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Abstract

Cracks are a key feature used for assessing the integrity of rocks. To
accurately detect cracks in drone images of large rock walls in the Middle
East, we show that the U-Net convolutional neural network can be used to
accurately detect cracks in thousands of drone photos by semantic segmen-
tation. In our examples each photo was sub-divided into many sub-photos
for labeling and training. Compared with ridge detection by the shearlet
transform, the proposed approach yields fewer false positives and higher ac-
curacy. The accuracy in identifying cracks in images is 97.5% in comparison
to human identification, which is sufficient for assessing the general crack
properties of the rock faces for some engineering or geology projects. After
training on sub-photos from 127 photos, our trained network was able to
successfully detect cracks in 23,845 photographs in less than 22 hours using
two NVidia V100 GPUs. Training the network required 20 hours on the
same computer system but the bottleneck was the more than 100 hours for
the manual labeling of photos.

Then we applied the trained network to photos of a volcanic outcrop
more than 8000 miles away in Wyoming. The network was able to detect
more than 80% of the observable cracks without additional training. With
a modest of amount of extra labeling on photos of the volcanic outcrop and
transfer training, we found that the accuracy of the labeled data significantly
improved. We also demonstrated that the sandstone U-Net was able to
detect many linear features in photos of the Mars surface taken by a Mars
orbiting satellite.
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The surprising outcome of this research is that the U-Net crack detector
trained on photos of sedimentary rocks can also be effective on photos of
volcanic rock faces. Better accuracy could be achieved with transfer training
and less than an hour of effort in labeling the cracks in the volcanic rock
images. This can be important for real-time assessment of geological hazards
and lithology information for dam inspection, active volcanoes and planetary
exploration by autonomous vehicles.

1 Introduction

All solids weaken over time and develop a reduction in their mechanical
strength. A sign of this weakness is the development of cracks, a quasi-linear
physical separation of material on the surface and in the interior of a solid.
For siting buildings on a rock foundation, assessing dam hazards, avoiding
drilling hazards or for mining excavation, it is critical to assess the density
and distribution of fractures in the rock mass. To aid in this task, thousands
of aerial photos of a rock area can easily be obtained by cameras mounted
on Unmanned Aerial Vehicles (UAVs). As introduced in [?], UAVs can be
programmed to photograph an area of interest to a centimeter accuracy, no
matter how large the rock mass.

In the past, surface cracks were labeled by experts and their distribution
was cataloged ([?]). This gave engineers an estimate of the integrity and
stability of the rock mass ([?]). However, if there are thousands of images
then the manual interpretation of cracks is both time consuming and error
prone because of variable lighting, shadows, non-crack erosional features,
rock spall, and complex rock surfaces. In addition, the accuracy of manual
crack interpretation depends on the expertise of the interpreter, and the
interpretation criteria ([?],[?]). Therefore, there is a growing demand to
develop tools that can automatically detect and catalogue cracks and rock
shapes in a more efficient and accurate way. As an example, Figure 1b shows
a picture in which the red curves delineate the cracks. Once the cracks are
labeled, their orientations and density distributions can easily be calculated
to give the Rose diagram in Figure 1b, where most of the cracks are nearly
horizontal.

Because of the needle-like shape of cracks, many crack detection meth-
ods are based on edge-detection algorithms. For example, [?] successfully
applied edge-detection algorithms to UAV photographs to detect cracks in
building structures. Their algorithm applied Sobel ([?]) and particle fil-
ters ([?]) for detecting cracks in building facades. For fractured outcrop
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(a) (b)

Figure 1: (a) UAV photo of a rock face in the survey area, where red curves
delineate cracks. (b) Distribution of crack orientations in the photo.

images, [?] used the complex shearlet transform to automatically extract
fracture ridge realizations from images. After getting the features of ridges,
post-processing image analysis algorithms were then used to vectorize the
fracture traces in an automated manner. The resulting fracture detection
maps are generally consistent with the human-labeled fractures in photos
taken over a geological outcrop in Parmelan, France.

