
Lecture Notes on Machine Learning Methods in Geosciences

Gerard T. Schuster with Yuqing Chen, Amr Ibrahim, Zongcai Feng,

Kai Lu, Zhaolun Liu, Shihang Feng, and Jing Li

October 27, 2018

ii

Contents

Preface vii

Abbreviations ix

1 Introduction to Machine Learning in the Geosciences 1

1.1 Introduction . 1

1.2 Three Classes of Machine Learning . 5

1.2.1 Supervised Learning . 5

1.2.2 Unsupervised Learning . 7

1.2.3 Reinforcement Learning . 9

1.3 Summary . 9

2 Data Prediction by Least Squares Inversion 11

2.1 Least Squares Inversion . 11

2.1.1 Overdetermined, Inconsistent, and Ill-conditioned Equations 12

2.1.2 Least Squares Solution . 12

2.1.3 Regularized Least Squares Solution 17

2.1.4 Gradient of ǫ . 20

2.1.5 Preconditioning . 24

2.1.6 Overfitting Data . 25

2.1.7 Inclusion of Bias Factor . 29

2.2 Steepest Descent Optimization . 29

2.3 Summary . 31

2.4 Exercises . 32

2.5 Appendix: Exact Step Length . 34

3 Non-Linear Gradient Optimization 35

3.1 Non-linear Gradient Optimization . 35

3.2 Rigorous Derivation of the Newton Formula 38

3.3 MATLAB Examples of Newton’s Method 40

3.3.1 Inexact Newton Method . 42

3.4 Multiscale Optimization . 42

3.5 Diagram for Matrix-Vector Multiplication 43

3.6 Summary . 47

3.7 Exercises . 48

iii

4 Introduction to Neural Networks 53

4.1 Neural Networks . 53

4.1.1 Single-node Neural Network . 56

4.1.2 One-node Neural Network with Cross-Entropy Objective Function . 60

4.1.3 Two-node Neural Network . 62

4.1.4 Multiple-node and Multiple-layer Neural Network 63

4.2 Multinomial Classifiers . 65

4.3 ReLu Activation Function . 65

4.4 Summary . 65

4.5 Exercises . 66

5 Multilayer Neural Networks 69

5.1 Introduction . 69

5.2 Feed-forward Operation . 69

5.3 Back-propagation Operation . 70

5.3.1 Formula for ∂ǫ/∂w[N]

ij . 70

5.3.2 Formula for ∂ǫ/∂w[N−1]

ij . 71

5.3.3 Formula for ∂ǫ/∂w[N−2]

ij . 72

5.4 MATLAB Code . 73

5.5 Numerical Examples . 76

5.6 Summary . 79

5.7 Exercises . 79

5.8 Computational Labs . 79

5.9 Appendix: Vectorized Steepest Descent Formula for Neural Networks 79

6 Convolutional Neural Networks 81

6.1 Introduction . 81

6.2 Building Blocks of CNN . 84

6.2.1 Convolution Layer . 84

6.2.2 Activation Functions . 87

6.2.3 Feature Maps . 88

6.2.4 Pooling Layer . 89

6.2.5 Fully-Connected Layer . 91

6.2.6 Soft-Max Layer . 91

6.2.7 Loss Function . 91

6.2.8 Dropout Regularization . 91

6.2.9 DropConnect Regularization . 94

6.2.10 Local Response Normalization(LRN) Regularization 94

6.2.11 Mini-Batch . 95

6.2.12 Step Length . 96

6.3 Architectures of CNN . 97

6.3.1 AlexNet . 98

6.3.2 ZFNet . 98

6.3.3 VGGNet . 98

6.3.4 GoogleNet . 100

iv

6.3.5 ResNet . 100
6.4 Deep Learning Software and Youtube Classes 101
6.5 Seismic Fault Interpretation by CNN . 102
6.6 Summary . 106
6.7 Exercises . 106

7 Wave Equation Inversion and Neural Networks 109
7.1 Introduction . 109
7.2 Theory for Wave Equation Inversion of Skeletonized Data 111

7.2.1 Feature Extraction . 113
7.3 Conclusions . 113

8 Support Vector Machines 115
8.1 Introduction . 115

8.1.1 SVM Applications . 116
8.2 Linear SVM Theory . 118
8.3 Nonlinear SVM . 120
8.4 Primal and Dual Solutions . 122
8.5 Kernel Methods . 124
8.6 Numerical Examples . 128
8.7 Multiclass SVM . 132
8.8 Soft-Margin SVM . 136
8.9 Practical Issues for Implementing SVM . 136

8.9.1 Scaling . 137
8.9.2 Data Augmentation . 137

8.10 Summary . 137
8.11 Exercises . 138
8.12 Appendix: Defining the Dual Problem with a Lagrangian 138

8.12.1 Simple Example of a Dual Solution 140
8.13 Karush-Kuhn-Tucker Conditions . 142
8.14 Appendix: Diffraction Stack Migration . 143
8.15 Dip Angles, Coherency and Amplitudes of a Migration Image 144

v

vi

Preface

These course notes present the theory and practice of solving geoscience problems with
Machine Learning methods. Machine Learning is a field of data analysis methods that can
be classified into three categories: supervised learning, unsupervised learning, and rein-
forcement learning. Our concentration is on the theory and practice of supervised learning
methods in geosciences, with an emphasis on neural networks and deep learning. Much of
the information on neural networks has been extracted from youtube videos, particularly
those from Andrew Ng’s excellent online learning course. The book Pattern Recognition
and Machine Learning by Bishop is used for reference materials.

The first lecture provides a broad overview of Machine Learning (ML) methods classi-
fied into the three categories listed above. The next several lectures show how the single
neuron model leads to the mathematical concept of a perceptron, the fundamental compu-
tational unit of a neural network. The perceptron model can be used for classifying the
samples in a training set into different classes. This computational unit can also be used
as the fundamental building block of the neural network and its broad applications in deep
learning methods. Many case histories are used to demonstrate its usefulness in solving geo-
science problems. The last set of lectures describe the theory and practice of the important
classification methods of kernel machines and support vector machines.

In summary, the lecture notes cover the following topics.

1. Background: Optimization Theory

2. Background: Probability and Liklihood Theory

3. Introduction to Machine Learning

4. Classification with Perceptrons

5. Activation Functions

6. Linear Regression

7. Logistic Regression

8. Non-Linear Classification

9. Neural Networks: Theory

vii

10. Neural Networks: MATLAB code and Examples

11. Neural Networks: Practical Implementation

12. Neural Networks: Deep Learning

13. Neural Networks: Case Histories

14. Neural Networks: Capacity, VC Dimension, and Dropout

15. Support Vector Machines

16. Kernel Machines

17. Unsupervised Learning Methods

MATLAB and Fortran labs are integrated throughout the text to deepen the reader’s
understanding of the concepts and their implementation. Such exercises are introduced
early and geophysical applications are presented in almost every chapter.

Acknowledgments

The author wishes to thank the support provided by the sponsors of the Utah Tomography
and Modeling/Migration and CSIM consortiums. Strong support was also provided by King
Abdullah University of Science and Technology who financially supported me while writing
the final chapters.

I also thanks the following reviewers who provided very valuable edits:

viii

Abbreviations

• ABC - Absorbing boundary condition

• ADCIG - Angle-domain common image gather

• CAG - Common angle gather

• CG - Conjugate gradient

• CIG - Common image gather

• CMG - Common midpoint gather

• COG - Common offset gather

• CSG - Common shot gather

• DM - Diffraction-stack migration

• FD - Finite difference

• FCN - Fully connected neural network

• FWI - Full waveform inversion

• GOM - Gulf of Mexico

• KM - Kirchhoff migration

• LSM - Least squares migration

• LSRTM - Least squares reverse time migration

• MD - Migration deconvolution

• MVA - Migration velocity analysis

• NN - Neural network

• NMO - Normal moveout

• PDE - Partial differential equation

• PSTM - Prestack time migration

ix

• QN - Quasi-Newton

• RTM - Reverse time migration

• SD - Steepest descent

• SPD - Symmetric positive definite

• SSP - Surface seismic profile

• QP - Quadratic programming

• VSP - Vertical seismic profile

• ZO - Zero offset

• WT - Wave equation traveltime tomography

• WTW - Wave equation traveltime and waveform tomography

x

Chapter 1

Introduction to Machine Learning
in the Geosciences

The chapter provides a partial overview of machine learning methods and summarizes their
historical development.

1.1 Introduction

Machine learning (ML) was generally defined by Arthur Samuel in 1950s as the following:

[Machine learning is the] field of study that gives computers the ability to learn without being
explicitly programmed.

At that time the term machine learning was not in use, but this definition applies to the
ML field today. Some researchers use the phrase ”deep learning”, but this typically refers
to convolutional neural networks with many layers (Goodfellow et al., 2016).

Over the last 75 years machine mearning has undergone several metamorphisms. From
the 1940s to early 1960s, cybernetics defined (Wiener, 1948) as ”the scientific study of
control and communication in the animal and the machine”, was the hot research topic
related to ML (see blue curve Figure 1.1) and is now used in a rather loose way to imply
”control of any system using technology.” (Wikipedia). That is, it is the scientific study of
how humans, animals and machines control and communicate with each other. It was partly
inspired in the early 1940s by the discovery of a biological model for theories of learning
(McCulloch and Pitts, 1943; Hebb, 1949).

The neuron-function model of the brain was recast as a mathematical algorithm known
as the perceptron introduced by Rosenblatt (1958). In its simplest form the ith input signal
xi to a neuron is related to the output y by

y = σ(
∑

i

wixi + b), (1.1)

where wi is the weight to the input xi, b is a bias term and σ(z) = 1/(1 + e−z) is the
sigmoid function shown in Figure 1.2. In the original perceptron, the activation function

1

2CHAPTER 1. INTRODUCTION TO MACHINE LEARNING IN THE GEOSCIENCES

Figure 1.1: Two of the three historical waves of artificial neural nets research, as measured
by the normalized frequency of the phrases cybernetics and connectionism or neural net-
works according to Google Books (Goodfellow et al., 2016). The third wave, deep learning,
is schematically described by a rapid rise and does not correspond to the actual word coun-
t. For geophysicists, the schematic curve for FWI shows its rise, fall, and rebirth in the
exploration community.

1-1

σ(z)

σ(z)z

1

z

Figure 1.2: Sigmoid function plotted against its argument and its system diagram to the
right.

1.1. INTRODUCTION 3

Figure 1.3: Mark 1 computer for image recognition. The photograph on the left shows
how the inputs were obtained using a simple camera system in which an input scene, in
this case a printed character, was illuminated by powerful lights, and an image focussed
onto a 20 × 20 array of cadmium sulphide photocells, giving a primitive 400 pixel image.
The perceptron also had a patch board, shown in the middle photograph, which allowed
different configurations of input features to be tried. Often these were wired up at random
to demonstrate the ability of the perceptron to learn without the need for precise wiring,
in contrast to a modern digital computer. The photograph on the right shows one of the
racks of adaptive weights. Each weight was implemented using a rotary variable resistor,
also called a potentiometer, driven by an electric motor thereby allowing the value of the
weight to be adjusted automatically by the learning algorithm. Image and caption from
Bishop (2006).

was the all-or-nothing1 σ(z) = sign(z) function, but was much later replaced by smoother
almost-all-or-nothing functions such as the sigmoid σ(z) = 1/(1+ e−z) where the derivative
exist everywhere.

According to Wikipedia: ”The perceptron was intended to be a machine, rather than
a program, and while its first implementation was in software for the IBM 704, it was
subsequently implemented in custom-built hardware as the ”Mark 1 perceptron” shown
in Figure 1.3. This machine was designed for image recognition: it had an array of 400
photocells, randomly connected to the ”neurons”. Weights were encoded in potentiometers,
and weight updates during learning were performed by electric motors. In a 1958 press
conference organized by the US Navy, Rosenblatt made statements about the perceptron
that caused a heated controversy among the fledgling AI community. The New York Times
reported the perceptron to be the embryo of an electronic computer that [the Navy] expects
will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.”.

From a simple biological point of view the perceptron model suggests that an input
electrical signal x will be transmitted by the neuron through the connecting synapse to the
neighboring neuron if the input voltage exceeds a threshold value. The input values xi are
similar to the electrical impulses that travel through the many synapses that feed into the
neuron.

A system of many perceptrons came to be known as a neural network in the 1980s (see

1The sign function is also known as the Heavyside function.

4CHAPTER 1. INTRODUCTION TO MACHINE LEARNING IN THE GEOSCIENCES

Single Preceptron Two-layer Neural Network

Figure 1.4: (Left) Single-layer perceptron and (right) two-layer neural network.

green-dashed curve Figure 1.1), which could be used to perform practical functions such as
classification of images. Instead of one preceptron, the N × 1 input signal x feeds into M
neurons so that equation 1.1 becomes

yj = σ(

N∑

i=1

wijxj + bi), (1.2)

where the M ×1 output vector is y, the weights wi → wij become those associated with the
M × N weight matrix W. The activation function σ acts on each element of the matrix-
vector product zi =

∑N
i=1 wijxj + bi to return the M × 1 output vector y, which is also

known as the activation vector a if it is a hidden layer and not the last column of nodes. A
single perceptron with multiple inputs is shown on the left side of Figure 1.4. According to
Goodfellow et al. (2016), connectionism is another name similar to that of artificial neural
networks (ANN) used for ML in the 1980s and 1960s. The word connectionist refers to the
speculation in the 1950’s that ”...the images of stimuli may never really be recorded at all,
and that the central nervous system simply acts as an intricate switching network, where
retention takes the form of new connections, or pathways, between centers of activity.”
(Rosenblatt, 1958).

Weighting the input values and summing them together to give the input to the non-
linear activation function σ defines the two basic building blocks of a neural network. The
concatenation of each weighted sum followed by the application of the activation function
forms one layer, and a sequence of such layers forms a multilayer neural network. An
example is shown on the right side of Figure 1.4.

Interest in neural networks grew rapidly from the 1980s and peaked around the mid
1990s but started to fall off, partly because its limitations were revealed as being computa-

1.2. THREE CLASSES OF MACHINE LEARNING 5

tionally too expensive to fulfill all of its early promises. It also suffered from the inability
to theoretically predict its ability to perform well, including IBM’s Deep Blue’s success in
beating a Chess grandmaster2 in 1997. Around the same time attention was being refocused
to mathematically tractable methods such as Support Vector Machines (Bishop, 2006).

This decline in interest suddenly changed in 1998 with the development of the convo-
lutional neural networks (CNNs) by LeCun et al. (1998). Instead of requiring massive
memory and computations to perform neural network computations, CNN replaced fully
connected layers and large weight matrices with relatively small convolutional matrices. For
equation 1.2 this means that the matrix-vector multiplication is replaced by a correlation
of the input vector with a much smaller number of weights. For M = N , the memory
and computational requirements are O(N2nf) for CNN compared to O(N4) for classical
neural networks. Here, the input image for a grayscale picture is an N ×N grid of intensity
values and the number of convolutional filter coefficients is nf << N . The CNN algorithm
allowed for the development of large neural networks with many deep layers, and gave rise
to re-branding of neural network research as deep learning research (see red-dashed curve
Figure 1.1).

