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SUMMARY

Convolutional sparse coding (CSC) is proposed to attenuate
noise for seismic data. CSC gives a data-driven set of basis
functions whose coefficients form a sparse distribution. The
noise attenuation method by CSC can be divided into the train-
ing phase and the denoising phase. The seismic data with a
relatively high signal-to-noise ratio are chosen for training to
get the learned basis functions. Then we use all (or a subset) of
the basis functions to attenuate the random or coherent noise in
the seismic data. Numerical experiments on synthetic and field
data indicate that the proposed method achieves good perfor-
mance for denoising random and coherent noise and separating
the ground roll.

INTRODUCTION

Seismic data may suffer from different sources of noise during
field acquisition, which can degenerate the subsurface imaging
quality of migration. Thus, noise attenuation is one of the key
components of seismic data processing.

Traditional seismic denoise methods exploit the different char-
acteristics of the noise and the seismic data in a transform do-
main, in which the signal and noise have different character-
istics. Chanerley and Alexander (2002) used the stationary
wavelet transform as an alternative to band-pass filtering for
denoising. The curvelet transform is used by Hennenfent and
Herrmann (2006) to attenuate both random and coherent noise
in seismic data. Ibrahim and Sacchi (2014) use the hyperbolic
Radon transform for deblending seismic data obtained from a
survey with blended sources. The seislet transform is used for
seismic denoising by Chen (2016).

The analytic transform mentioned above is a model-driven pro-
cess based on a formulated mathematical model of the data.
The performance may not be satisfactory due to the inability
to adapt to changing data structures (Zhu et al., 2015). Alter-
natively, the sparse dictionary learning method is a data-driven
process, which learns its dictionary so that complicated data
can be represented by a sparse set of weighted basis functions.
Kaplan et al. (2009) used the sparse-coding algorithm to atten-
uate both coherent and incoherent noise. Chen et al. (2016)
combined the learning based dictionaries and the fixed-basis
transforms and proposed a double-sparsity dictionary to better
handle the special features of seismic data.

Most of the sparse coding (SC) denoising methods partition the
seismic data into overlapped patches, and process each patch
separately. These methods, however, ignore the consistency
of structures in overlapped patches, for which the learned fea-
tures often contain shifted versions of the same features so that
latent structures of the underlying signal may be lost when di-
viding it into small patches (Bristow et al., 2013; Heide et al.,

2015). In this report, we propose a convolutional sparse coding
(CSC) denoising method to address the consistency issue. As
opposed to SC, CSC operates on whole seismic images, there-
by seamlessly capturing the correlation between local neigh-
borhoods.

We first introduce the theory of CSC and the workflow of noise
attenuation by CSC. Then we apply CSC denoising method to
synthetic data and field records. Numerical results indicate that
the proposed method achieves good denoising performance.
Finally, we give the summary.

THEORY

The convolutional sparse coding problem can be defined as
finding the optimal d and z that minimize the following objec-
tive function (Heide et al., 2015):
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where x is an m×n image in vector form, dk refers to the k-th
d × d filter in vector form, zk is vector of sparse coefficients
with size (m+ d − 1)× (n+ d − 1), β controls the l1 penal-
ty, and ∗ denotes the 2D convolution operator. M is a binary
diagonal matrix that masks out the boundaries of the padded
estimation

∑K
k=1 dk ∗zk. The term indC(·) is an indicator func-
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which is defined on the convex set of the constraints C = {d |
∥d∥2

2 ≤ 1}. Equation 1 can be expressed as the following sum
of functions
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T is the coefficient matrix. D= [D1, · · · ,DK ]
is a concatenation of Toeplitz matrices, each one representing
a convolution with respect to the filter dk. Equation 3 is a
sum of functions fi, which are simple to optimize individual-
ly. However, computing their sum is challenging. Following
Heide et al. (2015), equation 3 is a bi-convex problem for z
(or d) when d (or z) is fixed. So, we can use the alternating
coordinate descent method to solve it. First, compute the filter
update:

argmin
d
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Then do the coefficient update:

argmin
z

f1(Dz)+
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f2(zk). (6)

Repeat the above two steps until there is no more progress in
both directions.

Generalization of the Objective Function

The above two subproblems have the same format and so we
can define their generalized form as

f (Ku) =
I∑

i=1

fi(Kiu), (7)

where K = [K1,K2, · · · ,KI ]
T . Ki are arbitrary matrices, and I

is the number of functions. Here, u can be d or z. For example,
if K1 = D, K2u = z1 · · · , the problem for the coefficient update
can be written as:

argmin
u

f (Ku) = argmin
z

f1(Dz)+
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Heide et al. (2015) use the alternating direction method of
multipliers (ADMM) (Boyd et al., 2011) to solve u in equa-
tion 8. We will see that the resulting minimization by ADMM
becomes separable for all the fi. For example, the following
problem is the same as the problem in equation 8:

argmin
u

h(u)+ f (y) subject to Ku = y, (9)

where h(u) = 0. Its augmented Lagrangian can be written as:

Lρ (u,y,α) = h(u)+ f (y)+αT (Ku−y)+(ρ/2)∥Ku−y∥2
2.

The scaled form of the augmented Lagrangian is:

Lρ (u,y,α) = h(u)+ f (y)+(ρ/2)∥Ku−y+λ∥2
2, (10)

where λ = (1/ρ)α . The ADMM of equation 10 is described
by the following three steps.

