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Preface

This book presents the theory of machine learning (ML) algorithms and their applica-
tions to geoscience problems. More than half of the described algorithms fall under the class
of neural network methods. Their description is at a level that can be understood by any-
one with a modest background in linear algebra, calculus and probability. An elementary
working knowledge of MATLAB is assumed and almost every chapter is accompanied by
lab exercises to reinforce the ML principles. If you don’t know MATLAB or Python, many
of the labs use the CoLab, aka Colaboratory, notebook which is an easy-to-use product from
Google that allows for the execution of Keras-based ML computer codes. It also provides
for the free use of a cloud-based GPU processo that can be used as soon as you login.
There is no need for the troublesome installation of notebook software.

There are many definitions of machine learning (ML), but one of the best is attributed
to Arthur Samueé:,

Machine learning is the field of study that gives computers the ability to learn without being
explicitly programmed.

This definition doesn’t mean we don’t have to write the programs, it means that the ML
algorithm finds the best model by learning from the data without relying on rules-based
programming. For example, finding the best fit model y = f(x) by a typical least squares
procedure typically assumes a linear mathematical model f(x) that predicts the output y
from the input x. For example, Wx =y, where W is a matrix. A ML algorithm such as a
neural network avoids this assumption by devising the best non-linear model learned from
the data y for the given architecture.

Neural Network Example. How does the neural network learn the model fx) =y
from the data? Learning the model f(x) is accomplished by using a large training set of data
(x™,y™) for n € {1,2,..., N}, and adjusting the parameters of the model until f(x()
can accurately predict y(™ for any training pair. Once the model is learned, then it can
accurately predict the output f(x"¢") = y"*" from a new input x"“. This can be important

1Colab is a hosted Jupyter notebook service that requires no setup to use, while giving free access to
computing resources including GPUs. See https : //colab.research.google.com /notebooks /intro.ipynb

2This quote is often attributed to Arthur Samuel, but it cannot be found in Samuel (1959, 1967). A
similar quote can be found at https://www.techemergence.com/what-is-machine-learning/. See http://
infolab.stanford.edu/pub/voy /museum/samuel.html for a brief bio of this pioneering engineer.

37 Learning the model” is equivalent to computing the parameters of the non-linear function f(x) that
allow for an accurate prediction of f(x) = y*"“¢ for all the training pairs (x,y""™®).
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for many applications, such as predicting the presence of underground contaminants y"™¢%
from processed geoelectrical and/or seismic data x| accurately detecting the presence of
breast cancer y™" recorded on a fusion of CAT scan and MRI images x™¢", or delineating
the faults in y™* on the right-hand side of Figure [Il from the input seismic section x"* on
the left-hand side.

The mathematical operations of a convolutional neural network model are represented by
the block diagrams in Figure[Il where the input image x of a seismic section is decomposed
into component images contained in the FM1 block (or shallowest layer). Here, a block
represents a set of mathematical operations that produce a stack of 2D images known as
feature maps (FMs). Each of the 32 feature maps in FM1 is computed by convolving a
small filter (3 x 3 filter in this example) with the input image, and then each pixel value
in the FM is thresholded to be between 0 and 1 by a non-linear squashing function@. The
F M1 feature maps are then subsampled by a factor of four (aka known as maxpooling), and
the resulting images are filtered and thresholded by the FM2 3 x 3 filters to get the 64 FMs
for block 2. The subsampling acts as a low-pass spatial filter so that only coarser features
of the seismic section are seen in, for example, FM3. In the end, the FMs represent the
decomposition of a complicated object into high-wavenumber images on the left and low-
wavenumber images on the far right. The FMs are weighted, upsampled, summed together
and squashed to make a single decision, i.e. classification, at each pixel associated with the
input image (Long et al., 2015). Does the pixel value represent a fault, then the answer
is yes y = 1 for its class. If not, then the answer is no y = 0 for the output class. The
displayed FMs are upsampled by a deconvnet procedure to transform them to the same size
as the input image.