One problem with an image processing approach is that it cannot easily
distinguish abrupt changes in a photo’s intensity caused by, for example,
a defects in the photo or some other physical lineament ([?]). This type
of noise is easily distinguished by an interpreter, but manual detection is
labor intensive when thousands of photos must be analyzed. To incorpo-
rate human intelligence into the automated decision process, convolutional
neural network (CNN) architectures were introduced to detect cracks. In
the earliest applications, a variety of CNN networks including AlexNet ([?])
and VGG16 ([?]) were used to detect cracks in concrete structures. Their
limitation is that they are inefficient for high-resolution semantic segmen-
tation, which is the task of classifying all pixels in the input image. Such
CNN methods cannot localize cracks at the pixel level. In the work of [?], a
method based on CNN can only locate cracks in a box which has the same
size as the CNN’s input samples. Sufficiently large samples are required by
this CNN to ensure its accuracy, which limits its resolution.

The problem with the previous CNN approaches is that they are not
directly applicable to photos of large rock faces, such as the facade in Figure
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2. Here, the photos are complicated by uneven lighting conditions, different
view angles, erosional lineaments, long linear shadows, and different dis-
tances between the aerial camera and rock face. All of these imperfections
can degrade the accuracy of crack detection by a standard CNN method.
To mitigate these problems, we develop a novel architecture of the U-Net
CNN designed for semantic segmentation.

The standard U-Net CNN ([?]) mitigates the main flaw of previous CNN
architectures by classifying each pixel in the input image with a very high
precision. It has been widely used by medical personnel for analyzing MRI,
CT, and ultrasound scans ([?], [?], [?], [?], [?]). The U-Net architecture
has been successfully applied for crack detection in concrete structures in
[?], [?], [?]. In our work, we innovate the U-Net architecture by adding
special convolutional modules that are tuned to efficiently detect the crack
orientations that are primarily along the horizontal or vertical axes. These
orientations dominate the sandstone crack distributions in more than 23,000
drone photos in our study area (see Figure 4).

Most engineering geologists will often use the terms joints or fractures

instead of cracks in rock faces ([?]). We have not checked for the mode of
origin so we will use the term crack to indicate any discontinuity on the
surface of the rock face, whether it is a bedding surface, a shearing surface,
a fracture or a joint where the rock face separates due to cooling.

1.1 Crack Detection in the Sandstone Massif

Figure 2: Some photos taken in the survey area.

Sandstones in the study area are cut by a NW-trending, roughly ver-
tical set of long cracks that dissect the rocks, forming blocky massifs and
elongated rock fins that are several tens to hundreds of meters wide, up to a

4



kilometer or more in length and several tens of meters in height. NE-trending
vertical cracks form a second but less prominent set of vertical cracks in the
study area. Cliff faces or facades are marked by traces of both vertical and
sub-horizontal cracks, with the latter aligned parallel to bedding. Discontin-
uous vertical cracks located within the rocks terminate at or near bedding
surfaces suggesting that mechanical changes across bedding locally inhibited
crack growth [?]. Bedding-parallel cracks are relatively short, discontinuous
features caused mostly by failure along bedding surfaces exposed in vertical
facades. Consequently, failure along bedding surfaces should be anticipated
in the design of underground excavations. This type of failure is common
in crack (joint) bounded rock fins, where failure and collapse along bedding
surfaces leads to the development of natural arches.

Large cracks, especially those longer than 1 meter and visible at the scale
of the photos, pose a problem for engineers who must drill into portions
of the sandstones, as shown in Figure 2. Prior to drilling, a strict safety
assessment must be carried out to access the rock integrity. Mechanical
integrity is related to the density and distribution of large cracks, where
drilling into the massif with a high density of cracks must be avoided or
extra precautions should be taken.

To quantitatively estimate the crack density, more than 23,000 drone
photos were taken of the study area. The cracks in the raw photos were
labeled by human interpreters that required more than 100 hours of laborious
labeling. A semantic segmentation algorithm is then used to detect and label
large cracks resulting in a 97.5% accuracy in terms of matching the cracks
identified by a human interpreter. This type of accuracy is sufficient to
assess rock integrity prior to drilling into the massif.

