convolutional neural networks: A semi-supervised workflow: Geophysics, 85, 1–41.

• Diamantaras, K. and S. Kung, 1996, Principal component neural networks: theory and appli-
cations: New York, NY: Wiley.

• Dinh, L., R. Pascanu, S. Bengio, and Y. Bengio, 2017, Sharp minima can generalize for deep
nets: arXiv:1703.04933v2.

• Doersch, C., 2016, Tutorial on variational autoencoders: arXiv:1606.05908.

• Donoho, D. L., 2019, Deepnet spectra and the two cultures of data science: Presented at the
Al-Kindi Distinguished Statistics Lectures, King Abdullah University of Science and Technol-
ogy.

 https://medium.com/@dhartidhami/object-detection-localization-algorithms-e55b19259cbf


28.7. EXERCISES 811

• Donahue, J., L. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama, K. Saenko, and
T. Darrell, 2014, Long-term Recurrent Convolutional Networks for Visual Recognition and
Description: arXiv:1411.4389.

• Donahue J, P. Krahenbuhl, and T. Darrell, 2016, Adversarial feature learning: arXiv:1605.09782.

• Doshi, C., 2019, Why Relu? Tips for using Relu. Comparison between Relu, Leaky Relu, and
Relu-6:

https://medium.com/chinesh4/why-relu-tips-for-using-relu-comparison-between-relu-leaky-relu-
and-relu-6-969359e48310.

• Dosso, S. , J. Dettmer, G. Steininger, and C. Holland, 2014, Efficient trans-dimensional
Bayesian inversion for geoacoustic profile estimation: Inverse Problems, 30, 114018, doi:
10.1088/0266–5611/30/11/114018.INPEEY0266–5611

• Dumoulin, V., I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A. Courville,
2016, Adversarially learned inference: arXiv:1606.00704

• Drucker, H., C. Burges, L. Kaufman, A. Smola and V. Vapnik, 1997, Support vector regression
machines: in Advances in Neural Information Processing Systems, 9, 155–161, MIT Press.

• Duarte, L. T., E. Z. Nadalin, K. Nose Filho, R. Zanetti, J. M. Romano, and M. Tygel, 2012,
Seismic wave separation by means of robust principal component analysis: Proceedings of the
20th European Signal Processing Conference, IEEE, 1494–1498.

• Duchi, J., E. Hazan, and Y. Singer, 2011, Adaptive subgradient methods for online learning
and stochastic optimization: Journal of Machine Learning Research, 12, 2121-2159.

• Duda, R. O. and P. E. Hart, 1973, Pattern Classification and Scene Analysis, Wiley.

• Duda, R., P. Hart, and D.Stork, 2000, Pattern Classification, 2nd Edition, ISBN: 978-0-471-
05669-0.

• Duijndam, A., 1988, Bayesian estimation in seismic inversion, part I: Principles: Geophysical
Prospecting, 36, 878–898.

• Dumoulin, V. and F. Visinm, 2016, A guide to convolution arithmetic for deep learning:
ArXiv, 1603.07285.

• Dunn, J., 1973, A fuzzy relative of the isodata process and its use in detecting compact
well-separated clusters: Journal of Cybernetics, 3, 32–57.

• Duquet, B., K. J. Marfurt, and J. A. Dellinger, 2000, Kirchhoff modeling, inversion for reflec-
tivity, and subsurface illumination: Geophysics, 65, 1195–1209.

• Durrant, R. and A. Kabán, 2009, When is ’nearest neighbour’ meaningful: A converse theorem
and implications: Journal of Complexity, 25, 385–397, ISSN 0885-064X, https://doi.org/10.1016/j.jco.2009.02.011.

• Dutta, G., 2017, Sparse least-squares reverse time migration using seislets: Journal of Applied
Geophysics, 136, 142–155.

• Efron, B., 1979, Bootstrap methods: another look at the jackknife. Annals of Statistics, 7,
1-26.

• Ehrenberg, S. N., A. M. Aqrawi, and P. H. Nadeau, 2008, An overview of reservoir quality in
producing Cretaceous strata of the Middle East: Petroleum Geoscience, 14, 307-318.

• Elad, M., and M. Aharon, 2006, Image denoising via sparse and redundant representations
over learned dictionaries: IEEE Transactions on Image processing, 15, no. 12, 3736–3745.



812 CHAPTER 28. PROBABILITY THEORY FOR MACHINE LEARNING

• Elbayad, M., L. Besacier, and J. Verbeek, 2018, Pervasive attention: 2D convolutional neural
networks for sequence-to-sequence prediction: arXiv:1808.03867.