Deep learning has exploded in the level of interest in a wide variety of fields, and has
become publicly prominent with its success in popular media companies such as Facebook
and Google and its use with self-driving cars. A force multiplier is the development of fast
cheap GPUs that can expedite the convolutional operations. CNN and its application to
geoscience problems is the main focus of these lecture notes.

Coincidentally, the rise and fall and the rebirth of full waveform inversion (FWI) is
schematically traced as the black curve in Figure 1.1. Part of the reason for its rebirth are
two developments: 1) multiscale techniques that tend to avoid getting stuck in local minima
and 2) the exponential increase in computing power.

1.2 Three Classes of Machine Learning

Machine learning methods can be classified into the three classes shown in Figure 1.5:
supervised learning, unsupervised learning, and reinforcement learning. Researchers are
currently exploring their potential applications in three categories of seismic exploration:
reservoir analysis, seismic data processing and seismic interpretation. This book uses many
seismic examples from the last two categories to highlight the different applications of
supervised and supervised learning.

1.2.1 Supervised Learning

Supervised learning is a procedure for finding a model, for example finding the coefficients
of W, that predicts the output y from the input data x. The procedure is denoted as
supervised learning because W is found by using a large training set that consists of many
examples (x(n),y(n)) for n ∈ [1, 2 . . . N].

One use for supervised learning is for classifying input data into different categories. For
example, the goal in Figure 1.5a is to create a neural network that can distinguish pictures

2https : //en.wikipedia.org/wiki/Deep Blue versus Garry Kasparov

6CHAPTER 1. INTRODUCTION TO MACHINE LEARNING IN THE GEOSCIENCES

Figure 1.5: Three classes of machine learning.

1.2. THREE CLASSES OF MACHINE LEARNING 7

of dogs from other types of animals. Here, the training pairs consist of dog images and the
label y = 1 for a dog and the label y = 0 for not a dog. The N ×N dog image is flattened
into an N2 × 1 vector x(n), and the training pair (x(n),y(n)) consist of both the input x(n)

and target output y(n) pairs. There are N training pairs. The label vector y in this case is
a scalar where y = 1 for a dog and y = 0 for not a dog.

Many pairs of training data are used to train the neural network so that an overde-
termined system of equations is formed. The coefficients in W are found by an iterative
optimization method (see Chapter 5). An accurate estimate of W will allow pictures of
dogs that are outside the training set to be identified by the neural network.

Another example of supervised learning is shown in Figure 1.6 where thin sections
of rocks are the input images (Patel and Chaterjee, 2016). The goal is to classify them
according to the type of limestone. Instead on inputting the entire image of a thin section,
they are skeletonized into smaller features, which is shown as a two part operation. Each
colorized thin-section image is reduced to the histogram values of RGB colors. Then the
second-order, third-order and fourth-order statistics of each of the three histograms are
computed by calculating their variance, skewness, and kurtosis values. These are the values
input into the neural network, and there are seven output classes. These classes correspond
to the dominant type of geology in the image as determined by a geologist. A number of
classified thin sections with class labels are used for training. The training estimates the
optimal values of the coefficients in W. A new set of thin sections are then used as input
into the neural network, which then classifies these out-of-the-training set data. The results
are shown in the lower right side of Figure 1.6. Comparison of the predicted classes and
the actual classes show more than a 90% accuracy in labeling the data.

Weakly Supervised and Semi-supervised learning.

A subset of supervised learning is semi-supervised learning where their are only a few labeled
data but there are lots of unlabeled data (Patel et al., 2016). In this case it is too expensive
to label more than a few examples of data.

There is also weakly-supervised learning where each image is given a label but the goal
is to find labels at the pixel level. Each image can contain features from each class, but it
is given a label that denotes the dominant feature. For example, small localized images of
seismic sections might be labeled as predominantly salt dome or a turbidite sequence, but
they also contain other geological structures. Labeling each localized image as just one class
is quickly done by an interpreter, but it ignores the detailed geology. Using a collection of
these labeled images, a dictionary can be built up and be used to train a weakly supervised
neural network to label each image pixel as the type of geology belonging to one of the
classes. Thus, detailed geology at the pixel level can be provided by a machine-learning
algorithm. A key goal of representation learning is to disentangle the factors of variation
that contribute to the appearance of an image (Patel et al., 2016).

1.2.2 Unsupervised Learning

Unsupervised learning is when the training data do not specify the target vector y but
recognizes that there are distinct patterns in the input data x. The goal is to separate
distinct patterns from one another. As an example, Figure 1.7a depicts a common shot

8CHAPTER 1. INTRODUCTION TO MACHINE LEARNING IN THE GEOSCIENCES

Figure 1.6: Neural layer network for classifying thin sections.

1.3. SUMMARY 9
T

im
e

(s
)

Frequency (Hz)
10 70

x (m)
0 300

0

1

b). Phase Vel. vs Freq.a) Common Shot Gather

Ph
as

e
V

el
oc

ity
 (

km
/s

) 2.5

0.5

Figure 1.7: a). Common shot gather (CSG) of seismic data and b) phase velocity (ω/k)
versus frequency (f = ω/2π) plot of the CSG. Here, the Rayleigh surface waves (SW) and
P-wave guided waves (GW) are now well separated after a temporal Fourier transform and
a Radon transform (Li et al., 2018).

gather of seismic data and its b) transform to phase-velocity and frequency space. The
Rayleigh surface waves and P-wave guided waves (GW) are tangled together in the original
data but are well separated in the C − f domain because they each propagate with very
different propagation velocities; here, C is the phase velocity and f denotes frequency.
Other examples include the separation of signal from noise by principle component analysis
(PCA) in Chapter ?? or by bandpass filtering.

1.2.3 Reinforcement Learning

Reinforcement learning is used to train a system to play a game. In his case, the output is
not a labeled class but it is a reward for performing the desired behavior, such as winning
a checkers or chess game. Training is performed by learning from chess games played by
experts, and at some point the computer can play against itself to refine the strategies.

1.3 Summary

Machine learning and especially deep learning seem magical, but also frustrating because
they sometimes appear to be theoretically impenetrable! The trend is to reduce the size
of feature map with depth but increase the number of filters. Networks jump from con-
volutional to fully connected layers. What justifies these operations? Unfortunately, deep
learning does not have a deep theoretical basis to help us understand its performance. It
is a collection of algorithmic tricks that seem to usually work and are economically driven
by its success with self-driving cars, Google, IBM, etc. But this seems to be a natural
evolution of early scientific discoveries, make things intuitively work by trial and error, and
then make efforts to understand its theoretical basis. This is no different than the techno-
logical developments of farming, mining, and other practical tools, including full waveform

10CHAPTER 1. INTRODUCTION TOMACHINE LEARNING IN THEGEOSCIENCES

inversion. Eventually a deeper understanding of the theoretical basis of deep learning will
propel it forward to going beyond beyond brute-force interpolation.

Chapter 2

Data Prediction by Least Squares
Inversion

The goal of inversion is to find the model w that best predicts the target data t from input
data X. Here, the governing system of equations is represented by a system of equations
Xw = t that are, typically, overdetermined, inconsistent and ill-conditioned. No exact
solution exists so we seek the optimal model w∗ that gives the minimum prediction error
ǫ = 1

2 ||Xw − t||2 under the L2 norm. We show how regularization and preconditioners can
be used to alleviate problems with ill-conditioning, inconsistency and non-linearity. The
inordinate expense of using a direct method for solving a large system of equations forces
us to adopt the iterative solution method known as gradient optimization.

For general geophysical inversion, the elements of the target-data vector t can take on
any real-valued measurements, such as gravity readings, and the non-linear operator X is
characterized by the Newtonian physics of, e.g., a partial differential equation. In contrast,
classification by a neural network restricts the element values of t to be a restricted range
of numbers that indicate the class of the input data. For example, the input data might
be photographs of dogs and cats, and the classification problem is to classify the input as
either a cat where t1 = 1 and t2 = 0 or a dog where t1 = 0 and t2 = 1. In this case the
target vector is the 2×1 vector t = (t1, t2)

T . There is typically no governing equation based
on physics, instead the model w is extracted from patterns detected in a large amount of
input samples (X, t).

2.1 Least Squares Inversion

The key ideas underlying least squares inversion will be explained by the simple example
of determining the velocity of a motorcycle (see Figure 2.1a) as it travels down a gravel
road of length 5 km. The procedure is to estimate the slowness w = t/x, i.e. the inverse
speed, of the motorcycle by recording travel time t as a function of travel distance x. The
timing measurements (in units of seconds) are recorded every 1 km on a gravel road next
to the Bonneville Salt Flats (”https : //en.wikipedia.org/wiki/Bonneville Salt F lats”) in
Utah (see Figure 2.1a) . Five travel times and distances are recorded and stored in the
5× 1 vectors t and x, respectively. The combined data set (x, t) is known as a sample and

11

12 CHAPTER 2. DATA PREDICTION BY LEAST SQUARES INVERSION

contains errors in the traveltimes. We might also repeat the experiment at different sites
(for example, see Figure 2.1c) to give us a new sample (x′, t′); the total ensemble of samples
is known as the training data.

2.1.1 Overdetermined, Inconsistent, and Ill-conditioned Equations

The relationship that links x with t will be hypothesized, for now, to be a linear model
where

xw = t →

X
︷ ︸︸ ︷

x11
x21
x31
x41
x51

w
︷ ︸︸ ︷(
w1

)
=

t=observed times
︷ ︸︸ ︷

t1
t2
t3
t4
t5

→

0
1
2
3
4

(
w

)
=

0
0.102
0.33
0.50
0.80

, (2.1)

where X is the 5 × 1 input matrix of travel distances, w is the 1 × 1 slowness vector, and
t is the 5 × 1 vector of recorded traveltimes. The element value xij is equal to the dis-
tance traveled to the ith recording station with the motorcycle traveling at the jth slowness
value. The distances (units of km) and times (units of hours) associated with the above
equation are plotted in Figure 2.2a where t is assumed to be polluted with measurements
errors, denoted as noise. The goal is to find the best estimate of the slowness w.

Equation 2.1 is an M ×N system of equations where M = 5 is the number of equations
and N = 1 is the number of unknown slowness values. This is an overdetermined system
of equations because M > N . It is also an inconsistent set of equations because there is
no common solution. For example, the solution w = .102 hr/km to the 2nd-row equation
contradicts the solution to the 3rd-row solution w = .33/2 = .165 hr/km.

If there are many solutions that can nearly satisfy the same equations then this is
known as an ill-conditioned system of equations. For example, if the modeling equation is
w1+10−3w2 = t, then δt/δw2 = 10−3 → δw2 = 103δt, which says that a small change in the
traveltime δt will lead to a large change in the model w2. As an example, small traveltime
errors in the data will lead to unrealistically large changes in the model. The term δt/δwi

is denoted as a Frećhet derivative that characterizes the sensitivity of the data t to changes
in the ith model parameter.

2.1.2 Least Squares Solution

There is no exact solution to equation 2.1 so we need to define a criterion for best solution.
The one we will discuss for now is the least squares solution1 that minimizes the objective

1The least squares solution is sometimes known as regression because it the least squares solution is the
one that regresses to the average.

2.1. LEAST SQUARES INVERSION 13

b) Suggestion

c) Great Gravel Road to Great Salt Lake

a) Road next to Bonneville Salt Flats

Figure 2.1: Pictures taken on author’s motorcycle trip in Utah’s West Desert with views of
a) Bonnevile Salt Flat region, b) wildlife sign, and c) the Great Salt Lake.

14 CHAPTER 2. DATA PREDICTION BY LEAST SQUARES INVERSION

0.17 0.18 0.19

Trial Slowness=w (hr/km)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
or

m
al

iz
ed

 R
M

S
 E

rr
or

 (
se

c
2
)

b) Norm. RMS Error vs Trial Slowness

global minimum

0 1 2 3 4

b) Distance (km)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
(h

ou
r)

a) Distance vs Time

Avg. Speed = 5.5 km/hr

Figure 2.2: Plots for a) the observed t(x) (blue stars) and b) misfit function ǫ for trial values
of the slowness w. The dashed yellow line in a) represents the predicted times using the
least squares estimate of the velocity and the red star in b) indicates the global minimum
ǫ(w∗) where w∗ = 1/5.5 = 0.182 is the stationary point.

2.1. LEAST SQUARES INVERSION 15

Figure 2.3: Misfit function and contours for N = 2, where the vertex defines the global
minimum w∗ = (w∗

1, w
∗
2) at the red dot. The gradient ∇ǫ = (∂ǫ

∂w1
, ∂ǫ
∂w2

) points along the
steepest uphill direction and is perpendicular to the contour tangent (dashed line). See
exercises 3-6.

function2 ǫ, the sum of the squared residuals:

ǫ =
1

2

rT

︷ ︸︸ ︷

(Xw − t)T
r

︷ ︸︸ ︷

(Xw − t),

=
1

2
wTXTXw − tTXw +

1

2
tT t

=
1

2

M∑

i=1

(

r2i
︷ ︸︸ ︷

(Xw)i − ti)
2, (2.2)

where ǫ is also denoted as a data misfit function. Here, r is the M ×1 residual vector which
is the difference between the predicted times Xw and measured times t. For N = 1, ǫ plots
out as the parabola in Figure 2.2b for the motorcycle data, for N = 2 it describes the error
bowl in Figure 2.3, and for N > 2 it describes an N − 1-dimensional quadric surface.

The vertices of the parabola in Figure 2.2b and the error bowl in Figure 2.3 define the

2The machine learning community often denotes ǫ as the loss function, which can take many forms; ǫ is
also known as a data misfit function if there is no regularization.

16 CHAPTER 2. DATA PREDICTION BY LEAST SQUARES INVERSION

global minimum w∗ where the gradient ∇ǫ = is zero. This zero-slope condition3 is written
as

∂ǫ

∂wk

∣
∣
∣
∣
w=w∗

= 0, ∀ k, (2.3)

where the kth component of the N × 1 misfit gradient vector is explicitly written as

∇ǫk =
∂ǫ

∂wk
=

M=5∑

i=1

ri
∂ri
∂wk

,

=

5∑

i=1

ri=
∑N

n=1 xinwn−ti
︷︸︸︷
ri

∂ri/∂wk=
∑N

n=1 xin∂wn/∂wk=
∑N

n=1 xinδnk=xik
︷ ︸︸ ︷

∂(
∑N

n=1 xinwn − ti)

∂wk
,

=

(XT (Xw−t))k
︷ ︸︸ ︷

5∑

i=1

xik(

N∑

n=1

xinwn − ti), (2.4)

and the Kronecker delta function is defined to be δik = 1 if i = k, otherwise δik = 0. Notice
that the outermost summation

∑5
i=1 xikri in the last line is over the row index i of the

element xik, so in matrix-vector notation this is equivalent to multiplying the transpose
matrix XT by the residual vector r.

Setting the derivative in equation 2.4 to be zero ∀ k and rearranging gives the normal
equations4

[XTX]w = XT t. (2.5)

The least squares solution to the normal equations is

w = [XTX]−1XT t, (2.6)

which minimizes the sum of the squared residuals. See Box 2.1.1 for the least squares
solution to equation 2.1.