This paper describes the steps for detecting the cracks in the drone
photos. It is organized into four sections. Following the introduction, we
present the methodology of our CNN procedure for crack detection. It is
an optimized U-Net that includes special convolutional modules that are
tuned to the mostly near-vertical and near-horizontal orientations of the
cracks, as well as their large length/width ratios. The workflow for training
and testing of the CNN is shown in Figure 3. After this, we describe the
training of the network and present results from the validation set. The
next section presents the numerical results of applying the trained U-Net to
more than 23,000 unlabeled drone images of our survey area. To test the
generalizability of the trained U-Net, we use it to detect cracks in photos of
volcanic rocks near the Teton dam site in Wyoming. We draw conclusions
in the last section.
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Figure 3: Workflow for training and labeling of cracks in drone photos.

2 Methodology

We first describe the U-Net architecture for detecting cracks in drone
photos. Some of the convolution modules are tuned to the dominant dip
orientations of the cracks and the large length/thickness ratios of cracks, and
so this makes our U-Net more efficient. We then describe the procedures for
labeling, training and validation of sub-photos from 127 photos taken by a
high-resolution camera mounted on a drone. This is only a fraction of the
more than 23,000 drone photos taken over a sandstone massif in the Middle
East.

2.1 U-Net Architecture

The U-Net architecture is diagrammed in Figure 4. It consists of a series
of contracting encoders followed by expanding decoders weighted with fea-
tures from the contraction path. In addition to the cross-connected paths,
each convolution block implements an internal encoder/decoder with three
convolution branches to enhance the detection of specific orientations of
cracks. The convolution block forms the residual function to which an iden-
tity operation is added ([?]). The dimensions of the final U-Net output are
the same as the input images but there is only one output channel of binary
values to represent whether a pixel is labeled as background or a crack.

The U-Net design was chosen for the following reasons:

• Additional convolution branches: This idea comes from the Incep-
tion Network ([?]) because most of the cracks in our drone images are
approximately horizontal or vertical. The two additional convolution
branches with filter sizes 1×9 and 9×1 enable the efficient extraction
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Figure 4: U-Net architecture used for detecting cracks in drone images. In
a) and b) each arrowed tier represents a layer; the blue boxes represent
features after the calculations from that layer. The input is a 256×256 RGB
image. After five convolutional blocks (brown block) and down-sampling
(violet arrow), the feature map has the size 16×16. This is followed by
up-sampling of features with transposed layers (green arrow), concatenation
(gray arrow) with the former output of the same size, and a final convolution.
The final output size matches the 256×256 input to allow individual pixel
classification of the input. Each convolutional block contains 6 separate
convolutional layers (red arrow) with a final input identity operation (+)
summed with the residual function block to form the desired output.

of crack features by focusing on a specified dimension without the need
for a square filter. A square filter with many parameters can detect a
wide variation of crack orientations, but this is computationally inef-
ficient if the cracks are confined to just a few orientations. This is a
data specific enhancement.

• Residual function connection: In deep learning models, the con-
vergence rate and accuracy can become degraded with an increase
in the number of layers ([?]). Including a residual operation to each
convolution block helps to improve accuracy in deep models [?].

Our U-Net has 9 convolutional blocks, including 36 convolution layers,
4 maxpooling layers, and 4 transposed layers. For each convolution layer,
we include batch normalization ([?]) and ReLU activation ([?]). Each con-
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volution layer is followed by a dropout layer with a rate of 0.5 (a random
choice, half are dropped) for additional regularization. The final layer uses
a sigmoid function to constrain the output label to binary values of either 1
or 0.

The labeling targets are cracks that tend to form less than 1% of the
entire set of images. Therefore, there is an imbalanced set of equations due
to most labels having a label value of 0 (background). This typically leads
to poor convergence and large errors in inference labeling. To overcome the
imbalance problem, we test the performance of two weighted loss functions:

1. Weighted cross entropy (WCE):

WCE(y, p) = −

∑

i

[λ y(i) log p(i) + (1− λ)(1− y(i)) log(1− p(i))],

where y(i) is our assigned label for the ith example, p(i) is the U-
Net prediction, and λ is a scalar chosen during training to improve
convergence.

2. Focal loss (FL) [?]:

FL(y, p) = −

∑

i

[λ y(i)×(1−p(i))γ log p(i)+(1−λ)(1−y(i))×(p(i))γ log(1−p(i))],

where we use the constant γ = 2.