• El Mohtar, S., B. Ait-El-Fquih, O. Knio, I. Lakkis, and I. Hoteit, 2021, Bayesian identification
of oil spill source parameters from image contours: Marine Pollution Bulletin, 169, 112514,
ISSN 0025-326X.

• Embry, A. F. and J. E. Klovan, 1971, A late Devonian reef tract on north-eastern Banks
Island, Northwest Territories: Bulletin of Canadian Petroleum Geology, 19, 730-781.

• Ester, M., H. Kriegel, J. Sander, and X. Xu, 1996, A density-based algorithm for discover-
ing clusters in large spatial databases with noise: Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining (KDD-96). AAAI Press., 226–231,
10.1.1.121.9220, ISBN 1-57735-004-9.

• Estrela, V., H. Magalhaes, O. Saotome, 2016, Total variation applications in computer vision:
arXiv:1603.09599.

• Ezukwoke, K. and S. Zareian, 2019, Kernel methods for PCA: A comparative study of classical
and kernel PCA: DOI: 10.13140/RG.2.2.17763.09760.

• Farnia and Ozdaglar, 2020, GANs may have no Nash equilibria: acXiv: 2002.09124v1.

• Fei, B., 2020, Hyperspectral imaging in medical applications: in Hyperspectral Imaging Edited
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A. J. AbuBshait, R. F. Lindsay, and R. Monsen, 2018, Geometry, spatial arrangement and
origin of carbonate grain-dominated, scour-fill and event-bed deposits: Late Jurassic Jubaila
Formation and Arab-D Member, Saudi Arabia. Sedimentology, 65, 1043-1066.

• Jaques, N., S. Taylor, A. Sano, and R. Picard, 2017, Multimodal autoencoder: A deep learning
approach to filling In missing sensor data and enabling better mood prediction: 2017 Seventh
International Conference on Affective Computing and Intelligent Interaction (ACII), October
2017, Texas, USA.

• Jas, M., T. D. La Tour, U. Simsekli, and A. Gramfort, 2017, Learning the morphology of
brain signals using alpha-stable convolutional sparse coding: Advances in Neural Information
Processing Systems, 1099–1108.

• Jeeva, M., 2018, The scuffle between two algorithms: Neural network vs Support Vector
Machine: https://medium.com/analytics-vidhya/the-scuffle-between-two-algorithms-neural -
network-vs-support-vector-machine-16abe0eb4181.

• Jenset, G. and B. McGillivray, 2014, Multivariate analyses of affix productivity in translated
English: in Quantitative Methods in Corpus-Based Translation Studies: A practical guide to
descriptive translation research, editors: Michael P. Oakes and M. Ji, pp.301–324. ISBN:
978–90–272–0356–4.

• Jia, Y., S. Yu, and J. Ma, 2018, Intelligent interpolation by Monte Carlo machine learning:
Geophysics, 83, V83–V97.

• Jiang, Y. and J. Ning, 2019, Automatic identification of seismic body-wave phases and picking
of their arrival times based on support vector machine: Chinese Journal of Geophysics, 62,
361–373.

• Jin, Y., X. Wu, J. Chen, and Y. Huang, 2019, Using a physics-driven deep neural network
to solve inverse problems for LWD azimuthal resistivity measurements: SPWLA 60th Annual
Logging Symposium, doi: https://doi.org/10.30632/T60ALS-2019 IIII.

• Joachims, T., 1998, Text categorization with support vector machines: Learning with many
relevant features: European Conference on Machine Learning, 137-142.

• Johnson, J., A. Alahi, and L. Fei-Fei, 2016, Perceptual losses for real-time style transfer and
super-resolution: European conference on computer vision, 694-711. S

• Jolliffe, I., 2002, Principal Component Analysis: 2nd edition, New York, NY: Springer-Verlag.

• Jolliffe, I. and J. Cadima, 2016, Principal component analysis: a review and recent develop-
ments: Philos Trans A Math Phys Eng Sci., 374(2065), doi: 10.1098//rsta.2015.0202.

• Jordan, J., 2018, Introduction to autoencoders: Data Science Blog, https://www.jeremyjordan.me
/autoencoders/.



820 CHAPTER 28. PROBABILITY THEORY FOR MACHINE LEARNING

• Kaaresen, K. F., and T. Taxt, 1998, Multichannel blind deconvolution of seismic signals:
Geophysics, 63, 2093–2107.

• Kaczmarek, S. E., S. M. Fullmer, and F. Hasiuk, 2015, A universal classification scheme for
the microcrystals that host limestone microporosity: Journal of Sedimentary Research, 85,
1197-1212.

• Kang, B. and Y. Lee, 2020, High-resolution neural network for driver visual attention predic-
tion: Sensors, 20, 2030, doi:10.3390/s20072030.