3Equation 2.3 is considered to be a stationary condition because ǫ does not change much over a small
range of w at the bottom of the, for example, green curve in Figure 2.2.

4These are called normal equations because they can be multiplied by w
T and rearranged into the form

w
T
X

T (Xw − t) = (Xw,Xw − t) = 0. This says that w
∗ gives the predicted traveltime vector Xw

∗ that
is perpendicular to the residual vector Xw

∗ − t. Here, the parentheses indicate the inner product between
two vectors.

2.1. LEAST SQUARES INVERSION 17

Box 2.1.1. Least Squares Solution to Equation 2.1

For equation 2.1, there is only one unknown inw = (w) so that the stationary condition
for equation 2.2 is

∂ǫ

∂w
=

5∑

i=1

xi1(xi1w − ti) = 0. (2.7)

Rearranging and solving for w gives

w =

[XTX]−1

︷ ︸︸ ︷

1
∑5

i=1 x
2
i1

XT t
︷ ︸︸ ︷

5∑

i=1

xi1ti = 0.182. (2.8)

The stationary value w∗ = 0.182 hr/km is at the global minimum indicated by the red
star in Figure 2.2b.

2.1.3 Regularized Least Squares Solution

If there is a timing error δti at each of the ith recording stations so that ti → t0i + δti, then
equation 2.8 becomes

w =

wo
︷ ︸︸ ︷
∑5

i=1 xi1t
0
i

∑5
i=1 x

2
i1

+

δw
︷ ︸︸ ︷
∑5

i=1 xi1δti
∑5

i=1 x
2
i1

, (2.9)

where wo is the true slowness and δw is the slowness error caused by timing errors. If the
distances xi1 are very small5 then the denominator in 1∑

x2
i1

can be close to zero and so

amplify timing errors δti > xi1 into a large slowness error |δw| = |
∑5

i=1 xi1δti∑5
i=1 x

2
i1

| >> 0. To

avoid this near-zero-divide instability we add a positive regularization term η > 0 to the
denominator so that equation 2.8 becomes the regularized solution:

w =

∑5
i=1 xi1ti

∑5
i=1 x

2
i1 + η

, (2.10)

where η is typically set to be between 1% and 5% of the largest diagonal value of the matrix
XTX. This regularization parameter η > 0, also known as the damping term, increases
the value of the denominator and thereby prevents an unstable near-zero divide and the
strong amplification of data errors (Menke, 1984). The cost, however, is a loss of accuracy
in the final solution. As discussed in Box 2.1.2, an unstable system of equations can be
characterized by several properties: gentle slopes in the objective function ∂ǫ

∂w ≈ 0 and large
condition numbers associated with XTX. See exercises 1-2.

5For example, assume that the five timing stations are spaced at 0.001 km intervals. In this case the
timing errors can be very large compared to xi1 and so generate enormous slowness errors.

18 CHAPTER 2. DATA PREDICTION BY LEAST SQUARES INVERSION

2.1. LEAST SQUARES INVERSION 19

Box 2.1.2. Small Curvatures and Large Condition Numbers of XTX → Unstable
Solutions

The green curves in Figure 2.4 depict a) stable and b) less-stable misfit functions based on the
magnitude of xi1 in X. The larger value of xi1 = 0.001 in Figure 2.4a leads to the parabola with
steeper sides (green line) compared to the gently dipping one in Figure 2.4b where xi1 = 0.00011.
The flatter green parabola in b) means that there is a wider range of w values, i.e. a more
unstable solution, that can give almost the same misfit error as that at the global minimum
(green star). Equivalently, this means that a small amount of data noise can lead to a large
change in the model. This is an example of an ill-conditioned system of equations that forms
the objective function.

If the curvature ∂2ǫ
∂w2 is close to zero at w∗:

∂2ǫ

∂w2
= lim

δw→0
[
ǫ

∂w

∣
∣
∣
w=w∗+δw

− ǫ

∂w

∣
∣
∣
w=w∗

] ≈ 0, (2.11)

then the slope ∂ǫ
∂w

hardly changes around the zero-slope point w∗. This means that there
are many solutions that almost minimize the sum of squared residuals For equation 2.7 the
curvature is

∂2ǫ

∂w2
=

5∑

M=1

x2
i1, (2.12)

which confirms that ∂2ǫ
∂w2 ≈ 0 when |xi1| ≈ 0 ∀ i.

A general indicator of an unstable system of equations is that the condition number |λmax/λmin|
of the matrix XTX is large, where λmax (λmin) is the maximum (minimum) eigenvalue of the
matrix. Recall that the ith orthogonal eigenvector xi of the symmetric positive definite matrix6

XTX is defined as

XTXxi = λixi, (2.13)

where λi is the eigenvalue for the eigenvector xi. This means that the solution to the N ×N
normal equations 2.5 can be expanded into a sum of N weighted eigenvectors

w =

N∑

i=1

βixi. (2.14)

The unknown coefficients βi can be found by inserting equation 2.14 into the normal equations
XTXw = XT t, taking its dot product with the ith eigenvector xi, and solving for βi to get

βi =
(xi,X

T t)

λi

. (2.15)

This says that if there are small timing errors δt in (xi,X
T (t + δt)) then they will strongly

amplified if the ith eigenvalue λi is small compared to errors associated with much larger
eigenvalues. Thus, normal equations with condition numbers |λmax|/|λmin| larger than about
104 should be regularized.

20 CHAPTER 2. DATA PREDICTION BY LEAST SQUARES INVERSION

The damping term η in equation 2.10 was introduced in an ad hoc fashion to mitigate
large errors in w due to an unstable system of equations. A more rigorous derivation is
obtained by defining the objective function to be the weighted sum of data misfit rT r =
(Xw − t)T (Xw − t) (green curves in Figure 2.4) and model penalty wTw (red curves in
Figure 2.4) functions:

ǫ =

data misfit= 1
2

∑
i r

2
i

︷ ︸︸ ︷

1

2
(Xw − t)T (Xw − t) +

model penalty= 1
2
η
∑

i w
2
i

︷ ︸︸ ︷

1

2
ηwTw ,

=
1

2
wT [XTX+ ηI]w − tTXw +

1

2
tT t, (2.16)

which plots out as the blue curves in Figure 2.4. The derivative of equation 2.16 with
respect to wk yields the kth component of the misfit gradient:

∂ǫ

∂wk
=

1

2

∂
∑

i r
2
i

∂wk
+

η

2

∑

i

∂w2
i

∂wk
,

=

(XT (Xw−t))k
︷ ︸︸ ︷
∑

i

xikri +

(ηIw)k
︷︸︸︷
ηwk , (2.17)

where I is the N × N identity matrix. Setting this gradient component to zero ∀k ∈
[1, 2 . . . N] and rearranging yields the regularized normal equations

[XTX+ ηI]w = XT t, (2.18)

which is solved by the regularized least squares solution:

w = [XTX+ ηI]−1XT t. (2.19)

As a special case, setting the derivative in equation 2.17 to zero, renaming wk → w and
solving for w gives equation 2.10.

The interpretation of equation 2.16 is that large values of η will favor solutions w that
are near the origin, but at the expense of a larger data misfit function ||r||2. As an example,
the global minimum w∗ (blue star) for the blue curve in Figure 2.4b is closer to the origin
than that in Figure 2.4a because η is 20% for b) and only 10% for a). However, if η is not
too large then the damped solution (blue star) is close enough to the undamped solution
(green star) with an acceptable loss of precision.

2.1.4 Gradient of ǫ

The gradient vector ∇ǫ in Figure 2.3 points uphill along the steepest ascent direction. To
prove this, define the vector

w = wo +∆w, (2.20)

2.1. LEAST SQUARES INVERSION 21

0 0.05 0.1

Trial Slowness=w (hr/km)

-0.5

0

0.5

1

1.5

2

2.5

O
bj

ec
tiv

e
F

un
ct

io
ns

10-3 a) vs w

 rT r wT w

 rT r+ wT w = 10%

xi1 = 0.001

0 0.05 0.1

Trial Slowness=w (hr/km)

-0.5

0

0.5

1

1.5

2

2.5

O
bj

ec
tiv

e
F

un
ct

io
ns

10-3 b) vs w

xi1 = 0.00011

 = 20%

Figure 2.4: Values of the objective functions rT r (green curves), wTw (red curves) and
rT r+ηwTw (blue curves) plotted against trial values of w for the motorcycle equations 2.1.
Here, there is no noise in the data so that (XTw−t)T (XTw−t) = 0 at the global minimum
denoted by the green stars. In contrast, the minimizer w∗ for (Xw− t)T (Xw− t)+ ηwTw
is non-zero and is closer to w = 0 for b) η =20% compared to a) η =10%. Larger values of η
reward solutions with smaller length wTw ≈ 0. In addition, the slope of the green parabola
is gentler for b) smaller values of xi1 = .00011 compared to larger values in a) xi1 = .001 in
a).

22 CHAPTER 2. DATA PREDICTION BY LEAST SQUARES INVERSION

where ∆w is a specified vector with very small magnitude. Expanding ǫ(w) in a Taylor
series about wo, truncating after the first-order term in ∆w and rearranging gives:

ǫ(w)− ǫ(wo) = ∇ǫ(w)T
∣
∣
∣
w=wo

∆w, (2.21)

where ∇ǫ = (∂ǫ
∂w1

, ∂ǫ
∂w2

. . . ∂ǫ
∂wN

)T and ∆w = (w1, w2 . . . wN)T . If ∆w is pointing to a close
neighboring point on the same contour that passes through wo then ǫ(wo +∆w) = ǫ(wo),
which implies (∇ǫ(wo + ∆w),∆w) = 0. This means that ∇w is perpendicular to the
contour’s tangent vector at wo. Furthermore, if we redefine ∆w to be a unit vector now
pointing uphill and perpendicular to the contour at wo then ǫ(w) − ǫ(wo) = ∇ǫT∆w =
|∇ǫ| > 0.

As illustrated in Figure 2.3, the gradient vector points uphill along the steepest ascent
direction. Therefore, −∇ǫ points downhill along the steepest descent direction as shown in
Figure 2.5. This compares to the regularized gradient in equation 2.17 which points more
towards the origin in Figure 2.5 because it is a weighted sum of the misfit gradient and the
penalty function wTw, which points toward the origin. In fact, if η >> 0 then the penalty
term dominates and ∇ǫ points at the origin.

The Gauss-Newton arrow ∆w in Figure 2.5 points toward the global minimum at w∗

with

∆w = [XTX]−1XT∆t, (2.22)

where ∆t = t− t′, ∆w = w∗ −w′ and

Xw′ = t′. (2.23)

Equation 2.22 can be proven by recalling that the optimal w∗ for the given traveltimes t
satisfies w∗ = [XTX]−1XT t. The sub-optimal model w′ predicts the traveltimes t′ that
exactly satisfy equation 2.23 but these traveltimes are not the same as the recorded ones t.
Multiplying equation 2.23 by XT and inverting gives

w′ = [XTX]−1XT t′. (2.24)

Subtracting w′ from w∗ = [XTX]−1XT t gives the Gauss-Newton direction ∆w = w∗ −w′

where

∆w = [XTX]−1XT t− [XTX]−1XT t′,

= [XTX]−1XT

∆t
︷ ︸︸ ︷

(t− t′) . (2.25)

Substituting ∆w = w∗−w into the above equation and rearranging gives the Gauss-Newton
update formula for non-linear inversion:

w∗ = w′ + [XTX]−1XT∆t. (2.26)

This formula is the starting point for many gradient descent methods that iteratively search
in downhill directions for the global minimum. See section 2.2.

2.1. LEAST SQUARES INVERSION 23

Newton
steepest descent

Levenberg-Marquardt

w

w

1

2

w’

w*

Figure 2.5: Elliptical contours associated with ǫ(w) and the gradient vectors associated
with the Gauss-Newton, Levenberg-Marquardt, and steepest descent directions. Here, the
Levenberg-Marquardt gradient is also known as the regularized gradient.

24 CHAPTER 2. DATA PREDICTION BY LEAST SQUARES INVERSION

2.1.5 Preconditioning

If the number of unknowns N = 2 so that w = (w1, w2), then the objective function
ǫ = 1/2||Xw − t||2 can be described by the second-order polynomial

ǫ = aw2
1 + bw2

2 + cw1w2 + dw1 + ew2 + f, (2.27)

where (a, b, c, d, e, f) are functions of the input data. As a simple example, set c = d = e =
f = 0 so equation 2.27 can be rewritten as

ǫ =
(
w1 w2

)
[
a 0
0 b

](
w1

w2

)

, (2.28)

so that ǫ plots out as the concentric circles in Figure 2.6a for a = b, or as the ellipses in in
Figure 2.6b for (a, b) = (1, .01). If a >> b then the ellipse become much taller than it is
wide and leads to unstable solutions as discussed in Box 2.1.2. For example, a small value of
b says that | ∂ǫ

∂w2
|, | ∂2ǫ

∂w2
2
| ≈ 0 so that large changes in w2 lead to small changes in ǫ. Another

way of saying this is that small changes in δt and, consequently, ǫ can lead to large changes
in w2. In contrast, the steep dip of the ellipse along the w1 axis says that |∂ǫ/∂w1| >> 0
so that w1 is not affected too much by small timing errors.

The 2× 2 matrix X associated with equation 2.28 is given by

X =

[
a1/2 0

0 b1/2

]

. (2.29)

Here, X is severely ill-conditioned if |a1/2| >>> |b1/2| so that the associated ellipses of ǫ
appear as long-narrow valleys. To transform these narrow valleys into rounder contours a
diagonal preconditioner matrix C

C =

[
a−1/2 0

0 b−1/2

]

. (2.30)

can be multiplied by the original equations to give

CXw = Ct, (2.31)

where [C]ij = 1
[X]ii

δij . In this case, CX = I and has unit-valued eigenvalues λ1 = λ2 = 1

where the condition number |λ2|/|λ1| = 1. Thus, the associated objective function of
1
2 ||C(Xw − t)||2 plots out as round circles.

Normalizing each row of X by CX so it has about the same strength as the other ones
is one type of preconditioning method7 for accelerating convergence of iterative gradient
methods. Preconditioning the data is also used in neural networks (see Chapter 6) where it
is recommended that there should be the same number of data examples for any one type. A
similar preconditioning is used for illumination compensation of seismic data (Rickett, 2003)
where the weak strength of deep reflections is compensated to balance out the amplitudes
of much stronger early arrivals recorded near the source.

7Using a diagonal preconditioner is sometimes known as scaling (Nocedal and Wright, 1999)

2.1. LEAST SQUARES INVERSION 25

b) ǫ = 1w
x
2 + 0.1w

y
2

-5 0 5 10

w
x

-5

0

5

10

w
y

a) ǫ = 1w
x
2 + 1w

y
2

-5 0 5 10

w
x

-5

0

5

10

w
y

Figure 2.6: Contours of objective function aw2
1 + bw2

2 for a) (a, b) = (1, 1) and b) (a, b) =
(1, 0.1).

If the system of equations is that for the normal equations then, in general, C is selected
so that

C[XTX]C−1Cw = CXT t, (2.32)

where the eigenvalues ofC[XTX]C−1 are more favorable for convergence. For example, con-
struct C so that the condition number of C[XTX]C−1 is much smaller than that for [XTX].
The condition number can also be lowered by clustering the eigenvalues of C[XTX]C−1

(Nocedal and Wright, 1999).