Neural Networks and Deeper Connections. Neural network models lack a rigorous
theoretical foundation that explains their formidable number of commercial successes. This
has motivated physicists and mathematicians to search for its mathematical and physical
foundations. For example, they have recently discovered that successful CNN modeling
can have many more tunable parameters than training data, i.e. equations of constraint,
without suffering from overfitting. Arora et al. (2018) proves that a large number of FMs
can be redundant and allows for simple compression of the model.

Another insight says that the CNN decomposition is similar to a dictionary-learning
algorithm (Papayan et al., 2016, 2017a, 2017b; Sulam et al., 2018), where the different
FMs can represent the multiscale components of a complicated object, such as its atoms
or molecules. As an example, Figure [ illustrates how two convolutional FMs, denoted
as elementary ”atoms” in the bottom row, are combined and filtered to create slightly
more complex structures, i.e. molecules, at the second level. These ”molecules” are then
combined by a CNN model to create the global atom representing, in this case, a digit.

However, the basic operations of the neuron, i.e. atom, has much more complexity than
previously thought, where the atom itself is composed of even finer structures. Work by
Beniaguev et al. (2021) suggests that the cortical neuron mathematically performs the

1A squashing function o(z) squashes a wide range of input values —oo < z < 00 to be between a small
range of output values such as 0 < o(z) < 1. The squashing operation sparsifies essential+extraneous
information into its essential components (Papayan et al., 2016, 2017a, 2017b; Sulam et al., 2018; Chen et
al., 2020b).

xXvi



Convolutional Neural Network

.. Fine - Coarse Hierarchical Decomposition of Input
Seismic

Faults

FM3_ FM4

Input Conv + Conyv + Conyv + Conyv + Upsample
Maxpool Maxpool Maxpool Maxpool Softmax

Figure 1: Block diagram of the convolutional neural network (CNN) architecture that
decomposes the input picture of a seismic section into fine-scale feature maps (FM1 and
FM2) and coarser-scale feature maps (FM3 and FM4). To provide a more interpretable
image, the FMs are deconvolved for the display of interpretable images (Shi et al., 2018).
The pixels in the far-right image are labeled 0 < y < 1, where y = 1 indicates that the pixel
is a fault and 0 < y < 1 indicate the probability of being a fault. Typically, the shallow
3 x 3 filters that compute the 32 FM1 images from the input image detect the sharp edges
in the input, and the filters associated with FM2 to FM3 detect larger scale features such as
the general shape of the fault. These successive decompositions derive the building blocks at
successive levels from specific combinations of building blocks at the previous level (Holland,
1995). Figure partially adapted from Dertat (2017) and Shi et al. (2018).
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[

- w -
Figure 2: Elementary FMs in the bottom row are combined to form the molecules in the

second row, which in turn are used to form the digit 6 in the top row. Figure from Sulam
et al. (2018).

same functions as a deep neural network with 5-8 layers. This depth is associated with the
neuron’s dendritic branches that act as spatial pattern detectors.

Decomposing an input image into a sequence of simpler-to-more complicated parts is

also used to describe the process of adaptive evolution illustrated in Figure[3l John Holland
(1995) describes the fundamental set of procedures for adaptive evolution in nature:
’If model making, broadly interpreted, encompasses most of scientific activity, then the
search for building blocks becomes the technique for advancing that activity. At a funda-
mental level, we have the quarks of Gell-Mann. Quarks can be combined to yield nucleons,
the building blocks at the next level. The process can be iterated, deriving the building blocks
at successive levels from specific combinations of building blocks at the previous level. The
result is the quark/ nucleon/ atom/ molecule/ organelle/cell/ underpins much of physical
science.’.