• Kaplan, S. T., M. D. Sacchi, T. J. Ulrych, et al., 2009, Sparse coding for data-driven co-
herent and incoherent noise attenuation: 79th Annual International Meeting, SEG Technical
Program, Expanded Abstracts, DOI: 10.1190/1.3255551.

• Karimpouli, S., N. Fathianpour, and J. Roohi, 2010, A new approach to improve neural
networks’ algorithm in permeability prediction of petroleum reservoirs using supervised com-
mittee machine neural network (SCMNN): Journal of Petroleum Science and Engineering, 73,
227–232.

• Karlik, B. and A. Vehbi, 2011, Performance analysis of various activation functions in general-
ized MLP architectures of neural networks: International Journal of Artificial Intelligence and
Expert Systems (IJAE), 1, 111–122. https://www.cscjournals.org/library/manuscriptinfo.php?mc=IJAE-
26.
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• Schroot, B., and R. Scüttenhelm, 2003, Expressions of shallow gas in the Netherlands North
Sea: Netherlands Journal of Geosciences–Geologie en Mijnbouw, 82, 91–105.

• Schuster, G. T., 1988, An analytic generalized inverse for common depth-point and vertical-
seismic profile traveltime equations: Geophysics, 53, 314-325.

• Schuster, G.T., 1989, Analytic generalized inverse for transmission+reflection tomography:
Geophysics, 54, 1046-1049.

• Schuster, G. T., 1993, Least-squares cross-well migration: 63rd Annual International Meeting,
SEG Technical Program, Expanded Abstracts, 110–113.

• Schuster, G. T. and J. Hu, 2000, Green’s functions for migration: continuous recording geom-
etry: Geophysics, 65, 167–175.

• Schuster, 2017, Seismic Inversion: SEG, Tulsa, Oklahoma.



28.7. EXERCISES 833

• Schuster, G., 2018, Machine learning and wave equation inversion of skeletonized data: 80th
EAGE Conference and Exhibition, Expanded Abstract, 10.3997//2214-4609.201801882.

• Schwaller, P., T. Laino, T. Gaudin, P. Bolgar, C. Hunter, C. Bekas, and A. Lee, 2019, Molec-
ular Transformer: A model for uncertainty-calibrated chemical reaction prediction: ACS Cen-
tral Science, 9, 1572-1583, https://doi.org/10.1021/acscentsci.9b00576.

• Schwarz, G., 1978, Estimating the dimension of a model: Annals of Statistics, 6, 461–464,
doi: 10.1214/aos/ 1176344136.

• Selesnick, I., 2018, Sparse signal restoration:

Link: eeweb.poly.edu/iselesni/lecture notes/sparse signal restoration.pdf.

• Sen, M. and Stoffa, P., 1995, Global Optimization Methods in Geophysical Inversion: Elsevier
Press.

• Sen, M. and R. Biswas, 2017, Transdimensional seismic inversion using the reversible jump
Hamiltonian Monte Carlo algorithm: Geophysics, 82, R119–R134, doi: 10.1190/geo2016–
0010.1.GPYSA70016–8033

• Serrano, A., F. Heide, D. Gutierrez, G. Wetzstein, and B. Masia, 2016, Convolutional sparse
coding for high dynamic range imaging: Computer Graphics Forum, Wiley Online Library,
153–163.

• Sebtosheikh, M., R. Motafakkerfard, M. Riahi, S. Moradi and N. Sabety, 2015 Support vec-
tor machine method, a new technique for lithology prediction in an Iranian heterogeneous
carbonate reservoir using petrophysical well logs: Carbonates and Evaporites, 30, 59–68.

• Sebtosheikh, M. and A. Salehi, 2015, Lithology prediction by support vector classifiers using
inverted seismic attributes data and petrophysical logs as a new approach and investigation
of training data set size effect on its performance in a heterogeneous carbonate reservoir: J.
Petrol. Sci. Eng., 134, 143–149.

• Setyorini, D., P. Novianti, and U. Rafflesia, 2017, K-Means cluster analysis in earthquake
epicenter clustering: International Journal of Advances in Intelligent Informatics, 3, 81-89.

• Sha, N., M. Yan, and Y. Lin, 2019, Efficient seismic denoising techniques using robust principal
component analysis: 89th Annual International Meeting, SEG Technical Program, Expanded
Abstracts, 2543–2547.

• Sharma, V., 2020, An AI game of thrones: https://medium.com /tri-pi-media /fei-fei-li-
geoffrey-hinton-and-the-ai- game-of-thrones-afcb76d54f5e

• Shahriari, M., D. Pardo, A. Picon, A. Galdran, J. Del Ser, and C. Torres-Verdin, 2020, A
deep learning approach to the inversion of borehole resistivity: Computational Geosciences,
24, 971-994.