2.1.6 Overfitting Data

Equation 2.1 assumes that the simple one-dimensional model w = (w) can explain the data.
The result is a system of equations that is inconsistent because of, presumably, timing errors.
However, the timing expert might disagree and say the data errors are too small to account
for deviations from the dashed line in Figure 2.2a: we must have used the wrong physics to
explain the data! Instead of the linear model t = x/v, a quadratic model with polynomial
order P = 2 in x might be a better fit where

t = w1x+ w2x
2. (2.33)

26 CHAPTER 2. DATA PREDICTION BY LEAST SQUARES INVERSION

0.095 0.1 0.105

Trial Slowness=w (hr/km)

0.8

1

1.2

1.4

1.6

1.8

2

10
3
 ×

 M
is

fit
 F

un
ct

io
n

(s
ec

2
)

b) Misfit Function vs Trial Slowness

global minimum

w-1 = (10.1, 40.1)

Misfit Function: (Xw-t)T(Xw-t)

0 1 2 3 4

b) Distance (km)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
(h

ou
r)

a) Distance vs Time

Avg. Speed = 10.1 km/hr

Figure 2.7: Same as Figure 2.2 except the quadratic equation t = w1x + w2x
2 is used to

fit the motorcycle data. In this case, w∗ = (0.099, 0.025) = (1/10.1, 1/40.1) and ǫ is only
plotted along the slowness component w1, with w2 = 0.025.

In this case, the corresponding system of equations for the motorcycle data becomes

X
︷ ︸︸ ︷

x11 x211
x21 x221
x31 x231
x41 x241
x51 x251

w
︷ ︸︸ ︷
(

w1

w2

)

=

t=observed times
︷ ︸︸ ︷

t1
t2
t3
t4
t5

→

0 0
1 12

2 22

3 32

4 42

(
w1

w2

)

=

0
0.102
0.33
0.50
0.80

. (2.34)

The intuitive motivation for this quadratic model is that the motorcycle speed increases
towards the end of the road as it becomes more paved. Thus, the quadratic term w2x

2

dominates when x is large near the end of the road.

As an example, Figure 2.7 depicts the results from fitting the quadratic equation 2.33
to the motorcycle data. Comparing Figures 2.2 and 2.7, the quadratic model gives the
closest fit to the data in a) and has about 1/7 the misfit error of the linear model. This
result suggests that the misfit error can be further decreased by increasing the order P of
the polynomial model. Unfortunately, increasing P > M will yield an underdetermined

2.1. LEAST SQUARES INVERSION 27

system of equations where there are more unknowns P than the number M of equations8.
The least squares solution will then give a misfit error of zero, but at the cost of overfitting
the data where the complexity of the model exceeds that of the noise-free data. In this case
the higher-order polynomials are being fitted to the rapidly varying noise in the data.

Instead of a polynomial, one might suggest a high N-dimensional linear model:

ti =

N∑

j=1

xijwj , (2.35)

where w is the N×1 model vector and xij are unphysical weights specified by the mechanic.
If these weights are specified to give rise to an XTX matrix that is invertible then this model
will also overfit the data. For example, the two equations w1 = 1 and w1 = 2 are inconsistent
and generate non-intersecting lines in the coordinate-space (w1, w2). Increasing the number
of unknowns to include w2 so that the model equations are w1 = 1 and w1 + .4w2 = 2
gives a consistent set of equations where the associated lines have a common intersection in
(w1, w2).

Sanity Test for Overfitting

How can we determine if the complexity parameter P of the proposed model is higher than
that in the noiseless data? The machine learning learning community tries to answer this
question by randomly dividing the entire training data set into several parts: training data,
test data and validation data. One possibility is to use 90% of the original data for validation
and determine the best model w and regularization parameters. The remaining 10% is used
for testing. For the motorcycle example this would mean repeating the time trials many
times to get a large set of training data.

Wikipedia makes the following claims (https : //en.wikipedia.org/wiki/Training test and validation sets
Validation datasets can be used for regularization by early stopping: stop training when the
error on the validation dataset increases, as this is a sign of overfitting to the training
dataset. This simple procedure is complicated in practice by the fact that the validation
dataset’s error may fluctuate during training, producing multiple local minima. This com-
plication has led to the creation of many ad-hoc rules for deciding when overfitting has truly
begun. Finally, the test dataset is a dataset used to provide an unbiased evaluation of a final
model fit on the training dataset.

Confusingly the terms test dataset and validation dataset are sometimes used with swapped
meaning. As a result it has become commonplace to refer to the set used in iterative training
as the test/validation set and the set that is used for hyperparameter tuning as the holdout
set.

As an example of tuning the architecture of the model, consider a model w with com-
plexity P that is first fitted to the validation data, and then it is tested against the holdout
data. The misfit error for the holdout data is denoted as ǫ(P). This procedure is repeated
except a model with different complexity value P ′ is computed from the training data, and

8In fact, if P = N − 1 and a column of 1′s, also known as the bias vector, is appended to the matrix then
its transpose is a Vandermonde matrix (Golub and van Loan, 1996), which is notoriously unstable for large
values of P .

28 CHAPTER 2. DATA PREDICTION BY LEAST SQUARES INVERSION

0 5 10 15 20 25 30 35

Polynomial Order P

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
es

t M
is

fit
 F

un
ct

io
n

Test Misfit vs P

Overfitted DataProperly Fitted Data

Figure 2.8: Ideal misfit error ǫ plotted against the order P of the polynomial. The misfit
values ǫ are for the holdout data using the parameters obtained from the distinct training
dataset.

then tested against the holdout data to give ǫ(P ′). The misfit errors ǫ(P) are plotted as a
function of the complexity parameter P , which is shown in Figure 2.8 as an idealized plot.

If the model complexity is less than that of the noiseless data then the misfit error should
decrease as P increases as long as the validation data is of the same type as the test data.
A counterexample is if the training data were drawn from time trials of road motorcycles
while those from the holdout data were drawn from time trials of all-terrain vehicles with
four-wheel drive.

If the model complexity P becomes greater than that of the noiseless data, then the
optimal model w∗ obtained from the training data has largely been fitted to the noise in
that data. This is realized on the rightside of the inflection in Figure 2.8 as the misfit
error from the holdout data increases. A strategy for dividing up the data into different
sets is also used for cross-validation studies (Golub and von Matt, 1997). See https :
//en.wikipedia.org/wiki/Training test and validation sets for further details.

2.2. STEEPEST DESCENT OPTIMIZATION 29

2.1.7 Inclusion of Bias Factor

Assume that the timing clock was not properly calibrated before the motorcycle trial so that
the registered starting time consisted of an error of ∆τ = 0.1 hour for the x = 0 position.
This time-shift error will be inherited by the times recorded at the other 4 stations. Unless
this bias is corrected, the estimated velocity errors will be large.

To account for this timing bias the linear model in equation 2.1 should be changed to

t = w0 + w1x, (2.36)

where w0 is the bias term. In this case the system of equations in equation 2.1 becomes

X
︷ ︸︸ ︷

1 x11
1 x21
1 x31
1 x41
1 x51

w
︷ ︸︸ ︷
(

w0

w1

)

=

t1
t2
t3
t4
t5

, (2.37)

where the least squares solution (w∗
0, w

∗
1) can now be computed to accurately predict the

data.
The importance of accurately estimating the bias term w0 is similar to estimating an

accurate starting model for seismic inversion. That is, cycle-skipping problems can be
mitigated if an accurate low-wavenumber model is used to account for the bulk of an event’s
traveltime (Schuster, 2017). As we will discover in later chapters, almost all neural network
models include a bias term in their mathematical formulations (Bishop, 2007).

2.2 Steepest Descent Optimization

Defining w∗ → w(k+1), w′ → w(k), t′ = t(k), and ∆τ
(k) = t(k) − t in equation 2.26 gives

the Gauss-Newton iteration formula (Nocedal and Wright, 1999)

w(k+1) = w(k) − [XTX]−1XT∆τ
(k), (2.38)

where ∆τ
(k) = t(k) − t is the data-residual vector at the kth iteration. For a linear system

of equations with a well-conditioned [XTX], the global minimum should be reached in one
iteration. However, the inverse to [XTX] is too expensive to compute for large data sets
so its inverse is approximated by the diagonal matrix [XTX]−1

ij ≈ 1
[XTX]2ii

δij to give the

preconditioned steepest descent formula:

w
(k+1)
i = w

(k)
i − α

1

[XTX]2ii
(XT∆τ

(k))i, (2.39)

where α is a step length that can be numerically determined by a numerical line search
(Gill, 1981) that w(k+1) reduces the misfit error as much as possible9. Unlike the Gauss-
Newton formula for linear systems, equation 2.39 does not typically give the right answer

9For a linear system of equations, there is an analytic formula for the step length, but it is typically not
used for the non-linear problems addressed by the neural network method.

30 CHAPTER 2. DATA PREDICTION BY LEAST SQUARES INVERSION

a) Steepest Descent

-200 -150 -100 -50 0 50
-50

0

50

100
b) Precond. Steepest Descent

-200 -150 -100 -50 0 50
-50

0

50

100

Figure 2.9: Iterative solutions to equation 2.41 by the a) steepest descent and b) precondi-
tioned steepest descent methods.

for one iteration. Therefore this formula is used repeatedly to give updated solutions until
convergence. The sequence of steps is as follows.

1. Specify k = 0 and a starting guessed solution w(0). The starting solution is used to
give the predicted traveltimes w(0) = t(0) and the residual ∆τ

(0) = t(0) − t.

2. Equation 2.39 is used to estimate w(k+1) after a suitable step length is computed. We
will discuss step lengths in the next chapter, but for now conveniently set α = .01

3. Compute the new predicted traveltime vectorw(k+1) = t(k+1) and the residual ∆τ
(k+1) =

t(k+1)−t. If the length ||r(k+1)|| of the residual vector falls below some specified limit,
stop. Otherwise redefine k := k + 1 and repeat steps 2-3 until convergence.

If regularization and preconditioning are used then the preconditioned-regularized steepest
descent formula is (see exercise 11):

w
(k+1)
i = w

(k)
i − α

1

[XTX]2ii
(XT∆τ

(k) + ηw(k))i, (2.40)

where η is the regularization parameter. The next chapter will examine the properties
of the steepest descent method applied to a non-linear system of equations, which is the
optimization technique for the neural network method.

Figure 2.9 presents the results of using both the steepest descent and preconditioned
steepest descent methods in solving an overdetermined system of equations. In this case
the system of equations is given by

4 6
2 5
0 3
1 4

(
w1

w2

)

10
7
3
5

, (2.41)

and it is obvious that the preconditioned steepest descent is more than 5 times faster than
the steepest descent method. A fragment of a MATLAB steepest descent code is below.

2.3. SUMMARY 31

H=X’*X;

for i=1:100

g=X’*(X*w-t); % gradient

alpha=g’*g/(g’*H*g); % step length

w=w-alpha*g; % model update

r=X*w-t; % residual

If r*r <=.0001;i=100;end

end

where H = XTX is the Hessian matrix and α = gTg/(gTHg) is the exact step length for
an objective function that is exactly quadratic in the model parameters. This step-length
formula is derived in Appendix 2.5 but is typically not used if the modeling parameters
are not linearly related to the data, which is almost always the case for neural networks or
seismic inversion.

2.3 Summary

Systems of equations Xw = t can be ill-conditioned, inconsistent, and overdetermined. In
these cases the regularized least squares solution w∗ minimizes a weighted combination of
data misfit ||Xw− t||2 and penalty η||w||2, where η is the regularization parameter. A bias
column vector is often appended to X to account for bulk shifts in the input data t. The w∗

solves the regularized normal system of equations in equation 2.16, which is now an N ×N
consistent set of equations. The solution avoids unstable models far from the origin, but at
the loss of some precision for noiseless data. Another way to reduce the condition number
is by applying the precondition matrix C to XTX such that C[XTX
CT is more well conditioned. For practical reasons, the scaling preconditioner matrix is
used which is a diagonal matrix with the ith diagonal element equal to the reciprocal of
[XTX]ii.

Overfitting can be an issue when the complexity of the hypothetical model becomes
greater than that of the theoretical model. This can lead to the problem of the theoretical
model explaining both the signal and the noise. One ad hoc remedy is to divide the training
data into several data sets, and once the optimal parameters of the model are found on
validation/testing data, determine their effectiveness of the holdout data.

The penalty function can be the misfit between an a priori model w0 and the estimated
one, in which case it takes the form ||w −w0||2. This is known as a model misfit function.
The tradeoff between honoring the data misfit and penalty functions is determined by the
value of the regularization parameter η. The penalty function can be defined to enforce
certain characteristics of the model, such as the final model should smoothly vary in the
spatial coordinates. In this case the penalty function can be, e.g.,

∑

i(
∂nw
∂xn

i
)2, where n is

the specified order of the spatial derivative.

We learned the meaning of the following terms used in the machine learning (ML)
community.

• Ill-conditioned, inconsistent, and overdetermined system of equations.

32 CHAPTER 2. DATA PREDICTION BY LEAST SQUARES INVERSION

• Objective function, misfit function, and penalty function. The objective function is
often denoted as the loss function in the ML community.

• Training data, validation data, and testing data. The training data are divided into
several data sets and used to decide which is the best model and regularization pa-
rameters should be used without overfitting the data. Details for implementing this
anti-overfitting strategy will be given in the chapter in neural networks.

• Normal equations, least squares solution, preconditioning and regularized least squares
solutions. Regularized least squares is sometimes denoted as damped least squares.

• The bias term is used to account for bulk shifts in the data and is almost always used
for neural network methods.

• Iterative optimization methods, Gauss-Newton method for a linear system of equa-
tions, the steepest descent method, and the regularized and preconditioned steepest
descent method.

For most geoscience problems, the number of unknowns is too large for a direct inverse
to [XTX+ ηI], which will cost O(N3) algebraic operations. The alternative is an iterative
solution method that costs O(KN2), where the number of iterations is K <<< N , we hope!
Regularized and preconditioned gradient optimization, which will be discussed in the next
chapter, is the solution method used for neural networks.

2.4 Exercises

1. Why don’t we allow the regularization parameter η in equations 2.9 or 2.10 to be less
than zero?

2. For noiseless data where δti = 0, derive the formula for the error δw introduced by
the damping parameter η = .01xi1 in equation 2.10. Hint: Recall the approximation

1
x2+η

≈ 1
x2 (1− η

x2) for η << x2.

3. Define w = wo + αŝ where α is a scalar and ŝ is a specified unit vector. Show that
∂f(w)
∂α = ŝT∇f(w), which is known as a directional derivative. Explain why ∂f(w)

∂α
gives the slope of f(w) in the direction ŝ.

4. Assume a function f(w) that can be approximated by a first-order Taylor series
expanded about the point wo:

f(w)− f(wo) =
∂f(wo)

∂w1
δw1 +

∂f(wo)

∂w2
δw2,

= δwT∇f(wo), (2.42)

where w = (w1, w2)
T , δwT = (δw1, δw2) and the magnitude |δw| is very small. If wo

is on the contour where f(wo) = cnst and w = wo + δw is on the same contour then
f(w) = f(wo) and δw is parallel to the tangent of the contour at wo. Therefore, the
leftside of the above equation is zero if w and wo are on the same contour. Explain

2.4. EXERCISES 33

why this also says that the gradient ∇w = (∂f(w)
∂w1

, ∂f(w)
∂w2

)T is perpendicular to the
tangent of this contour.