Artificial Intelligence and CINN. More generally, ML methods belong to the larger class
of artificial intelligenc algorithms (see Figure M), but the one that is attracting the most
interest is that of deep learning with CNNs. Convolutional neural networks are now playing
leading roles in the software for self-driving cars, language translation, speech recognition,
computer vision, fusion and diagnosis of medical images, analysis of satellite and aerial

Shttps://blogs.nvidia.com /blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-
deep-learning-ai/

xviii



Building Blocks and Recombination
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A face can be described by stringing together the numbers that index its different
component parts.

Figure 3: Neural networks is similar to John Holland’s (1995) description of how nature
evolves models: ’...building blocks at successive levels from specific combinations of building
blocks at the previous level.”. The important features of the face are denoted by the feature
rectangles on the left. Figure adapted from Holland (1995).
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Figure 4:  Artificial intelligence (AI) and the sub-classes of machine learning and deep
learning, where Al involves a machine doing something that only a human would be able
to do. Source of picture is Nvidia.

images for optimizing agricultural practices, and many other fields. Significantly, it is now
being recognized as an important interpretation tool for analyzing lithology from seismic
and well-log data, detecting faults in large 3D volumes of seismic data, and searching for
patterns in earthquake data.

Organization of the Book. This book is divided into six main sections:

e Mathematical Background and Optimization Theory. Optimization theory and gra-
dient descent methods for ML are reviewed, with an emphasis on the choice of step
length methods. Readers with a familiarity of these algorithms can skip to the next
sections.

e Supervised Learning Algorithms. Introduction to neural networks, fully-connected
neural networks, applications to geoscience problems, and support vector machines.

e Convolutional Neural Networks. Basics of convolution and correlation, CNN, object
identification, semantic segmentation, recurrent neural networks, Transformers and
self-attention.

e Unsupervised Learning Algorithms: Autoencoders, convolutional sparse coding, prin-
cipal component analysis, clustering methods, generative adversarial networks.

e Bayesian Analysis. Sampling, Bayes’ theorem, and Gaussian mixture models.



e Seismic Inversion and ML. Physics-informed ML inversion, tomographic deconvolu-
tion, neural network LSM, wave equation inversion and neural networks, automatic
differentiation.

Most chapters are accompanied by executable code (MATLAB and/or Keras with CoLab)
that can be implemented by the reader with a modest level of programming knowledge.
The understanding of the algorithms is deepened by parameter tuning and by examining
the details of the code. Most of these codes have been written by my co-authors, without
which this book would not have been written.

Case histories are used to demonstrate the practical use of ML in solving geoscience
problems. These problems include fracture identification in photos, detection of rock cracks
in drone photos, fossil and lithology detection in thin sections, prediction of permeability in
rock samples, geochemical analysis, well-log analysis and identification of salt boundaries in
seismic data, seismic arrival-time picking by a clustering method, least squares migration,
velocity analysis, demultiple, noise reduction in seismic data and migration images, and
some interpretation examples for seismic and radar data. The reader who diligently goes
through the chapters and labs will have a thorough grounding in some of the fundamental
ML methods used in geoscience.

WWW Software Sites for Computational Labs. The computational labs for the book
Machine Learning in Geoscience are located at the following sites:

e Machine Learning in Geoscience Labs: http://csim.kaust.edu.sa/files/ErSE394/LAB1/

Machine Learning in Geoscience Labs: http://utam.gg.utah.edu/books/ML /index.html

Machine Learning in Geoscience Labs: http://seg.org/books/Schuster. ML /index.html

Machine Learning in Geoscience Labs: repository.kaust.edu.sa/bitstream /handle/10754/
674007 /GeoscienceMachineLearning.html

Machine Learning in Geoscience Labs: https://earth.utah.edu/books/Schuster.ML/
index.html

The computational labs for the books Seismic Interferometry and Seismic Inversion are
located at the following sites:

e Seismic Interferometry Labs: http://utam.gg.utah.edu/Inter. LAB1/
e Seismic Inversion Labs: repository.kaust.edu.sa/bitstream/handle/10754/674016 /SeismicInversion.html

e Seismic Inversion Labs: https://earth.utah.edu/books/Schuster.SeismicInversion/index.html
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