• u update:
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u

Lρ (uk,yk,λ k),
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• y update:
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• error update:

λ k+1 = argmax
λ

Lρ (uk+1,yk+1,λ k),

= λ k +(Kuk+1 −yk+1). (13)

Because f is a sum of fi, equation 12 can be separated as:
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for all i ∈ {1, · · · , I}. (14)

Appendix A shows how to solve the problems defined in equa-
tions 11 and 14.
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Figure 1: Workflow of CSC for noise attenuation.

The workflow of CSC for noise attenuation is shown in Fig-
ure 1. It includes the following two steps:

• Training phase: solve for the filter dk and the coeffi-
cient vector zk. The training data are chosen with a
relatively high signal-to-noise ratio (SNR). The filter
size should be larger than one wavelength.

• Denoising phase: solve for the coefficient vector zk
with the knowledge of the learned vector dk. Change
the value of the coefficient β for the l1 penalty function
in order to control the degree of noise removal. For co-
herent noise, remove some of the learned filters that are
more indicative of noise than signal, and the remaining
filters are used for denoising.

NUMERICAL EXAMPLES

The performance of CSC for denoising seismic data is demon-
strated with two examples: (1) synthetic data from the Mar-
mousi model and (2) field data from Saudi Arabia. The syn-
thetic data example tests the performance of CSC in remov-
ing random noise in seismic data, and the field data example
demonstrates the removal of coherent noise. The SNR used in
our synthetic test is defined as follows:

SNR = 10log10(
∥Xsignal∥2

2

∥Xnoise∥2
2
) (15)

where Xsignal and Xnoise denote the signal and noise, respec-
tively.

Synthetic Test

The first example is a 2-D synthetic dataset calculated from
the Marmousi model. A part of the second common shot gath-
er (CSG) is shown in Figure 2a, and its size is 181×100. Five
CSGs with high SNR are selected for training. There are 50
learned filters (see Figure 3) and the filter size is 55 × 55. As-
sume that the second CSG is contaminated with some noise
(see Figure 2b) and its SNR is -1.76. The denoised CSG is



shown in Figure 2c and its SNR increases to 14.5. Figure 2d
show the residual of the denoised data. We can change the co-
efficient β of the l1 penalty function to control the noise level.
Figures 4a and 4b show the denoised results by setting β as 0.2
and 5, respectively. It is observed that more noise is removed
with larger values of β . But it may also hurt some useful sig-
nals, which can be seen in the comparison of the residuals in
Figures 4c and 4d.

Figure 2: (a) Synthetic data; (b) noisy data; (c) denoised data;
(d) residual between (b) and (c).

Figure 3: Learned filters

Field Data Test
Seismic data are recorded over the Qademah fault system, ap-
proximately 30 km north of the KAUST campus. The dataset
is first filtered by a bandpass filter with a frequency range be-
tween 10 Hz to 60 Hz. Ten CSGs are chosen for training and
one of CSGs is shown in Figure 5a. Its offset range is from 0.2
km to 1.3 km. The surface waves are muted out in the training
set. There are 30 21 × 21 learned filters displayed in Fig-
ure 5b. Some features of the coherent noise are learned from
the training data set as indicated by the red boxes in Figure 5b.

Figure 4: Denoised data by setting β = (a) 0.2 and (b) 5 and
their corresponding residuals (c) and (d).

We select the first CSG (see Figure 6a) for denoising. Its offset
range is from 0.8 km to 1.9 km. β is set to 0.8 during the
denoising phase. Using all the learned filters in Figure 5b for
denoising gives the denoised result displayed in Figure 6b. Its
corresponding residual is shown in Figure 7a. There is still
coherent noise in the area indicated by the red box in Figure 6b.
The reason is that the learned filters include the features with
coherent noise.

(a) 1st CSG (b) Learned Filters

Figure 5: (a) A training CSG; (b) learned filters.

Next we exclude the filters with noise features indicated by the
red boxes in Figure 5b. Then we apply the remaining filters
for denoising. The denoised result and its residual are shown
in Figure 6c and Figure 7b, respectively. We can see that the
noise level within the red box of Figure 6c is reduced by only
using the selected filters. We continue to exclude more filters
as indicated by the yellow boxes in Figure 5b during the de-
noising phase. The denoised result is shown in Figure 6d and
its residual is shown in Figure 7c. From the residuals in Figure
7, we can see that more coherent noise is removed.



We choose the near-offset traces (see Figure 8a) contaminated
with surface waves to perform the test. All the filters shown
in Figure 5b are used for denoising. The denoised data and
the residual are shown in Figures 8b and 8c, respectively. The
learned filters don’t include the features from the surface waves,
so the surface waves are removed.

Figure 6: (a) Raw data; denoised data by (a) all filters, and
selected filters excluding those indicated by (b) red and (c) red
and yellow boxes in Figure 5b.

SUMMARY

We present a review of convolutional sparse coding and its ap-
plication to seismic noise attenuation. A high SNR data set is
used to train a set of filters and then the learned filters are used
for denoising. For random noise, the value of the coefficient
of the l1 penalty function is selected by a trial-and-error pro-
cedure for denoising. For the coherent noise attenuation, the
learned basis functions must exclude coherent noise features,
such as the ground roll. The latter may need an algorithm to
label the basis function according to a physical attribute that
differentiates signal from noise, which will be our next study.
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Figure 7: Residual of denoised data.

Figure 8: (a) Near-offset data with surface waves, (b) denoised
data, and (c) its residual.
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