5. Prove that ∇f(wo) points toward increasing values of f(w) by defining δw in equa-
tion 2.42 to be pointing uphill where f(w = wo+ δw) > f(wo). Hint: recall that two
vectors point in similar directions if (x,y) = |x||y| cos θ > 0.

6. Prove that ∇f(w) is parallel to the direction of maximum increase in f(w) at w.

7. Define the second-order Taylor expansion of f(x) about wo as

f(w) = f(wo) +
2∑

i=1

∂f(wo)

∂wj
δwi +

1

2

2∑

j=1

2∑

i=1

∂2f(wo)

∂wi∂wj
δwiδwj , (2.43)

and define ∇f(wo) = (∂f(wo)
∂w1

, ∂f(wo)
∂w2

)T . Show that equation 2.43 can be written as

f(w) = f(wo) + δwT∇f(wo) +
1

2
δwTHδw, (2.44)

where

H = [∇∇T]f(wo) =

∂2f

∂w2
1

∂2f

∂w1∂w2

∂2f

∂w1∂w2

∂2f

∂w2
2

. (2.45)

Show that ŝTHŝ gives the curvature of f(w) along the direction specified by ŝ. Hint:
Define w = wo + αŝ so that

d2f

dα2
=

d

dα

df

dα
=

d

dα
[(∇f)T ŝ] = ŝT [∇(∇f)T]ŝ = ŝT

Hessian
︷ ︸︸ ︷

[∇∇T f(w)] ŝ. (2.46)

8. Can there ever be more than one isolated minimum for a quadratic function? Prove
your answer. Can there ever be more than one isolated minimum for a non-quadratic
function?

9. Same question as the previous one except find the maximum and minimum curvatures
of the Rosenbrock function instead of the slope. What is the curvature along the slope
direction?

10. Prove that the gradient vector of f(x) is perpendicular to the contour line tangent at
x and points uphill. Hint: f(x) does not change along a contour, so the directional
derivative along the tangent df(x)/dt → 0. This says that df(x)/dt = dxT /dt∇f(x) =
0.

11. Starting from the regularized objective function, derive equation 2.40.

34 CHAPTER 2. DATA PREDICTION BY LEAST SQUARES INVERSION

2.5 Appendix: Exact Step Length

The derivation of the step length for the exact line search is now given. The 1D line search
problem is defined as finding the optimal value of the scalar α that minimizes ǫ(w+α∆w)
for a fixed w and ∆w. Without loss of generality, we can set w = 0 + α∆w and η = 0 in
equation 2.16 to get

ǫ(w + α∆w) =
1

2
α2(w +∆w)T [XTX](w +∆w)− αtTX(w +∆w) +

1

2
tT t,

=
1

2
α2∆wT [XTX]∆w +

1

2
α2wT [XTX]w + α2∆wT [XTX]w

−tTX(w +∆w) +
1

2
tT t. (2.47)

Setting η = 0 in equation 2.16 and subtracting it from equation 2.47 gives

ǫ(w + α∆w)− ǫ(w) =
1

2
α2∆wT [XTX]∆w + α∆wTXT (Xw − t). (2.48)

Differentiating the above equation with respect to α and setting the result equal to zero
yields the stationary condition where ǫ(w + α∆w) achieves a minimum along the steepest
descent direction ∆w:

∂ǫ(w + α∆w)

∂α
= α∆wTH∆w +∆wTg,

= 0, (2.49)

where the N×N Hessian matrix is defined as H = XTX and the gradient is g = XT (Xw−
t). Solving for α gives the exact step length:

α =
−gT∆w

∆wTH∆w
. (2.50)

This step-length calculation is exact if ǫ(w) is a quadratic functional. For the steepest
descent method ∆w = −g so that

α =
gTg

gTHg
. (2.51)

For non-linear problems, such as neural networks or full waveform inversion, this exact line
search formula does not work well because it is suited only for linear problems where the
data and model are linearly related. For non-linear problems a numerical line search method
is used to find α.

Chapter 3

Non-Linear Gradient Optimization

Many geophysical problems have a non-linear relationship between the data t and the
actual earth model w. This means that the misfit function is more wiggly than a quadratic
function, leading to a misfit function with many local minima. Such holes can easily trap
an iterative gradient method into a solution far from the global minimum. In this case
non-linear gradient and multiscale optimization methods can be used to sometimes steer
clear of such traps and converge to near the global minimum. This chapter now presents
an overview of such methods applied to simple problems. Lessons learned can be used to
help understand problems with the neural network method. Non-linear optimization is also
the starting point for deriving the neural network method, as will be shown in the next
Chapter.

3.1 Non-linear Gradient Optimization

The previous chapter mainly addressed the linear problem where the data t were linearly
related to the model w by the modeling equation Xw = t, where the elements in X were
independent of the model. However, many geophysical problems are non-linear where the
X is a function of the model parameters. For the motorcycle time trials, the modeling
equation 2.1 might be non-linear such that

xw3 = t, (3.1)

and the goals is to find the optimal value of w that explains the inconsistent timing data.
In this case equation 2.1 becomes

xw3 = t →

X(w)
︷ ︸︸ ︷

w2
1x11

w2
1x21

w2
1x31

w2
1x41

w2
1x51

w
︷ ︸︸ ︷
(
w1

)
=

t=observed times
︷ ︸︸ ︷

t1
t2
t3
t4
t5

, (3.2)

where X(w) now depends quadratically on the model w we are inverting for.

35

36 CHAPTER 3. NON-LINEAR GRADIENT OPTIMIZATION

0 0.1 0.2

Trial w (hr/km) 1/3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 M
is

fit
 F

un
ct

io
n

(s
ec

2
)

b) Misfit Function vs Trial w

1

5

Modeling eqn.: t = w3x

Misfit func.: (Xw - tT)(Xw - t)

Preconditoned gradient

0 1 2 3 4

b) Distance (km)

0

0.005

0.01

0.015

0.02

0.025

T
im

e
(h

ou
r)

a) Distance vs Time

0 0.1 0.2

Trial w (hr/km) 1/3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 M
is

fit
 F

un
ct

io
n

(s
ec

2
)

c) Misfit Function vs Trial w

1

5

Modeling eqn.: t = w3x

Misfit Func.: (Xw - tT)(Xw - t)

Figure 3.1: Same as Figure 2.2 except the modeling equation is t = xw3 so that the
objective function has more than one stationary point. The numbers and stars in b) and c)
indicate the iteration numbers and associated misfit errors for solutions determined by the
b) non-linear Newton and c) steepest descent methods.

For the motorcycle data, Figure 3.1a plots the recorded noisy times (blue stars) against
x for w = 0.18, and the dashed line is the predicted data computed with equation 3.1. The
value w = 0.18 minimizes the misfit function1 at the vertex of Figure 3.1b. Compared to
the single minimum in Figure 2.1, the non-linear misfit function in Figure 3.1b has several
minima, the one at w = 0.018 and the one at the flat portion of the curve near w ≈ 0. We
say that the one near the origin is a local minimum while the one at w = 0.18 is the global
minimum.

The global minimum in Figure 3.1b can be found by inspection, but how can we find it
by the least squares solution [XTX]−1XT t when we need to know w in order to compute
X(w) and [XTX]−1? This is like a short-tailed cat chasing its tail, eternally chasing but
not catching.

Luckily, optimization can usually solve this tail-catching problem by sequentially com-
puting a series of trial solutions w(k) k ∈ [1, 2, ..] where a new search direction ∆w(k) =
w(k+1) −w(k) is defined at each point. This is known as a non-linear gradient optimization
method where the search directions use the slope (and sometimes curvature) information
of the misfit function at each point.

For example, the iterative non-linear Newton formula with regularization is obtained by
by attaching the iteration index (k) to X in equation 2.40 to give:

w
(k+1)
i = w

(k)
i − α[X(k)TX(k)]−1(X(k)T∆τ

(k) + ηw(k))i. (3.3)

1There is a non-zero error at the vertex but it is too small to visible.

3.1. NON-LINEAR GRADIENT OPTIMIZATION 37

In this case the search direction ∆w(k) = w(k+1)−w(k) is parallel to−[X(k)TX(k)]−1(X(k)T∆τ
(k)+

ηw(k)) at the kth point w(k). The next solution is found by searching along ∆w(k) until
the misfit function no longer decreases. When this happens at w(k+1) the new value x(k+1)

is inserted into X(w) → X(k+1) and ∆τ
(k+1) = Xτ (k+1) is computed to give the updated

search direction −[X(k+1)TX(k+1)]−1(X(k+1)T∆τ
(k+1)+ηw(k)). If [XTX]−1 is too expensive

to compute then we have the preconditioned and regularized steepest descent formula:

w
(k+1)
i = w

(k)
i − α

1

[X(k)TX(k)]2ii
(X(k)T∆τ

(k) + ηw(k))i, (3.4)

which avoids calculating the inverse of [XTX].
In summary, the non-linear Newton gradient method is given in 4 steps.

1. Define a starting guess model w(0) so that X(0) and ∆τ
(0) can be computed. Set

k = 0.

2. Use a numerical line search to find w(k+1) in equation 3.3.

3. Use w(k+1) to compute X(k+1) and ∆τ
(k+1).

4. Set k := k + 1 and repeat steps 2-4 until ||∆τ
(k)|| falls below some user specified

threshold. A fragment of the MATLAB code for applying the Newton method to the
motorcycle data is shown below.

w0=0.18 % Actual model

x=[0 1 2 3 4]’;

t=[0 .102 .33 .5 .8]’; % Observed noiseless data

e=.3*[.005 -.003 .006 .007 -.003]’; % Data errors

n=3;t=x*w0^n+e; % noisy input data

w11(1)=.05; % Starting solution

res = (x*w11(1).^n-t); % Starting residual

for i=2:nit

X = x*w11(i-1).^(n-1); % Matrix X=x*w^(n-1)

adjoint = X’*res; % Compute adjoint X’(Xw-t)

w11(i) = w11(i-1)-.05*inv(X’*X)*adjoint; % Newton update

res = (x*w11(i).^n-t); %data residual

end

The above Newton algorithm is used to explain the motorcycle timing data plotted in
Figure 3.1a. In this case we assume the cubic modeling equation in equation 3.2 and
iteratively solve for w(k) from the starting model w(1) = 0.05. Preconditioning in the form
of [XTX]−1 is used and the step length is set to be 0.01 for the results in Figure 3.1b, and
no preconditioning is used for the results in Figure 3.1c. The stars denote the misfit values
for the iteration number denoted by the numbers next to each star.

w
(k+1)
i = w

(k)
i − α

1

[X(k)TX(k)]2ii
(X(k)T∆τ

(k) + ηw(k))i. (3.5)

38 CHAPTER 3. NON-LINEAR GRADIENT OPTIMIZATION

3.2 Rigorous Derivation of the Newton Formula

The non-linear Newton formula was derived in a hand-waving manner from the linear New-
ton method for an overdetermined system of linear equations. We will now derive it from a
more general point of view by assuming a smooth objective function ǫ(w) and expanding it
in a Taylor’s series about the starting point wo. This approach is much more general and
less cumbersome than the approach in Chapter 2 that started from an M × N system of
equations for a finite set of data.

Assume ǫ(w) is a smooth real function which can be accurately expanded about the
starting point wo with only three terms in the Taylor series:

ǫ(wo +∆w) ≈ ǫ(wo) +
N∑

i=1

∂ǫ(wo)

∂wi
∆wi +

1

2

N∑

i=1

N∑

j=1

∂2ǫ(wo)

∂wi∂wj
∆wi∆wj ,

= ǫ(wo) + gT∆w +
1

2
∆wT∇∇T ǫ(wo)∆w + o(||∆w||3), (3.6)

where the N × 1 gradient vector is explicitly written as

∇ǫ(w) :=

∂ǫ

∂w1
.

.

.
∂ǫ

∂wN

, (3.7)

and the N ×N Hessian matrix H is defined as ∇∇T ǫ(w) with components

Hij := [∇∇T ǫ(w)]ij =
∂2ǫ(w)

∂wi∂wj
. (3.8)

The matrix H is symmetric because ∂2ǫ(w)
∂wi∂wj

= ∂2ǫ(w)
∂wj∂wi

. It will be shown in the next sec-

tion that the Hessian matrix contains information about the curvature or type of bumps
associated with f(x), while the negative gradient −∇ǫ(w) points in the steepest downhill
direction at w.

Rosenbrock Function. A geometrical interpretation of the gradient and the Hessian can
be illustrated with the Rosenbrock function

f(x) = 100(x2 − x21)
2 + (1− x1)

2, (3.9)

a smooth but highly non-linear function plotted in Figure 3.2. In this case the gradient
vector becomes

∇f(x) = g =

∂f

∂x1

∂f

∂x2

=

−400x1(x2 − x21)− 2(1− x1)

200(x2 − x21)

 . (3.10)

3.2. RIGOROUS DERIVATION OF THE NEWTON FORMULA 39

3

X
+2-2

Y

Rosenbrock Function

-1

Figure 3.2: Contours of the Rosenbrock function along with icons (thick contours) indicating
either a saddle-like or elongated ellipse geometry of xTHx at the points indicated by solid
circles (courtesy of Yunsong Huang). See exercise 1.

To assess the physical meaning of the gradient, we define the points on a line in multidi-
mensional space by

x(α) = xo + αŝ, (3.11)

where ŝ is the unit vector parallel to the line and α is the scalar parameter that controls
how far x is from the specified starting point x(α = 0) = xo. A directional derivative along
the line direction ŝ in equation 3.11 is defined as df/dα:

df(x)

dα
=

∑

i

∇f(x)
︷ ︸︸ ︷

df(x)

dxi

ŝ
︷︸︸︷

dxi
dα

= ŝT∇f(x), (3.12)

where ŝT∇f(x) is the projection of the gradient along the direction parallel to ŝ. If ŝ is
parallel to the contour tangent, then f(x) does not change in this direction so ŝT∇f(x) = 0.
This means that the gradient g = ∇f(x) is perpendicular to the contour tangent, or parallel
to the direction of steepest descent. For a 1D function, this gradient is also known as the
slope: if it is positive then the uphill direction is to the right of the origin, otherwise it is
to the left.

The second derivatives of f(x) for the Rosenbrock function form the 2 × 2 Hessian

40 CHAPTER 3. NON-LINEAR GRADIENT OPTIMIZATION

matrix:

H = [∇∇T]f(x) =

∂2f

∂x21

∂2f

∂x1∂x2

∂2f

∂x1∂x2

∂2f

∂x22

=

1200x21 − 400x2 + 2 −400x1

−400x1 200

 . (3.13)

Unlike a quadratic function with elliptical contours and a constant Hessian matrix, equa-
tion 3.13 says that the curvature values in the Hessian matrix depend on x for f(x) with
polynomial order > 2.