WCE is a typical loss function used in classification problems where λ
provides for a rebalancing of the possibly underrepresented positive pixels
in the loss calculation. FL is used to address class imbalance by down-
weighting the contribution of correctly identified pixels to focus on the loss
due to misidentified pixels. We used a fixed value of γ = 2, varying only λ
for all comparisons of each loss function. WCE reduces to be an FL where
γ = 0. Therefore, we effectively compare FL with two values for γ. Our
U-Net architecture is implemented using Keras 2.2.3 and Tensorflow-GPU
1.14.

2.2 Labeling, Training and Validation

Although the facade and top images have different crack features, we
only describe U-Net training of the facade images because the workflow is
the same for the top images.
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Figure 5: Different pictures from the drone dataset with more than 23,000
photos.

We select 57 photos from the facade views to be manually labeled for
training and validation. Fifty-four photos are used for training and 3 were
used for validation. The public-domain editing software GIMP is used to
label the crack lines, each approximately 6-pixels wide to closely match
the size of the cracks of interest. Image labeling is a time intensive task
necessary for the training of the CNN. Labeling requires approximately 30-
60 minutes per photo, each is comprised of 3000×4000 pixels so that more
than 100 hours are needed to manually label the photos used for training
and validation.

The biggest problem in labeling is defining what constitutes a crack of
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interest. In the drone photos, there is a large variation in the size of cracks
and not all cracks are of interest. For these data, geologists and building-site
engineers are only interested in identifying cracks longer than 1 meter, which
are long enough to indicate possible instability in the building project. There
are two examples of crack labels in Figure 7a. We only label those that we are
quite confident about. Soil and small-rock sections covering parts of cracks
are not labeled, resulting in discontinuous crack labels. Another problem is
the mixture of horizontal cracks and some special bedding contacts. Some
bedding contacts are strongly eroded so that there are some troughs along
bedding surfaces. It is challenging to discriminate them from cracks. So we
could include some troughs into the ”horizontal cracks” label.

There are three types of subimages selected from the labeled photos:
subimages of type A contain labeled cracks (Figure 5a); type B subimages
contain only background d rock, sky, sand, and/or bare rocks without any
complex shapes, and are devoid of labeled cracks (Figure 5b); type C is
also devoid of labeled cracks but includes items which complicate network
training, including line-like shapes of rain traces, shadow edges, and trees
(Figure 5c). Although the CNN output is a binary value classification,
identifying three types for inclusion in training allows for selecting a good
balance of cracks and non-cracks. Each type is not equally represented
in each subimage. Varying the number of B and C type objects used for
training shows no improvement in the accuracy of predicting the class type.
This suggests that selective inclusion in the training is not necessary and it
is only necessary to balance the combined types B and C, hereafter named
B, with type A to improve the CNN output.

For samples of type A, labels were indexed with small random shifts in
the choice of index positions along the cracks to include the ends of cracks
and avoid choosing only the centers when selecting training samples. Type
B subimages are randomly sampled. To reduce the bias of samples being
too close to each other, a minimal spacing distance was set for center points
of types A and B as 70 and 150 pixels, respectively. We select a count of
100 A types and 200 B types in each photo for balanced training.

2.2.1 Network Training

Subsampling the 57 photos resulted in a training dataset consisting of
16,200 subimages and a validation dataset consisting of 900 subimages. The
CNN networks are trained using two Tesla v100 GPU cards with a batch
size of 20 sub-photos and an initial learning rate of 0.001. The data are
augmented in each batch of processed training samples by adding copies
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with horizontal, vertical, or 0◦ to 45◦ rotation using a reflected sample to
fill in the boundary space created by rotation. The data augmentation is
performed within Keras.

The maximum number of epochs is set to 100 and training is stopped
when either the maximum is reached or when loss in the validation set does
not decrease for 30 epochs (Figure 6). Loss values in both the training and
validation sets do not decrease very much after around epoch number 50, so
training is terminated at epoch 80.

(a) Loss in Training Set (b) Loss in Validation Set

Figure 6: Learning curve in training. The loss value is defined using WCE
and λ = 0.9.