• Shamshad, A., M.A. Bawadi, W.M.A. Wan Hussin, T.A. Majid, S.A.M. Sanusi, 2005, First
and second order Markov chain models for synthetic generation of wind speed time series:
Energy, 30, 693–708.

• Shcherbakov, O. and and V. Batishcheva, 2014, Image inpainting based on stacked autoen-
coders: Journal of Physics: Conference Series, 536, doi:10.1088/1742-6596/536/1/012020.

• Shi, Y., L. Huang, X. Dong, T. Liu, and J. Ning, 2018, Application of fully convolutional
neural network on fault detection: AGU meeting, San Francisco.

• Shi, Y., X. Wu, and S. Fomel, 2019, Saltseg: Automatic 3D salt segmentation using a deep
convolutional neural network: Interpretation, 7, SE113–SE122.



834 CHAPTER 28. PROBABILITY THEORY FOR MACHINE LEARNING

• Shi, Y., X. Wu, and S. Fomel, 2020, Waveform embedding: automatic horizon picking with
unsupervised deep learning: Geophysics, 85, 1–48.

• Shi, Y., M. Ballesio, K. Johansen, D. Trentman, Y. Huang, M. McCabe, R. Bruhn, and G.T.
Schuster, 2021a, Semi-universal geo-crack detection by Machine Learning: Second EAGE
Workshop on Unmanned Aerial Vehicles.

• Shi, Y., X. Wu, and S. Fomel, 2021b, Interactively tracking seismic geobodies with a deep-
learning flood-filling network: Geophysics, 86, A1–A5.

• Shihab, K., 2005, Modeling groundwater quality with Bayesian techniques. Intelligent Sys-
tems Design and Applications: Proceedings of the 5th International Conference on Intelligent
Systems Design and Applications, IEEE Computer Society, 73–78.

• Shima, Y., 2018, Image augmentation for object image classification based on combination of
pre-trained CNN and SVM: 2nd International Conference on Machine Vision and Information
Technology, J. Phys.: Conf. Ser., 1004 012001.

• Shibuya, N., 2016, Up-sampling with transposed convolution: https://medium.com/activating-
robotic-minds/up-sampling-with-transposed-convolution-9ae4f2df52d0.

• Shorten, C. and T.M. Khoshgoftaar, 2019, A survey on image data augmentation for deep
learning: Journal of Big Data, 6, pp.1-48.

• Siahkoohi, A., R. Kumar, and F. Herrmann, 2018, Seismic data reconstruction with generative
adversarial networks: 80th EAGE Conference and Exhibition 2018, European Association of
Geoscientists and Engineers, 1–5.

• Siahsar, M., S. Gholtashi, E. O. Torshizi, W. Chen, and Y. Chen, 2017, Simultaneous denoising
and interpolation of 3-D seismic data via damped data-driven optimal singular value shrinkage:
IEEE Geosci. Remote Sens. Lett., 14, 1086-1090.

• Silipo, R., K. Melcher and S. Schmid, 2019, Neural machine translation with sequence to
sequence RNN: www.dataversity.net /neural-machine-translation-with -sequence-to-sequence-
rnn /#.

• Silva, R., L. Baroni, R. Ferreira, D. Civitarese, D. Szwarcman, E. Vital, 2019, Brazil Nether-
lands dataset: A new public dataset for machine learning in seismic interpretation: arX-
iv:1904.00770.

• Simard, P.Y., D. Steinkraus and J.C. Platt, 2003, Best practices for convolutional neural
networks applied to visual document analysis: Seventh International Conference on Document
Analysis and Recognition Proceedings, 958-963.

• Simonyan, K. and A. Zisserman, 2014, Very deep convolutional networks for large-scale image
recognition: arXiv:1409.1556.

• Simonyan, K., A. Veldaldi and A. Zisserman, 2014, Deep inside convolutional networks: Vi-
sualising image classification models and saliency maps: arXiv:1312.6034v2.

• Singh, A., 2018, Fulfillment lies in the creating something: https://towardsdatascience.com/fulfillment-
lies-in-the-creating-something-d118db307405.

• Singer, Z., 2019, Softmax and uncertainty: https: //towardsdatascience.com /softmax-and-
uncertainty-c8450ea7e064.

• Singh, S., I. Tsvankin, and E. Naeini, 2021, Facies prediction with Bayesian inference us-
ing supervised and semisupervised deep learning: 91st Annual International Meeting, SEG
Technical Program, Expanded Abstracts, 1510-1514.



28.7. EXERCISES 835

• Sisson, S., Y. Fan, and M. Beaumont, 2018, Handbook of Approximate Bayesian Computation:
Chapman and Hall/CRC.