Similar to defining ŝT∇f to be the slope of f(x) along the line direction ŝ, the second
derivative or curvature of f(x) along the same line is given by

d2f

dα2
=

d

dα

df

dα
=

d

dα
[(∇f)T ŝ] = ŝT [∇(∇f)T]ŝ = ŝT

Hessian
︷ ︸︸ ︷

[∇∇T f(x)] ŝ. (3.14)

Therefore, ŝTHŝ gives the curvature of f(x) along the direction specified by ŝ: that is, it
can be used to find how quickly and where the slope is changing most rapidly.

3.3 MATLAB Examples of Newton’s Method

Newton’s methods are now used to solve some specific 1D and 2D non-linear functions.
MATLAB codes are provided so the reader can explore finding optimal points for different
non-linear functions.

Example 3.3.1. 1D function

For a 1D equation ?? becomes

∂f(xo)

∂x
= −∂2f(xo)

∂x2
∆x, (3.15)

which can be solved for ∆x to give

∆x = −∂f(xo)

∂x
/
∂2f(xo)

∂x2
. (3.16)

The Newton iteration formula ?? for a 1D non-linear function reduces to

x(k+1) = x(k) − α
∂f(x(k))

∂x
/
∂2f(x(k))

∂x2
. (3.17)

In general, the convergence rate of Newton’s method depends on the topography, deter-
mined by the curvature and slope terms, of the function and how far the starting point is
from the global minimum.

The MATLAB script which implements Newton’s method for the 1D non-quadratic
function f(x) = ax4 + x2 − 2x is given below,

3.3. MATLAB EXAMPLES OF NEWTON’S METHOD 41

f(x) = 7x + x - 2x
4 2

0

-20 0

30

0 10
R

es
id

ua
l

Iteration Number-2 +2
x
0

f(
x)

120

Residual vs Iteration Numberb)a)

Figure 3.3: Plot of a) quartic function and b) residual vs iteration curve. The diamond
(square) represents the starting (ending) model.

%%

% 1D Newton method to find zeros of a quartic function

%

%%

clear all;

a = 7;

subplot(121);x=[-2:.1:2];

plot(x,a*x.^4 + x.^2 - 2*x);

%

x = -1.5;% starting point

f(1) = (a*x.^4 + x.^2 - 2*x); % Quartic Function

xx(1)=x;

for it = 2:10 % Start iterations

f1prime = a*4*x.^3 + 2*x - 2;

f2prime = a*12*x.^2 + 2;

x = x-f1prime/f2prime; % Newton formula

xx(it) = x;

f(it) = (a*x.^4 + x.^2 - 2*x);

residual(it-1) = abs(f(it)-f(it-1));

end

The values of f(x(k)) are plotted against x(k) in Figure 3.3.

Example 3.3.2. 2D Function

The Rosenbrock function is plotted in Figure 3.2 and a MATLAB code for finding
its minimum by Newton’s method is below. Unlike a quadratic objective function, the
curvature value depends on the location of (x1, x2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Iterative Newton method for finding minimizer

% of Rosenbrock function

% f=100.*(x2-x1.^2).^2+(1-x1).^2

% Minimizer point=(1,1)

42 CHAPTER 3. NON-LINEAR GRADIENT OPTIMIZATION

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

iter = 10;

x1=-.9;x2=1*x1;

xx = zeros(2,iter);

xx(1,1) = x1;

xx(2,1) = x2;

x=[x1;x2];

%

for it = 2:iter % Begin non-linear iterations

g=[-400*x1*(x2-x1^2)-2*(1-x1); 200*(x2-x1^2)]; % 2x1 gradient vector

H=[1200*x1^2-400*x2+2 -400*x1; -400*x1 200]; % 2x2 Hessian matrix

x = x-inv(H)*g; % Non-linear Newton formula

xx(1,it) = x(1); % Update iterative solution

xx(2,it) = x(2);

x1 = x(1);

x2 = x(2);

end

xmx = max(xx(1,:))+.2; % Define plotting parameters

xmin = min(xx(1,:))-.2;

ymin0 = min(xx(2,:))-.2;

ymx = max(xx(2,:))+.2;

x = [xmin:.01:xmx];

y = [ymin0:.01:ymx];

[X,Y] = meshgrid(xmin:.01:xmx,ymin0:.01:ymx);

f = 100.*(Y-X.^2).^2+(1-X).^2; % Rosenbrock Function

imagesc(x,y,f);

hold on;

contour(X,Y,f,80,’w’); % Plot Rosenbrock function ith contours

hold off

hold on;

plot(x1,x2,’*r’);

plot(xx(1,:),xx(2,:),’*-y’);

plot(xx(1,iter),xx(2,iter),’r*’);

hold off;

xlabel(’X’);

ylabel(’Y’);

title(’f(X,Y)=100*(Y-X^2)^2+(1-X)^2 and Newton Iterates (Red * = Final)’)

3.3.1 Inexact Newton Method

A variation of the non-linear steepest descent method is to use about five iterations of
linear steepest descent where X is not updated, and then update X with the most recent
estimate of w. This pairing of 5 linear iterations and 1 non-linear iteration is repeated
until convergence. Nocedal and Wright (1999) define this procedure as an inexact Newton
method because it is similar to using a rough approximation to the inverse Hessian after 5
iterations of linear steepest descent. A similar strategy is used in full waveform inversion for
exploration seismology except a linear conjugate gradient method is used (Schuster, 2017).

3.4 Multiscale Optimization

An iterative multiscale inversion strategy (Bunks et al., 1995) is often used in seismic
inversion to mitigate the problem of getting stuck in a local minimum. The key idea is
to start out the iterations with a coarse model and low-pass filtered data. This leads to a
simpler objective function with fewer local minima. Iterate for 5 or so iterations until the

3.5. DIAGRAM FOR MATRIX-VECTOR MULTIPLICATION 43

residual reduction has stalled. We are now, presumably, closer to the global minimum and
the path to it is less cluttered with local minima. Later iterations refine the grid size of the
model and incorporate higher frequencies into the data.

As examples, Figures 3.4a-3.4b depict a shot gather and its associated misfit function,
respectively. The data were generated for a two-layer model and most of the events seen in
the traces are reflection multiples within the top layer. Each trace d(t)i is quite complicated
so that small changes in the upper-layer velocity will lead to significant time shifts in the
data. Plotting the misfit function ǫ = 1/2

∑

i

∑

t(d(t)i − d(t)pred.i)2 against trial values of
the upper-layer velocity V yields the bumpy misfit plot in Figure 3.4b. Any shift in the
velocity that leads to a cycle shift such that the predicted and observed events are roughly
in phase will lead to a smaller ǫ compared to when the predicted traces are mostly out of
phase. Thus, the objective function is characterized by many local minima denoted by the
red circles in Figure 3.4b.

To reduce the number of local minima the data or model should be simplified. One way
to do this is to skeletonize both the data and model. In our case, we replace the waveform
data with its traveltime picks in Figure 3.4c. These simple traveltimes are for the primary
reflections and lead to the relatively simple misfit function seen in Figure 3.4d. In this case,
an iterative gradient method will rapidly converge to a velocity model that is close to the
true model. Another example for simplifying the data is to apply a low-pass filter to the
data as shown in Figure 3.4e. The associated misfit function in Figure 3.4f is much simpler
than the waveform misfit function in Figure 3.4b and so will have less tendency to getting
stuck in a local minimum. Another example is in Figure 3.5 where the velocity model is
refined every few iterations, and at every model refinement higher frequencies are added to
the low-pass filtered data. In this case full waveform inversion is used to invert the seismic
traces.

Reducing the complexity of the model and data to enhance convergence is also employed
in the neural network community. Here they use the technique of max pooling (see Fig-
ure 3.6) where the number of model parameters is halved at one of the stages in the neural
network. As will be shown in a numerical example in Chapter 5, this complexity reduction
results in better convergence for the example presented.

3.5 Diagram for Matrix-Vector Multiplication

In practice, each iteration in gradient optimization typically requires multiplications of
matrices and vectors. These are the same operations used for a neural network as illustrated
in Figure 3.7. Here, two sets of model parameters are assumed: w1i for the red motorcycle
at the top left and w2i for the gray motorcycle at the bottom left. Now there are a total of
six unknowns compared to one unknown associated with the one-motorcycle equation ??.
These extra unknowns are introduced to account for more complexity in the model and
data. These extra unknowns will demand many more equations of constraint with more
time trials over different roads.

The diagrams for representing matrix-vector multiplication in Figure 3.7 is the same
that is used in the neural network community. The first column of circles represent the
input nodes for the data, the second column denotes the nodes for the neural network for
the output elements of the matrix-vector multiplication. However, these output elements

44 CHAPTER 3. NON-LINEAR GRADIENT OPTIMIZATION

e) 2 Hz Data f) 2-Hz Waveform Misfit vs V

c) Traveltime Data d) Traveltime Misfit vs V

0.0
0.0

5.0

4.0 25

Offset (km) Hypothetical Velocity (km/s)

T
im

e
(s

)

W
av

ef
or

m
 M

is
fi

t

1.1

1.4

0.0

T
im

e
(s

)

5.0

T
im

e
(s

)

W
av

ef
or

m
 M

is
fi

t

1.1

1.4

1.0 1.5

5.0

0.0

T
ra

ve
lti

m
e

 M
is

fi
t

0.0

a) 10 Hz Data b) 10-Hz Waveform Misfit vs V

Figure 3.4: Synthetic reflection data in left column, and right column depicts associated
plots of misfit functions vs trial velocity values of the first layer in the two-layer model. The
correct value of V is 1.0 km/s, where the misfit functions tend to zero. Notice the fewer
local minima (red circles) for the 2-Hz data than the 10-Hz data.

3.5. DIAGRAM FOR MATRIX-VECTOR MULTIPLICATION 45

X (km)

D
ep

th
 (

km
)

10 Hz

20 Hz

5 Hz

m/s

Figure 3.5: a) Initial velocity model. Waveform tomograms inverted from seismic data (204
shots with 1601 receivers per shot) with a peak frequency of b) 5 Hz, c) 10 Hz, and d) 20
Hz. Figure courtesy of Boonyasiriwat et al. (2009).

46 CHAPTER 3. NON-LINEAR GRADIENT OPTIMIZATION

Max Pooling = Multiscaling?

max(1, 1, 5, 6) = 6

5 Hz data10 Hz data

max pool

with 2x2 filter

Figure 3.6: Detailed seismic data in the upper left are simplified by low-pass filtering to
give the low-pass filtered shot gather in the upper right. The model is also simplified by
reducing the number of pixels, which can lead to a simpler objective function and faster
convergence. A similar procedure is used for reducing the number of model parameters in
a neural network and is denoted as max pooling (see Chapters 5 and 6).

3.6. SUMMARY 47

Figure 3.7: Two different types of unknown model parameters are now introduced: wi1 i ∈
[1, 2, 3] for the red motorcycle and wi2 ∈ [1, 2, 3] for the gray motorcycle. Instead of the
1 × 1 vector w of model parameters in equation 2.1, the model parameters are assembled
into the 2× 3 matrix where some new parameters have been added to spice up the story.

also undergo an all-or-almost-nothing activation operation briefly described in Chapter 1,
with a more detailed explanation in Chapters 5 and 6.

3.6 Summary

When the data are non-linearly related to the model then non-linear optimization methods
are used. Unlike the linear model Xw = t, the matrix X(w) for the non-linear problem
is a function of the model parameters w so it must be updated after each iteration, i.e.
X → X(k). This introduces a new problem: convergence to a local minimum because the
actual objective function is higher order than a quadratic polynomial in wi i ∈ [1, 2 . . . N].
The partial cure is multiscale optimization.

The starting point for non-linear gradient methods is to approximate the objective
function as a Taylor series truncated after the second-order terms. This truncated series is
a sum of 1) an inner product between the N × 1 gradient vector and the search direction
∆w and 2) the curvature term represented by a Hessian and its projection along the search
direction vector. The solution that minimizes this sum leads to the iterative Newton formula
for non-linear optimization.

48 CHAPTER 3. NON-LINEAR GRADIENT OPTIMIZATION

3.7 Exercises

1. The sign and magnitude of the eigenvalue λi of H determine the shape of f(w)
along the ith coordinate direction. For a 2D geometry this can be shown by setting
w = w∗ + αe1 + βe2, where ei is the ith orthonormal eigenvector of the symmetric
matrix H, w∗ is the point where f(w) is a minimum (i.e., g(w∗) = 0), and α and
β are scalars. Expanding f(w) about the minimum point w∗ so that equation 2.44
becomes

f(w∗ + αe1 + βe2) = f(w∗) + [α2eT1 He1 + β2eT2 He2]/2,

= f(w∗) + [λ1α
2eT1 e1 + λ2β

2eT2 e2]/2,

= f(x∗) + [λ1α
2 + λ2β

2]/2, (3.18)

where the gradient term gT∆w is zero at the minimum point w∗. The eigenvalues
are positive if H is a SPD matrix, so any move along an eigenvector direction from
w∗ will increase the value of the function. Hence, f(w) describes a bowl-like surface
around the minimum point w∗ (see left column of plots in Figure 3.8). Large positive
eigenvalues suggest that small changes in position lead to large changes in f(w) so
that the bowl has steeply curving sides; conversely, small positive eigenvalues suggest
a bowl with gently curving sides.

If the Hessian is negative definite (i.e., H has only negative eigenvalues) then equa-
tion 3.18 says that any move from w∗ along an eigenvector direction will decrease the
function, i.e., f(w) describes an inverted bowl about the maximal point w∗. Show
that an indefinite Hessian (both positive and negative eigenvalues) has the property
that a move along one eigenvector direction will decrease the function value while a
move along the other eigenvector direction will increase the function value. This latter
surface describes the saddle depicted in 3.8f.

2. Plot the Rosenbrock function with the MATLAB commands:

xl=-1.25;xr=1.05;dx=.05; yl=-.3;yr=1.2;dy=.05; facx=1;facy=1;

[xx,yy]=meshgrid([xl:dx:xr]*facx,[yl:dy:yr]*facy);

%[xx,yy]=meshgrid([-0.05:0.005:0.45],[-0.06:0.005:0.12]);

mis=100*(yy - xx.^2).^2 + (1-xx).^2; contour(xx,yy,mis,252)

Now plot the contours for ∂f/∂x1 and ∂f/∂x2. Is f(x) a quadratic or non-quadratic
function? Are the elements of the Hessian matrix, the components of the gradient, or
the curvature along the x1 direction functions of (x1, x2)? For an objective function
that is strictly quadratic, are the elements of the Hessian and gradient a function of
spatial position? Same question, except the objective function is a cubic polynomial.

3. Assume f(x) = x21 + x22 − 2x1x2. Plot the contours of f(x). Is f(x) a quadratic
or non-quadratic function? Are the elements of the Hessian matrix, the components
of the gradient, or the curvature along the x1 direction functions of (x1, x2)? For
the above quadratic function, how many minima are there in the objective function?
Identify the local and global minimum points for f(x).

3.7. EXERCISES 49

a).

f).

e).

d).

c).

b).