2.2.2 Validation of Valid Images

Actual class
Crack Non-crack

Prediction Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)

Table 1: Definition of a confusion matrix.

We used two loss functions and λ weights to train the U-Net. The perfor-
mance of the U-Net using different parameters is determined by comparison
of the resultant confusion matrix (defined in Table 1). The prediction ac-
curacy is calculated from the values used in the confusion matrices as the
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Table 2: Confusion matrices with different U-Net parameters. Units are
1000s of pixels.

value of (TP+TN)/(TP+FN+FP+TN). After trial-and-error tests, an out-
put value threshold of 0.5 is used for all pixels in the U-Net for classification
as either a crack or background. Cracks in the output are marked as red in
the figures. For comparison with U-Net, the automatic fracture detection
(AFD) code in [?] is used as a ridge-detection method for the validation
images. We used 108 shearlet systems with a threshold of 0.52 for AFD.

Figure 7 displays results from the U-Net and AFD codes. The results
from AFD show many false positives caused by sharp changes in intensity
associated with non-crack features and it missed some labeled cracks. The
statistics in Table 2a shows that AFD produces more false positives and false
negatives than the U-Net method for the parameter values used. Compared
to AFD, The U-Net results in Figure 7d correlate well with human labeling,
showing a significant reduction of FP in the background compared to AFD.

In Table 2b and 2d, the accuracy of the U-Net is 97.5%. U-Net shows
a similar performance when using the different loss functions WCE and FL
with the same λ weighting, as shown in Figure 7d and 7e. In Table 2d
and 2e, with the same λ, FL shows improvement in the number of FNs but
degrades in the number of FPs relative to WCE which indicates a similar
performance. However, when we show the raw output of FL and WCE for
the same image in Figure 8, the output of WCE more clearly highlights large
cracks of interest. Given the limited values used for comparison, WCE is a
better choice for our work.

Two examples from using different values of λ are displayed in Figure 7c
and 7d, with the corresponding confusion matrices in Table 2c and 2b. U-
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(a) Photos and labels (b) AFD

( ( (

Figure 7: Results of different algorithms applied to two validation images.
Photos are 4000× 2250 pixels each. Cracks marked in red color overlain on
raw photos. Human labeled images are shown in a) ; b) is calculated by
automatic fracture detection (AFD)[?]; c) and d) are trained with weighted
cross entropy (WCE) using different values of λ; e) focal loss (FL) shows
output from one value of λ.

Net shows more labeled cracks when using a greater value of λ, as expected
due to preferential weighting of loss contributions from positive matches but
it also leads to higher FP counts. Considering that underestimation of crack
density could lead to safety problems, high FP counts are more acceptable
than missing cracks of interest. To reduce the high number of FP counts
associated with large values of λ, λ = 0.9 is used in the following work.
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Figure 8: U-Net predictions of the first image in Figure 7a. Here, a) is the
raw output from the U-Net with WCE as the objective function and b) is
the raw output from the U-Net with FL as the objective function. The two
kinds of objective functions share the same value of λ = 0.9. We use the
sigmoid as the activation function in the last layer so when a value in the
image is closer to 1, it is more likely to be a crack.

3 U-Net Crack Detection in Unlabeled Photos

The trained U-Net is now used to label cracks in the study area with
the large sandstone massifs in Figure 2. Over 23,000 unlabeled photos of
the sandstone massif are taken by a drone with a high-resolution camera. In
addition, the trained U-Net is used to label cracks in photos of volcanic rocks
in Idaho as well as those in Martian orbiter pictures. These last two examples
were used to show that the U-Net trained on photos of sandstone cracks can
also be used to label the cracks in photos of rocks with a different geological
genesis. We also show how the accuracy of the U-Net crack detection can
be improved by transfer learning.

3.1 Labeling of Cracks in Photos of Sandstone Massifs

A drone was flown over the sandstone massifs and recorded 23,845 photos
of the tops and facades (sides) of the target rock masses. Variations in
camera-to-target distances created pixels approximately 0.8 to 10 centimeter
wide, with most having a spatial resolution of several centimeters. Photo
sizes are 2250×4000 and 3000×4000 pixels with about 80% overlap of areas.