• Sitzmann, V., J. Martel, A. Bergman, D. Lindell and G. Wetzstein, 2019, Implicit neural
representations with periodic activation functions: arXiv:2006.09661v1.

• Sloan, S. D., M. Ralston, R. H. Stevens, and J. T. Schwenk, 2015, An example of the effects of
near-surface variability on shallow seismic reflection data: 85th Annual International Meeting,
SEG Technical Program, Expanded Abstracts, 2348–2352.

• Socco, L. V., S. Foti, and D. Boiero, 2010, Surface-wave analysis for building near-surface
velocity models established approaches and new perspectives: Geophysics, 75, 83–102.

• Spitz, S., 1991, Seismic trace interpolation in the f-x domain: Geophysics, 56, 785–794, https:/
/doi.org/10.1190/1.1443096.

• Springenberg, J., 2015, Unsupervised and semi-supervised learning with categorical generative
adversarial networks: arXiv preprint arXiv:1511.06390.

• Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 2014, Dropout:
A simple way to prevent neural networks from overfitting: The Journal of Machine Learning
Research, 15, 1929–1958.

• Srivastava, R., K. Greff, and J. Schmidhuber, 2015, Highway networks: arXiv:1505.00387.

• Srivastava, A., L. Valkov, C. Russell, M. Gutmann, and C. Sutton, 2017, VEEGAN: Reducing
mode collapse in GANs using implicit variational learning: arXiv:1705.07761.

• Statnikov, A., C. Aliferis, D. Hardin and I. Guyon, 2011, A Gentle Introduction to support
vector machines in biomedicine Volume 1: Theory and Methods: publ. by World Scientific,
https://doi.org /10.1142 /7922.

• Steinhaus, H., 1956, Sur la division des corp materiels en parties: Bull. Acad. Polon. Sci. IV
(C1.III), 801–804.

• Stefani, J., 1995, Turning-ray tomography: Geophysics, 60, 1917-1929.

• Stepnov, A., V. Chernykh, A. Konovalov, 2021, The Seismo-Performer: A novel machine
learning approach for general and efficient seismic phase recognition from local earthquakes
in real time: Sensors, 21, https://doi.org/10.3390/s21186290.

• Stevens, J. L. and S. M. Day, 1986, Shear velocity logging in slow formations using the Stoneley
wave: Geophysics, 51, 137–147.

• Stewart, M., 2019, Comprehensive introduction to autoencoders: https://towardsdatascience.com
/generating-images-with-autoencoders-77fd3a8dd368.

• Stolt, R. H., 2002, Seismic data mapping and reconstruction: Geophysics, 67, 890–908, https:/
/doi.org/10.1190/1.1484532.

• Sulam, J., V. Papyan, Y. Romano, and M. Elad, 2018, Multilayer convolutional sparse model-
ing: Pursuit and dictionary learning: IEEE Transactions on Signal Processing, 66, 4090–4104.

• Sun, Y. and G. T. Schuster, 1992, Hierarchic optimizations for smoothing and cooperative
inversion: 62nd Annual International Meeting, SEG Technical Program, Expanded Abstracts,
745–748.

• Sun, J., Z. Niu, K. Innanen, J. Li, and D. Trad, 2020, A theory-guided deep-learning formu-
lation and optimization of seismic waveform inversion: Geophysics, 85, R87–R99.



836 CHAPTER 28. PROBABILITY THEORY FOR MACHINE LEARNING

• Sun, Y., M. Araya-Polo, and P. Williamson, 2021, Data characterization and transfer learning
for DL-driven velocity model building: 91st Annual International Meeting, SEG Technical
Program, Expanded Abstracts, 1475–1479.

• Sutskever, I., J. Martens, and G. Hinton, 2011, Generating text with recurrent neural net-
works: Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA.
(proceedings.mlr.press/v32/graves14.pdf).

• Sutskever, I., O.Vinyals, and Q. Le, 2014, Sequence to sequence learning with neural networks:
arxiv.org/abs/1409.3215.

• Sutton, R., 1986, Two problems with backpropagation and other steepest-descent learning
procedures for networks: Proceedings of the 8th Annual Conference on the Cognitive Science
Society, 823-831.

• Sutton, R. and A. Barto, 2018, Reinforcement Learning: An Introduction: MIT Press, Cam-
bridge, MA, http://incompleteideas.net/book/the-book-2nd.html

• Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, 2014, Going deeper with convolutions: arXiv:1409.4842.

• Takashimizu, Y. and M. Iiyoshi, 2016, New parameter of roundness R: Circularity corrected
by aspect ratio: Progress in Earth and Planetary Science, 3, https: //doi.org /10.1186 /
s40645-015-0078-x.

• Taner, M. T., 2001, Seismic attributes: CSEG Recorder, 26, 49-56.