λ 2 ,

λ 1λ 1 λ 2,

λ 1 λ 2, > 0

λ 1 λ 2, >> 0 λ 1 λ 2, << 0

λ 1 λ 2, < 0

f(x,y)
y

x

f(x,y)

x

f(x,y)
y

x

< 0

> 0

f(x,y)
y

x

f(x,y)

x

f(x,y)

x

y
0

y
y

Figure 3.8: Plots of functions with different eigenvalues λ1 and λ2 for the 2 × 2 Hessian
matrix. Left column of figures are associated λ1, λ2 > 0 while the right column corresponds
to examples where at least one of the eigenvalues is negative.

50 CHAPTER 3. NON-LINEAR GRADIENT OPTIMIZATION

4. Can there ever be more than one isolated minimum for a quadratic function? Prove
your answer. Can there ever be more than one isolated minimum for a non-quadratic
function?

5. Find the slope of the Rosenbrock function f(x) at x = (2, 3) along the line direction
parallel to the vector (1, 1). Find the slope of f(x) at (2, 3) that is parallel to the
vector orthogonal to the vector (1, 1). Show work using the 2× 1 gradient vector.

6. Same question as the previous one except find the maximum and minimum curvatures
of the Rosenbrock function instead of the slope. What is the curvature along the slope
direction? Is the greatest curvature always along the gradieent direction?

7. Show that a general quadratic function f(x) = (1/2)xTHx + gTx + c where H is
symmetric, can also be described as f(x) = (1/2)(x − x′)TH(x − x′) + c′ where
Hx′ = −g and c′ = c − (1/2)x′THx′. What is the geometrical meaning of this
transformation?

8. Design the elements of a 2× 2 Hessian matrix so all of the shapes shown in Figure 3.8
are obtained. Use a MATLAB plotting code similar to

[X,Y,Z] = peaks(30);

figure

surfc(X,Y,Z)

9. Starting from an objective function with multiple minima, devise a gradient descent
method and multiscale strategy to mitigate getting stuck in a local minima. An
example of an objective function with local minima is shown below.

[X Y Z]=peaks(100);

s=sqrt(X.^2+Y.^2);

surfc(cos(2*pi*s*2)+s);

One-dimensional and 2D examples are shown in Figure 3.9 along with the MATLAB
script. To compute the element values of the gradient and Hessian you will have to
use finite-difference approximations.

clear all

x = -1:.05:2;

y = -humps(x);n=length(y);

subplot(121)

plot(x,y)

xlabel(’x’)

ylabel(’humps(x)’)

grid on;subplot(122)

[X Y Z]=peaks(n);

yy=y’*y+10;

3.7. EXERCISES 51

-1 0 1 2

x

-100

-80

-60

-40

-20

0

20

hu
m

ps
(x

)

-8

-6

2

-4

2

-2

0
0

-2 -2

Figure 3.9: Objective functions with local minima.

52 CHAPTER 3. NON-LINEAR GRADIENT OPTIMIZATION

yy=real((yy).^(.2));

surfc(X , Y, -yy)

Chapter 4

Introduction to Neural Networks

The previous two chapters sought to find the best model parameters in the matrix W that
explains the data vector t, where the elements of t can take on the value of any real number.
The classification problem is similar, except the element values of the predicted vector t
denote the class of the input x, where the element values of a 1× 1 vector t = t might be
restricted to be either 1 or 0. For example, t = 1 indicates the class of red motorcycles and
t = 0 indicates the class on non-red motorcycles.

We now introduce the method of neural networks, which is often used as a supervised
machine learning method for classifying input images. Unlike the unsupervised methods
of cluster analysis, the neural network method finds the optimal W from a large training
set of classified data [(x(1), t(1)), (x(2), t(2)), . . .] such that, for example,

∑

i ||Wx(i) − t(i)||2
is minimized. Here, (x(i), t(i)) is the ith training example and it is denoted as a supervised
training pair because the input vector x(i) has been classified and its classification is coded
into the sparse target vector t(i). There are a large number of training examples so that the
neural network can estimate the optimal W that can capture the hidden patterns in these
training examples. Once W is learned it can be applied to a new set of data, sometimes
denoted as the holdout data, which needs to be classified.

4.1 Neural Networks

The goal of neural networks is to estimate model parameters W that non-linearly explain
the given training pair of vectors (x, t). The fundamental modeling equation of neural
networks is defined as

ai = g(zi =

J∑

j=1

wijxj). (4.1)

where ai is the i
th element of the I × 1 predicted data vector a. Here, g(zi) is known as the

ith activation function that forms the I × 1 activation vector a from the J× 1 input vector
z. Its role in the context of classification is to squash a wide range of input values zi into a
tiny range of output values, e.g. −1 ≤ ai ≤ 1. A series of these two elementary operations,
matrix-vector multiplication followed by the squashing function, makes up the architecture
of the neural network.

53

54 CHAPTER 4. INTRODUCTION TO NEURAL NETWORKS

-10 0 10

z

0

0.2

0.4

0.6

0.8

1

g(
z)

a) g(z) = 1/(1+e -z) vs z

-10 0 10

z

0

0.05

0.1

0.15

0.2

0.25

dg
(z

)/
dz

b) dg(z)/dz = g(z)(1-g(z)) vs z

Figure 4.1: a) Sigmoid function and b) its derivative.

A typical shrinking function is the non-linear sigmoid threshold function1 shown in
Figure 4.2a and its derivative in Figure 4.2b:

g(z) =
1

1 + e−z
and

∂g(z)

∂z
=

e−z

(1 + e−z)2
= g(z)[1 − g(z)]. (4.2)

This non-linear function is suited for binary classification problems because its sparsified
output approximates an all-or-nothing function by returning the values 1 and 0 for, re-
spectively, z somewhat larger and somewhat smaller than 0. The output of the squashing
function g(z) resembles the activation of a brain’s neuron: if the strength of an electro-
chemical impulse into a neuron is above a certain threshold, the neuron will transmit this
information to a neighboring neuron.

The word network in neural networks indicates that the there is a series, i.e. network,
of threshold-matrix-vector operations that are applied to x, as depicted in the Figure 4.2
diagram. Each column of round nodes represents a layer and the number in the ith node of

the nth layer is denoted as the activation element a
[
in] in equation ??. The weights next to

1The sigmoid function is also known as the logistic function (Bishop, 2006) and is used as a probability
density function for binary regression analysis. For example, the probability P (h) for passing an exam
increases with the number of hours h studied. Thus, the chance for success is P (h) = 1/(1 + e−h) and that
for failure is 1− P (h).

4.1. NEURAL NETWORKS 55

a
[0]

z
2

[1]

z
3

[1]

z
4

[1]
a

4

[1]

a
3

[1]

w
[1]

11

w
[1]

44

z
1

[1]
a

1

[1]

a
2

[1]

a
1

[3]
z

1

[3]

a [1]

a [2]

Layer 0 Layer 1 Layer 2 Layer 3

3

1

4

a [0]

a [3]

2

a
[0]

a
[0]

a
[0]

w
[1]

12

w
[1]

43

a
2

[3]
z

2

[3]

a
1

[2]
z

1

[2]

a
2

[2]
z2

[2]

z
3

[2]
a

3

[2]

w
[2]

11

w
[2]

44

Figure 4.2: Notation for a three-layer, i.e. N = 3, neural network with four input nodes
at the first layer. The activation output from the ith node in the nth layer is denoted as

a
[n]
i = g(z

[n]
i), where z

[n]
i =

∑

j w
[n]
ij a

[n−1]
j . The input data x is the activation vector a[n]

for the 0th layer and the predicted data are the activation vector a[3] at the last layer. The
layers between the first and last are denoted as hidden layers.

each arrow are the weights of the matrix elements wij , except we append the superscript
[n] to indicate the layer number so that equation 4.1 becomes

z
[n]
i =

J∑

j=1

w
[n]
ij x

[n]
j , i ∈ [1, 2 . . . I],

ai = g(

J∑

j=1

wijxj). (4.3)

Here, the layer number n is denoted as the superscript [n] for both the input z
[n]
i and its

squashed output a
[n]
i = g(z

[n]
i).

The threshold function is non-linear with respect to the components of w, so the neural
network problem to-be-defined below is a non-linear problem2. Consequently, the itera-
tive solution can get stuck in a local minimum and requires regularization and multiscale
preconditioning such as max pooling discussed in the previous chapter.

2The operation w
T
x is a linear operation. However, g(wT

x) gives an output that is non-linearly related
to the parameters w because it does not pass one of the simple linearity tests g(αz) = αg(z), where α is a
scalar.

56 CHAPTER 4. INTRODUCTION TO NEURAL NETWORKS

Σ

Tw x

Tw x Tw x

a) Single-node neural network b) Two-node neural network

Layer 0 Layer 1 Layer 2

X2

X3

X4

w2

w3

w4

w1

v
Σ

X2

X3

X4

w2

w3

w4

X1 a = g() X1 a = g()

Σ

a = g(v g())∼

w1

Layer 0 Layer 1

Figure 4.3: Diagrams of a) single-node and b) two-node neural networks.

4.1.1 Single-node Neural Network

Assume we are given M training pairs (x(k), t(k)) of data, where x(k) is a N × 1 vector and
t(i) = t(k) is the 1 × 1 vector with the element value that is either 1 or 0. We define the
1-node classification problem as the following.

Given: (x(k), t(k)) and the model

predicted class
︷ ︸︸ ︷

g(
J∑

j=1

wjx
(k)
j) =

obs. class
︷︸︸︷

t(k) ,

Find: w := argmin
w

1
2

∑K
k=1

g(wTx(k))−t(k)= r(k)

︷ ︸︸ ︷

[g(
J∑

j=1

wjx
(k)
j)− t(k)]2,

Solution: wi :== wi − α
∂ǫ

∂wi
, (4.4)

where r(k) is a scalar rather than a vector for the kth example because the target vector
t = t for this one-node classification problem is a scalar. A diagram of the forward modeling
operation is illustrated in Figure 4.3a, where the round node in the middle is divided into
two parts: the left half indicates the inner product z = wTx between w and the input
vector x, and the right indicates the operation of the squashing function on this. This is
considered to be a one-layer single node neural network.

The optimal solution to equation 4.4 in the least-squares sense is found by defining the
objective function as

ǫ =
1

2

K∑

k=1

(r(k))2 =
1

2

K∑

k=1

[g(

z(k)
︷ ︸︸ ︷

wTx(k))− t(k)]2, (4.5)

4.1. NEURAL NETWORKS 57

where the gradient is given by

∂ǫ

∂wi
=

K∑

k=1

r(k)
∂r(k)

∂wi

=
K∑

k=1

(g(wTx(k))− t(k))
∂g(z(k))

∂z(k)
∂z(k)

∂wi
. (4.6)

Recognizing that ∂z(k)

∂wi
= ∂wTx(k)

∂wi
= x

(k)
i and substituting equation 4.2 into equation 4.6

gives the gradient for the non-linear steepest descent formula :

wi := wi − α
K∑

k=1

∂r(k)

∂wi
︷ ︸︸ ︷

g(z(k))(1− g(z(k))x
(k)
i

r(k)=kth residual
︷ ︸︸ ︷

(g(wTx(k))− t(k)), (4.7)

where α is the step length and the computer science notation := redefines wi on the left side
as the update to itself on the right-hand side of the equation. This avoids the introduction
of an iteration index, so the fewer the better.

Equation 4.7 is similar to equation 2.4 in that the ith component of the gradient is a dot
product between the residual vector and the derivative of the residual with respect to the
ith model parameter. For the linearized motorcycle problem the derivative of the residual
with respect to the ith model parameter is the ith row vector of the matrix XT . In contrast,
∂ri/∂wi for the non-linear neural network weights the components of X by g(wTx)(1 −
g(wTx)) because the modeling equation is non-linear. Thus, g(wTx)(1− g(wTx)) must be
updated with the new estimate of w after each iteration in the non-linear steepest descent
equation 3.5.

Equation 4.4 only contains one activation function that is applied to each input vector
x(k), so it is denoted as a single-node neural network. This model was initially developed
in the context mathematically describing the function of neurons in animals (Rosenblatt,
1958; Hubel and Wiesel, 1962), and later developed into multi-nodal models. The single
neuron equation for a single input vector is diagramed in Figure 4.3a, where the circular
input nodes are connected to the activation node by solid lines. The weights on each solid
line make up the elements of the weight vector w. The two operations of the matrix-vector
multiplication and thresholding are denoted by the symbols in the activation node. The
two-node neural network is shown in Figure 4.3b, where the layer number is denoted by the
superscript in square brackets.

The following MATLAB pseudo-code implements equation 4.7 as the solution to the
1-node neural network problem.

% x(N,M) - input- M input feature vectors with size Nx1

% t(1,M) - input- M input target vectors with size 1x1

% t= 1 or 0

% alpha - input- step size

%

clear all

58 CHAPTER 4. INTRODUCTION TO NEURAL NETWORKS

M=100; % # of equations constraint

N=5; % # of unknowns (w0, w1, wN)

x=zeros(N,M);t=zeros(M,1);tp=t;

[x,t,alpha,lim,beta,io]=Datain(M,N,x,t); % Create training data

nit=10000;res=zeros(nit,1);

x=[ones(1,M);x]; N=N+1;w=rand(N,1);% start model, Bias Inclusion:

% Append 1st row of x with 1’s

%% --

for k=2:nit % Looping over gradient iterations

[grad,res]=gradient(M,N,x,t,w,beta,res,k,io);

alpha=.01*sqrt(grad’*grad);

w=w-alpha*grad; % Gradient descent update

if res(k)<=lim;k=nit;end

end

Display(M,res,nit,w,x,t,beta,io)

and the MATLAB code for the gradient is below.

function [grad,res]=gradient(M,N,x,t,w,beta,res,k,io);

% M - input- # data examples

% N - input- # unknowns in layer

% t - input- # observed data

%io=0- input- cross-entropy gradient

grad=zeros(N,1);grade=grad;

residual=zeros(M,1);

for m=1:M % Loop over M data examples in training set

z=w’*x(:,m);

g=1/(1+exp(-z*beta));

dg=beta*g*(1-g);

residual(m)=g-t(m); % residual by Zongcai

grad0 = dg*x(:,m)*residual(m); % Stochastic gradient

grad1 = x(:,m)*residual(m); % Stochastic cross-entropy gradient

grad = grad+grad0; % Batch gradient

grade = grade+grad1; % Batch gradient

end

res(k)=sqrt(residual’*residual)/M;

In this code the input training pairs consisted of (x, t) where x is a 5 × 1 vector with
elements restricted to be either 1 or 0. The output is the binary classification of t = 1
if x contains just a single 1, otherwise t = 0. One hundred training examples are used
to train the network to give the results shown in Figure 4.4. Here, the predicted values
of tpred. = g(wTx) never get to be equal to 1 as plotted in Figure 4.4b. Thus one might
consider this a failure. However, the correct classifications can be determined by noticing
that any predicted classification above the threshold value of 0.4 could be considered as
the class denoted as t = 1. With this threshold constraint there is almost 100% accuracy
in the predicted class shown in Figure 4.4c. Here, the actual class is a red star and the

4.1. NEURAL NETWORKS 59

0 200 400 600 800 1000

Iteration #

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
M

S
 M

is
fit

a) RMS Error vs Iter. #

Least-squares NN

0 20 40 60 80 100

Example #

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
xa

m
pl

e
C

la
ss

b) (Obs=red, Pred=green)

0 20 40 60 80 100

Example #

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
xa

m
pl

e
C

la
ss

c) Threshold Value = 0.24123

Red * = Mistake

Figure 4.4: a) RMS vs iteration number, b) predicted (green) versus actual (red) classes
after 10000 iterations, and c) classes predicted after assigning t = 1 to green stars above
the threshold of 0.24 in b).