We were limited by the amount of GPU memory, so we partitioned each
photo into 4 small sub-photos, each with half the width and height of the
original. Partitioning is shown by the green lines in Figure 3. The U-Net
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(a) Facade Photo (b) Facade Photo and Prediction 

(d) Top Photo (e) Top Photo and Prediction (d) Crack Orientation of e

(c) Crack Orientation of b

Figure 9: Photos labeled by U-Net from unlabeled photos. We picked two
example images from the out-of-the training set. a) and b) depict a facade
view; d) and e) are a top view. c) and f) are their distributions of crack
orientations and densities.

labeling of each photo takes about 3 seconds per GPU card.
Then the U-Net model trained with WCE and λ = 0.9 was applied to

the unlabeled facade images. As shown in Figure 9a and 9b, the U-Net
results for unlabeled images are judged to be of acceptable accuracy. The
orientation distribution in Figure 9c shows that most cracks in this photo are
horizontal but there are some along 70◦. We then applied the same method
and trained a new U-Net for the top images, where we labeled 70 images
which created a dataset with 16,800 subimages. Figure 9d and 9e shows a
processed top image, showing results as accurate as those produced for the
facade images. Figure 9f shows all cracks have the same orientation angle
of about 150◦, which is consistent with the cracks seen in Figure 9d. The
U-Net labeling of the remaining 23,000 images (facade and top) required
approximately 22 GPU hours to finish. The labeled images were then used
to assess the crack densities and orientations in the areas of engineering
interest.
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3.2 Labeling of Cracks in Photos of Volcanic Rocks

After achieving accurate detection of cracks in the sandstone photos, we
apply the sandstone U-Net1 to photos of volcanic rock faces at the Teton
Dam site in Idaho, USA (https : //en.wikipedia.org/wiki/Teton Dam).
The Teton Dam in eastern Idaho failed catastrophically on the morning of
June 5, 1976, causing a large flood. The dam is built on silica-rich vol-
canics (welded tuff) that were derived by the eruption of the Yellowstone
super-volcano. Investigations suggest the failure of the dam was related to
movement of water through large fractures (cracks) in the bedrock founda-
tion.

Figure 10a depicts a 4000×2000 picture from a larger Gigapan image of
cliffs at the Teton Dam site provided by R.L. Bruhn. Mapping the cracks in
the Teton Dam photo tests the ability of the sandstone U-Net to accurately
delineate cracks in photos of volcanic rocks. The nearly vertical cracks are
cooling joints in welded volcanic tuff. The nearly vertical cracks mapped by
our sandstone U-Net are labeled by the red lines in Figure 10b, where many
cracks are correctly labeled. However, some cracks are not labeled even
though they are visible to the eye and there are some false positives. This
demonstrates that the sandstone U-Net algorithm is capable of mapping the
trends in crack orientations of rocks that are different from those from which
it was trained.

We can improve the accuracy of the sandstone U-Net model by using
transfer learning. Transfer learning combines the CNN weights learned from
the sandstone images as well as those learned from a small number of labeled
cracks from the Teton dam photos. It only requires a small number of labeled
images from the photos of volcanic rock faces because it reuses common crack
patterns from the sandstone training. This can result in significantly less
labeling and computation time compared to standard CNN training. For
relabeling, we used another 4000× 2000 photo of the Gigapan image, broke
it up into 120 256× 256 sub-photos, and manually labeled the cracks. This
required less than 60 minutes of labor compared to an estimate of more than
20 hours of training required by a new U-Net model.

For the transfer training, we freeze the weights in blocks from 3 to 7 and
allow four symmetric blocks (block 1,2 and 8,9 in Figure 4) to be trained
on the newly labeled photos. This decreases the trainable parameters from
20,000,000 to 730,000. An Adam optimizer is used and we set the learning
rate to be 10−4 in order to fine-tune the trainable layers. The batch size is 5
and the total number of 256× 256 sub-photos is 120. The transfer training

1The sandstone U-Net model is exclusively trained from the sandstone pictures.
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(a) (b)

Figure 10: Crack detection of volcanic rocks at the Teton Dam Site, Idaho.
a): near-vertical cooling cracks in volcanic rocks just downstream from the
dam site; b): cracks labeled in red by U-Net. The red markings correspond
to a probability between 0.7 and 1.0 in the softmax output, while the white-
bluish markings correspond to a probability between 0.3 and slightly less
than 0.7.

is halted at epoch 30 when the accuracy flattens out at 97%, which takes
no more than 20 minutes of computation time on a workstation. We denote
this U-Net as the hybrid U-Net model because the original weights were
trained on images of sandstones and adjusted to those for volcanic rocks.