• Tang, C. and C. Monteleoni, 2018, Demystifying overcomplete nonlinear auto-encoders: fast S-
GD convergence towards sparse representation from random initialization: https://openreview.net/
forum?id=HyiRazbRb.

• Tang, L., M. Zhang, and L. Wen, 2019, Support Vector Machine classification of seismic events
in the Tianshan Orogenic Belt: Journal of Geophysical Research: Solid Earth Volume 125,
https://doi.org/10.1029/2019JB018132.

• Tarantola, A. and Valette, B., 1982, Generalized nonlinear inverse problems solved using the
least squares criterion: Review of Geophysics and Space Physics, 20, 219–232.

• Tarantola, A., 1987, Inverse Problem Theory Methods for Data Fitting and Model Parameter
Estimation: Elsevier Science Publication.

• Tax, D. and R. Duin, 1999, Support vector domain description: Pattern Recognition Letters,
20, 1991–1999.

• Theiling, B. P., L. B. Railsback, S. M. Holland, and D. E. Crowe, 2007. Heterogeneity in
geochemical expression of subaerial exposure in limestones, and its implications for sampling
to detect exposure surfaces: Journal of Sedimentary Research 77, 159–169.

• Thorndike, R., 1953, Who belongs in the family? Psychometrika, 18 (4), 267-276.

• Thrane, E. and C. Talbot, 2019, An introduction to Bayesian inference in gravitational-wave
astronomy: Parameter estimation, model selection, and hierarchical models: Publications of
the Astronomical Society of Australia, 36, E010, doi:10.1017/pasa.2019.2.

• Tikhonov, A. and V. Arsenin, 1977. Solutions of ill-posed problems: W. H. Winston and Sons.

• Toosi, A., A. Bottino, B. Saboury, E. Siegel, and A. Rahmim, 2021, A brief history of AI: how
to prevent another winter (a critical review): arXiv:2109.01517v2.



28.7. EXERCISES 837

• Torres, A. and J. Reveron, 2013, Lithofacies discrimination using support vector machines,
rock physics and simultaneous seismic inversion in clastic reservoirs in the Orinoco Oil Belt,
Venezuela: 83rd Annual International Meeting, SEG Technical Program, Expanded Abstracts,
2578–2582, https://doi.org/10.1190/segam2013-0039.1.

• Trunk, G. V., 1979, A Problem of Dimensionality: A Simple Example: IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-1 (3), 306-307.

• Tschannen, M., O. Bachem, M. Lucic, 2018, Recent advances in autoencoder-based represen-
tation learning: arXiv:1812.05069.

• Uijlings, J., K. van de Sande, T. Gevers, and A. Smeulders, 2013, Selective search for object
recognition: Journal of Computer Vision: 104(2):154–171.

• Ulrych, T., Sacchi, M., and Woodbury, A., 2001, A Baye’s tour of inversion: A tutorial:
Geophysics, 66, 55–69.

• Ultsch, A., 2007, Emergence in self-organizing feature maps: in Ritter and Haschke (ed-
s.), Proceedings of the 6th International Workshop on Self-Organizing Maps (WSOM 2007).
Bielefeld, Germany: Neuroinformatics Group. ISBN 978-3-00-022473-7.

• van de Sande, K., T. Gevers, and C. G. M. Snoek, 2010, Evaluating color descriptors for
object and scene recognition: TPAMI, 32: 1582–1596.

• van de Sande, K., J. Uijlings, T. Gevers, and A. Smeulders, 2011, Segmentation as selective
search for object recognition: IEEE Xplore, DOI: 10.1109/ICCV.2011.6126456

• Ulrych, T. J., S. L. M. Freire, and P. Siston, 1988, Eigenimages processing of seismic section:
58th Annual International Meeting, SEG Technical Program, Expanded Abstracts, 1261–1265.

• van Herwaarden, D., C. Boehm, M. Afanasiev, S. Thrastarson, L. Krischer, J. Trampert, and
A. Fichtner, 2020, Accelerated full-waveform inversion using dynamic mini-batches: 221,1427–
1438.

• Vahrenkamp V., J. Barata J., P.J. Van Laer, P. Swart, and S. Murray, 2014, Micro-rhombic
calcite of a giant Barremian (Thamama B) reservoir onshore Abu Dhabi-clumped isotope
analyses fix temperature, water composition and timing of burial diagenesis: Paper presented
at the Abu Dhabi International Petroleum Exhibition and Conference, 10-13 November 2014,
Abu Dhabi, UAE.

• Vanorio, T. and G. Mavko, 2011, Laboratory measurements of the acoustic and transport
properties of carbonate rocks and their link with the amount of microcrystalline matrix:
Geophysics, 76, 105-115.

• Vapnik, V. N., 1995, The Nature of Statistical Learning Theory: New York, NY, USA:
Springer-Verlag New York, Inc..

• Vapnik, V. N., 1998, Statistical Learning Theory: Wiley, New York, Inc..

• Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I.
Polosukhin, 2017, Attention is all you need: arXiv:1706.03762

• Verma, V., A. Lamb, C. Beckham, A. Courville, I. Mitliagkis, and Y. Bengio, 2018, Manifold
mixup: Encouraging meaningful on-manifold interpolation as a regularizer: arXiv:1806.05236.

• Vincent, P., H. Larochelle, Y. Bengio, and P. Manzagol, 2008, Extracting and composing
robust features with denoising autoencoders: Proceeding ICML 2008 Proceedings of the 25th
international conference on Machine learning 1096–1103, doi:10.1145/1390156.1390294.



838 CHAPTER 28. PROBABILITY THEORY FOR MACHINE LEARNING

• Vinyals, O., A. Toshev, S. Bengio, and D. Erhan, 2014, Show and tell: A neural image caption
generator: arXiv:1411.4555.

• Virieux, J. and S. Operto, 2009, An overview of full-waveform inversion in exploration: Geo-
physics, 74, WCC1–WCC26.

• Visser, G., P. Guo, and E.c Saygin, 2019, Bayesian transdimensional seismic full-waveform
inversion with a dipping layer parameterization,Geophysics, 84, R845–R858.

• Wager, S., S. Wang, and P. Liang, 2013, Dropout training as adaptive regularization: arX-
iv:1307.1493.

• Waldeland, A. U., A. C. Jensen, L. J. Gelius, and A. H. S. Solberg, 2018, Convolutional neural
networks for automated seismic interpretation: The Leading Edge, 37, 529–537.

• Wang, P., 2004, The limitation of Bayesianism: Artif. Intell., 158, 97–106.

• Wang, J., and M. D. Sacchi, 2005, Sparse regularization for least-squares AVP migration:
CSEG National Convention, Expanded Abstracts, 117–120.

• Wang, J., and M. D. Sacchi, 2007, High-resolution wave-equation amplitude-variation-with-
ray-parameter (AVP) imaging with sparseness constraints: Geophysics, 72, S11–S18.

• Wang, B., R.-S.Wu, Y. Geng, and X. Chen, 2014, Dreamlet-based interpolation using POCS
method: Journal of Applied Geophysics, 109, 256–265, https://doi.org/10.1016/j.jappgeo.2014.08.008.

• Wang, P., Gomes, A., Zhang, Z. and Wang, M., 2016, Least-squares RTM: Reality and pos-
sibilities for subsalt imaging: 86th Annual International Meeting, SEG Expanded Abstracts,
4204–4209.

•
• Wang, T., M. Liu, J. Zhu, A. Tao, J. Kautz, and B. Catanzaro, 2017, High-resolution image

synthesis and semantic manipulation with conditional GANs: CoRR, abs /1711.11585.

• Wang, T., M. Liu, J. Zhu, A. Tao, J. Kautz, and B. Catanzaro, 2018a, High-Resolution image
synthesis and semantic manipulation with conditional GANs: arXiv:1711.11585.

• Wang, Y., F. Perazzi, B. McWilliams, A. Sorkine-Hornung, O. Sorkine-Hornung, and C.
Schroers, 2018b, A fully progressive approach to single-image super-resolution: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 864–873.

• Wang, B., N. Zhang, W. Lu, and J. Wang, 2018c, Deep-learning-based seismic data interpo-
lation: A preliminary result: Geophysics, 84, V11–V20, DOI:10.1190 /geo2017-0495.1.

• Wang, B., N. Zhang, W. Lu, and J. Wang, 2019, Deep-learning-based seismic data interpola-
tion: A preliminary result: Geophysics, 84, V11–V20.

• Wang, Y., B. Wang, N. Tu, and J. Geng, 2020, Seismic trace interpolation for irregularly
spatial sampled data using convolutional autoencoder: Geophysics, 85, V119–V130.

• Wang, Z., J. Chen and S. C. H. Hoi, 2021, Deep learning for image super-resolution: A survey:
IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 3365-3387.

• Wang, Y., Y. Li, Y. Song, and X. Rong, 2020, The influence of the activation function in
a convolution neural network model of facial expression recognition: Appl. Sci., 10, 1897,
doi:10.3390/app10051897.

• Wang, K. and D. Yang, 2021, A universal inversion framework for arbitrary regularizations
based on the alternating direction method of multipliers: 91st Annual International Meeting,
SEG Technical Program Expanded Abstracts, segam2021-3583950.1.