After transfer learning, the sandstone U-Net and hybrid U-Net were
applied to the top row of raw 4000 × 2000 images in Figure 11a to give the
labeled cracks in Figure 11b and Figure 11c, respectively. Figure 11c. show
a much denser and more accurate collection of labeled cracks than the ones
in Figure 11b. The important accomplishment is that it required no more
than an hour of manual labeling to achieve this goal.

3.3 Labeling of Photos of Martian Alluvial Fans

Photos from a satellite orbiting Mars are labeled by the sandstone U-
Net model. Such labels do not necessarily delineate faults but detect sharp
changes in intensity patterns in the photos. These sharp changes depict
patterns in landscape that were likely generated by ancient water flows from
the nearby mountains.

The raw and U-Net labeled orbiter photos are shown in Figure 12, where
the red labels clearly delineate some of the alluvial fan patterns that likely
formed from rivers flowing from the adjacent mountains. Regional rose
diagrams of these features can be computed to show trends in the regional
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a) Photos of the Dam Site

b) U-Net from the Survey Area

c) U-Net after Transfer Learning

Figure 11: a) Raw photos from the Teton dam site, and crack labels com-
puted by the b) sandstone U-Net and the c) hybrid U-Net models. Red
labels have a softmax probability between 0.7 and 1.0.
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a) Mars Orbiter Photo b) Labeled Mars Photo

Figure 12: a) Photo taken by a satellite orbiting Mars and b) the crack-
labeled photo. The crack distribution is depicted in the inset Rose diagram
of b), and the labels are computed by the sandstone U-Net. In this example,
a crack is defined as a sharp linear change in the photo’s intensity value.

changes in geology and morphology.

4 Conclusions and Discussion

This work presents a successful use of an improved U-Net CNN to label
cracks in rock faces. We compare U-Net with a ridge-detection method and
find that U-Net provides a more accurate detection of cracks, assessed by
TP and TN counts, compared to AFD after being trained with just a few
images. We believe our results suggest that the U-Net approach provides a
viable alternative to the conventional AFD method for detecting cracks in
rock massifs.

We tested several loss functions in our U-Net. Results show that using
the same weight in the loss function and the threshold value of 0.5, WCE and
FL show similar performance metrics. However, WCE produced a preferred
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response highlighting large cracks. In comparison, FL included many small
cracks and other edge-features considered to be noise for this application.
Using different loss weights produces significantly different results and higher
values, which causes the U-Net to label more cracks and generate higher TP
counts but it also increases FP counts.

The disadvantage of U-Net labeling is that it requires a large amount of
manual labeling to train the network. However, U-Net has transferability
capabilities so that a well-trained U-Net with transfer training can be used
to detect cracks on other kinds of rocks without an extensive effort in rela-
beling. We proved this to be true by using transfer training to significantly
improve the accuracy of labeling cracks in the Teton Dam photos. Less than
60 minutes were required for manual labeling of cracks in the Teton Dam
photos.

There are some notable areas where the U-Net CNN can be improved.
One complication is that close-up photos of the rock reduces U-Net’s ability
to distinguish erosional features from small cracks. The consequence is that
it produces false positives. We believe this problem can be mitigated by
introducing distance information to the input of U-Net. Another problem
is that manual labeling of cracks is tedious, error prone and time consum-
ing, especially when rocks are broken or cracks are parallel to the bedding
surfaces. Therefore, a more accurate and less labor intensive way of label-
ing cracks is desirable. In this case we suggest the use of transfer training
as an effective means for labeling cracks in photos of any type of geology.
This can be important for real-time assessment of geological hazards and
lithology information for tasks such as dam inspection and planetary explo-
ration by autonomous vehicles. For this reason we are making the weights
and architecture of our sandstone and hybrid U-Nets to be available to the
public.
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