28.7. EXERCISES 839

• Li, W., G. Ru”mpker, H. Stc̈ker, M. Chakraborty, D. Fenner, J.Faber, K. Zhou, J. Steinheimer,
N. Srivastava, 2021, MCA-Unet: Multi-class attention-aware U-net for seismic phase picking:
EGU21, 23rd EGU General Assembly, id.EGU21-15841

• White, D., 1989, Two-dimensional seismic refraction tomography: Geophy. J., 97, 223–245.

• Wiener, N., 1948, Cybernetics, or Control and Communication in the Animal and the Machine.
Cambridge: MIT Press.

• Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht, B., 2017, The marginal value of
adaptive gradient methods in machine learning: arXiv:1705.08292.

• Wisdom, S., T. Powers, J. Pitton, and L. Atlas, 2016, Interpretable recurrent neural networks
using sequential sparse recovery: arXiv:1611.07252.

• Witte, P., M. Yang, and F. Herrmann, 2017, Sparsity-promoting least-squares migration with
the linearized inverse scattering imaging condition: 79th EAGE Conference and Exhibition
2017, European Association of Geoscientists and Engineers, 1–5.

• Wohlberg, B., 2016, Boundary handling for convolutional sparse representations: 2016 IEEE
International Conference on Image Processing (ICIP), IEEE, 1833–1837.

• Wolf, T., L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R.
Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C.
Xu, T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, and A. Rush, 2020, Transformers: State-
of-the-Art Natural Language Processing: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, 38-45, doi/10.18653/v1/
2020.emnlp-demos.6

• Wolpert, R., 2004, A conversation with James O. Berger: Statistical Science, 19, 205-218.

• Woodward, M., 1989, Wave-equation Tomography: PhD dissertation, Stanford University, 68
pp.

• Woodward, M., 1992, Wave equation tomography: Geophysics, 57, 15-26.

• Wrona, T., I. Pan, R. Bell, R. Gawthorpe, H. Fossen, and S. Brune, 2021, 3D seismic inter-
pretation with deep learning: A brief introduction: The Leading Edge, 40, 524–532.

• Wu, G. and E. Chang, 2003, Class-boundary alignment for imbalanced dataset learning: ICML
2003 Workshop on Learning From Imbalanced Data Sets, Washington DC, 49–56.

• Wu, C., J. Ho and D. Lee, 2004, Travel-time prediction with support vector regression:
IEEE Transactions on Intelligent Transportation Systems, 5, 276–281, doi: 10.1109/TIT-
S.2004.837813.

• Wu, S., H. Wai, L. Li and A. Scaglione, 2018, A review of distributed algorithms for Principal
Component Analysis: Proceedings of the IEEE, 106, 1321–1340, doi: 10.1109 /JPROC.2018.2846568.

• Wu, X., L. Liang, Y. Shi, Z. Geng, and S. Fomel, 2019a, Multitask learning for local seismic
image processing: fault detection, structure-oriented smoothing with edge-preserving, and
seismic normal estimation by using a single convolutional neural network: Geophysical Journal
International, 219, 2097–2109.

• Wu, X., Y. Shi, S. Fomel, L. Liang, Q. Zhang, and A. Yusifov, 2019b, Faultnet3D: Predict-
ing fault probabilities, strikes, and dips with a single convolutional neural network: IEEE
Transactions on Geoscience and Remote Sensing, 57, 9138–9155.

• Wu, X., S. Yan, J. Qi, and H. Zeng, 2020a, Deep learning for characterizing paleokarst features
in 3D seismic images: 90th Annual International Meeting, SEG Technical Program Expanded
Abstracts, 454–1459.



840 CHAPTER 28. PROBABILITY THEORY FOR MACHINE LEARNING

• Wu, X., Z. Geng, Y. Shi, N. Pham, S. Fomel, and G. Caumon, 2020b, Building realistic
structure models to train convolutional neural networks for seismic structural interpretation:
Geophysics, 85, WA27–WA39.

• Wurster, S., H. Shen, H. Guo, T. Peterka, M. Raj, and J. Xu, 2021, Deep hierarchical super-
resolution for scientific data reduction and visualization: arXiv:2107.00462v1.

• Xia, J., R. D. Miller, and C. B. Park, 1999, Estimation of near-surface shear-wave velocity by
inversion of rayleigh waves: Geophysics, 64, 691–700.

• Xie, J., L. Xu, and E. Chen, 2012, Image denoising and inpainting with deep neural networks:
Proceedings of the 25th International Conference on Neural Information Processing Systems
Volume 1, Curran Associates Inc., 341–349.

• Xiong, W., X. Ji, Y. Ma1, Y. Wang, N. Ben-Hassan and Y. Luo, 2018, Seismic fault detection
with convolutional neural network: Geophysics, doi.org/10.1190/geo2017− 0666.1.
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