0 200 400 600 800 1000

Iteration #

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

R
M

S
 M

is
fit

a) RMS Error vs Iter. #

Least-squares NN

0 20 40 60 80 100

Example #

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
xa

m
pl

e
C

la
ss

b) (Obs=red, Pred=green)

0 20 40 60 80 100

Example #

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
xa

m
pl

e
C

la
ss

c) Threshold Value = 0.36696

Red * = Mistake

Figure 4.5: Same as Figure 4.4 except the input examples are almost evenly balanced
between those with t = 0 and t = 1. Here the threshold value is 0.36 to get c).

predicted class (after the threshold constraint) is a green star printed over the red stars. If
the predictions are correct then the red stars should be completely hidden by green stars,
which is largely the case.

To expedite convergence, we must balance out the number of t = 1 samples with the
number of t = 0 examples, otherwise the system of equations can become ill-conditioned as
was pointed out in earlier chapters. An unbalanced training set was used for the Figure 4.4
tests and so resulted in a weak separation between the t = 0 and t = 1 classes in Figure 4.4b.
To remedy this problem another test was conducted except the number of t = 1 examples
were about the same number as the t = 0 samples. The results are shown in Figure 4.5.
and show a much better separation between the t = 1 and t = 0 examples.

60 CHAPTER 4. INTRODUCTION TO NEURAL NETWORKS

4.1.2 One-node Neural Network with Cross-Entropy Objective Function

Instead of the least squares objective function , the neural network community often uses
the cross-entropy objective function for solving the binary classification problem. Empir-
ical evidence suggests it has better convergence properties compared to the least squares
approach.

The starting point for the cross-entropy method (https : //rdipietro.github.io/friendly−
intro− to− cross − entropy − loss/) is to assume that the sigmoid function 0 ≤ g(z) ≤ 1
can be used as the liklihood function for the binary random variable t:

P (t|w,x) = g(wTx)t(1− g(wTx))1−t, (4.8)

which says that, given w and x, the probability for t = 1 is g(wTx), and for t = 0 it is
1 − g(wTx). Finding the optimal w that maximizes P (t|w,x) is known as the maximum
liklihood solution. Equation 4.8 is in too clumsy of a form so we take the natural logarithm
of its negative to get the cross-entropy error function (Bishop, 2006):

ǫ = −t ln g(wTx)− (1− t) ln(1− g(wTx)). (4.9)

Since the logarithm is a monotonic function then the optimal w that maximizes the liklihood
function in equation 4.8 also minimizes ǫ in equation 4.9.

If we have K training pairs (x(k), t(k)) then the liklihood of K training pairs having
the specific outcome of (t(1), t(2) . . . t(K)) is the product the individual liklihood functions.
Taking the negative logarithm of this product of liklihood functions gives a summation of
cross-entropy error functions:

ǫ = −[

K∑

k=1

t(k) ln g(wTx(k)) + (1 − t(k)) ln(1− g(wTx(k)))]. (4.10)

For K = 1, the cross-entropy error function is plotted in Figure 4.6b for t(1) = 1 and t(1) = 0.
Here, the objective function rises much more steeply than the squared error misfit function
in Figure 4.6a for wrong estimates of the solution. This means that the cross entropy misfit
function penalizes wrong solutions much more than the squared error one does so that
iterative solutions might converge more quickly with the cross-entropy objective function.

The gradient for the cross entropy function is similar to that in equations 4.7 for the
least squares objective function, except

∂ǫ

∂wi
= −

K∑

k=1

(
t(k)

g(wTx(k))
− 1− t(k)

1− g(wTx(k))
)

eqn. 4.2: ∂g
∂wi

︷ ︸︸ ︷

g(wTx(k))(1− g(wTx(k)))x
(k)
i ,

=

K∑

k=1

(

pred.
︷ ︸︸ ︷

g(wTx(k))−
obs.
︷︸︸︷

t(k))x
(k)
i . (4.11)

In this case the predicted data (g(wTx(k)) is a squashed version of the original prediction
wTx(k).

4.1. NEURAL NETWORKS 61

0 0.5 1

z

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

g(
z)

a) =(x-0.5) 2 vs z

0 0.5 1

z

0

0.5

1

1.5

2

2.5

3

3.5
b) = -t ln(z)-(1-t)ln(1-z) vs z

t=1 t=0

Figure 4.6: Objective functions plotted for a) L2 misfit function 1
2(0.5 − z)2 and b) cross-

entropy function ln tg(z) + (1− t) ln[1− g(z)] .

62 CHAPTER 4. INTRODUCTION TO NEURAL NETWORKS

4.1.3 Two-node Neural Network

The two-node neural network in Figure 4.3b feeds the weighted output θ

θ = g(wTx)v, (4.12)

of the single-node neural network in Figure 4.3a into another squashing function to get the
class prediction and its derivative:

g(θ) = 1/(1 + e−θ);
∂g(θ)

∂θ
= g(θ)(1 − g(θ)), (4.13)

where the superscript k will be mercifully silent for both θ = g(wTx(k))v and z = wTx(k).
Here, we assume that g(θ) is a sigmoid function and v is the scalar weight associated with
layer two. The least squares misfit function is given by

ǫ =
1

2

K∑

k=1

[

r(k)
︷ ︸︸ ︷

g(θ)− t(k)]2,

=
1

2

K∑

k=1

[1/(1 + e−

θ
︷ ︸︸ ︷

g(wTx(k))v)− t(k)]2. (4.14)

where there are two sets of unknowns, the weights wi in the first layer and v for the second
layer. Two gradients now need to be computed, a gradient for the components wi and one
for v.

Gradient wrt wi:
∂ǫ

∂wi

The summand in equation 4.14 says that the residual is a function of θ = vg(z), which in
turn is a function of z = wTx(k). Taking the derivative of a function that is a function
of another function demands the chain rule. As a simple example, if f := f(g(h(t))) then
∂f
∂t = ∂f

∂g
∂g
∂h

∂h
∂t . We will now use this chain rule to derive the formulas for the gradients of ǫ.

In fact, we can use the chain rule recursively if we already labored to compute ∂f
∂h = ∂f

∂g
∂g
∂h

at one stage of our calculations, then we can recycle this computation to efficiently compute
the derivative ∂f

∂t = ∂f
∂h

∂h
∂t . This is an example of left-to-right recursion, which will be called

backward recursion.

The formula for
∂ǫ

∂wi
is

∂ǫ

∂wi
=

K∑

k=1

r(k)
g(θ)

∂wi
. (4.15)

The chain rule says that

∂g(θ)

∂wi
=

∂g(θ)

∂θ

∂θ

∂z

∂z

∂wi
=

eqn. 4.13:
∂g(θ)

∂θ
︷ ︸︸ ︷

g(θ)(1− g(θ))

eqn. 4.17:
∂θ

∂z
︷ ︸︸ ︷

g(z)(1 − g(z))v

∂z

∂wi
︷︸︸︷
xi , (4.16)

4.1. NEURAL NETWORKS 63

where

z = wTx(k);
∂z

∂wi
= xi; θ = g(

z
︷ ︸︸ ︷

wTx(k))v;
∂θ

∂v
= g(z);

∂θ

∂z
= g(z)(1 − g(z))v. (4.17)

Plugging equation 4.16 into equation 4.15 gives

∂ǫ

∂wi
=

K∑

k=1

r(k)g(θ)(1− g(θ))g(z)(1 − g(z))vx
(k)
i . (4.18)

Gradient wrt v:
∂ǫ

∂v

Taking the derivative of ǫ in equation 4.14 wrt v gives

∂ǫ

∂v
=

K∑

k=1

r(k)
∂r(k)

∂g(θ)

∂g(θ)

∂θ

eqn. 4.17
︷︸︸︷

∂θ

∂v
,

=

K∑

k=1

r(k)

∂r(k)

∂v
︷ ︸︸ ︷

g(θ)(1− g(θ))g(z) . (4.19)

Plugging
∂r(k)

∂v
= g(θ)(1− g(θ))g(z) from equation 4.19 into equation 4.18 gives

∂ǫ

∂wi
=

K∑

k=1

r(k)
∂r(k)

∂v
(1− g(z))vx

(k)
i , (4.20)

which says that the gradient ∂r(k)/∂v of the residual computed at a higher-order layer can
be reused for the gradient calculation at the next lower-order layer. This is called backward
recursion because we are reusing the calculation of the higher-order gradient for the gradient
computation at the next lower-order layer. Chapter 5 derives the recursive back-propagation
formula for a general neural network, which results in a significant savings in computational
costs.

4.1.4 Multiple-node and Multiple-layer Neural Network

In general, the one-node neural network cannot emulate complex relationships between the
input feature vectors and the target vectors (Bishop, 2006). However, multi-node and multi-
layer neural networks have been found to be universal approximators (Hornik et al., 1989;
Hornik, 1991; Ripley, 1996).

Therefore we need to increase the complexity of the neural network by incorporating
more nodes and layers into the network (see Figure 4.2). This means that we will have to
use a more general notation that includes identification of layer numbers and node numbers.
As a simple example, Figure 4.2 depicts a neural network with three layers, an input layer

64 CHAPTER 4. INTRODUCTION TO NEURAL NETWORKS

and several nodes per layer. In the previous chapters we denoted the input or as the N × 1
feature vector x and the last output as the vector t; each element of x occupied a different
input node in this vertical layer of N nodes. We now denote this starting vertical layer of
nodes as the 0th layer, x → a[0] and the last N th column of output nodes as t → a[N].

To summarize, the output activation function from the ith node at the nth layer is
denoted by

a
[n]
i = g(z

[n]
i) → activation function output at ith node in layer n,(4.21)

where

z
[n]
i =

∑

j

w
[n]
ij a

[n−1]
i → weighted sum inputs at ith node in layer n. (4.22)

For convenience the bias term is absorbed into the weights so that the input feature vector
is a[0] = [1, x1, x2, ..xM]; a bias term is included for most of the layers. The activation

function is denoted as g(z
[n]
i) for the input scalar z

[n]
i at the ith node. Here, W[n] denotes

the matrix that contains the filter weights associated with the nth layer. The last layer in
the neural network is denoted as the N th layer.

The neural network problem can now be succinctly defined as finding the weights w
[n]
ij

that minimize the objective function:

ǫ = 1/2
∑

i

(

predicted
︷︸︸︷

a[N]

i −
observed
︷︸︸︷
yi)2 + regularization term, (4.23)

where yi is the observed output at the ith node and a
[N]
i is the predicted output at the ith

node of the N th layer. Previously we denoted the target vector as t but we now denote it
as a[N].

The simplified3 update formula for iterative steepest descent without regularization is
given by

for j = 1 : niter

for n = 1 : N

w
[n]
ij := w

[n]
ij − α

∂ǫ

∂w
[n]
ij

,

end

end (4.24)

where := indicates that the variable w
[n]
ij is reset to the value given on the righthand side

and α is the step length. The above iterative formula appears simple, but the next chapter
will derive the gradient terms for a multi-node multi-layer neural network.

3To reduce notational tyranny, we exclude notation for different training examples and assume just one
example. The input layer in Figure 4.2 where the features are inserted is not enumerated as a layer because
it is devoid of weights.

4.2. MULTINOMIAL CLASSIFIERS 65

4.2 Multinomial Classifiers

The logistic function g(z) = 1/(1 + e−z) was used to squash down a wide range of numbers
−∞ < z < ∞ into a small range of numbers between 0 and 1. This function was also used
to define the liklihood function for a binary classifier, which is the starting point for the
cross-entropy error function as the objective function. If there are C > 2 classes of input
objects, then we need a multinomial classifier that can classify the objects into C classes.
This can be done by recognizing that the standard logistic function for binary classification
can be recast as the probability density function (pdf):

P (z) = ez

(ez+1) =
1

(1 + e−z)
, (4.25)

so that for binary classification P (z = z1) + P (z = z2) = 1 where z1 = 0 and z2 = 1 and
P (z) ≤ 1. Therefore, the pdf can be expressed as

P (z = zk) =
ezk

(
∑2

i=1 e
zi)

, (4.26)

which is the soft-max function used at the output layer with a single node with only binary
classification. This says that if P (z = z1) + P (z = z2) = 1 Therefore the last layer of the
neural network has C nodes, and the kth node takes the input zk from the previous layer
and applies the soft-max operation to get

yk =
ezk

∑C
i=1 e

zi
, (4.27)

which takes on the values between 0 and 1. This is the squasher used for the last node of
a neural network that employs the cross-entropy error function.

4.3 ReLu Activation Function

The sigmoid function was often used as the activation function for neural networks in the
1990s. Empirical experience now shows a preference for other activation functions, especially
the rectified linear unit ReLu(z) function:

ReLu(z) =

{
0 if z < 0
z if z ≥ 0

(4.28)

The derivative ∂ReLu(z)
∂z = 0 for z < 0 and ∂ReLu(z)

∂z = 1 if z > 0. The benefit of using
ReLu(z) as an activation function is often a significantly faster convergence rate.

4.4 Summary

The equations for solving a neural network are presented, and details for implementing it
with a one-layer network are presented. MATLAB codes are provided and should be used
to get a feel for how different parameters such as damping, iteration number, step length,
and input data affect the final result. The much more complex equations for finding the
gradient of a general neural network are presented in the next chapter.

66 CHAPTER 4. INTRODUCTION TO NEURAL NETWORKS

4.5 Exercises

1. A linear operator A(z) has the property that A(αz) = αA(z). Show that g(αz) =
αg(z) is not true for g(z) being the sigmoid function.

2. The Datain.m and Dipslay.m codes are given below. Use these codes in conjunction
with the one presented in the text to test the performance of a single neural network
code that classifies 5 × 1 vectors x whose element values are either 1 or 0. The goal
is to train a neural network that can recognize an input vector x where there is only
a single 1 in one of its elements.

• Compare the performance of the least squares algorithm against that of the
cross-entropy algorithm. Which has a faster convergence rate.

• The number of data examples that are classified as 1 should be about the same
as the ones that are classified as 0, otherwise the system of equations will be
ill-conditioned and convergence will slow down. Numerically demonstrate this
fact.

function [x,t,alpha,lim,beta,io]=Datain(M,N,x,t)

for i=1:M

x(:,i)=round(rand(N,1));

end

for i=1:M

if sum(x(:,i))==0;t(i)=1;end

end

% Now we are biasing the data set to be about 1/2

% of x(:,:) to only have a single 1 in the 4x1 vector

% so about 1/2 data are classed at t=1

for i=1:100:M

x(:,i)=0;

x(1,i)=1; t(i)=1;

% x(3,i+49)=1; t(i+49)=1;

end

alpha=.001; % step size

lim=.00001; % stopping criterion

beta=1;io=1; % io=0 cross-entropy

and the Display.m code is below.

function Display(M,res,nit,w,x,t,beta,io)

tp=t*0;tpp=tp;

thresh=.34;

for m=1:M

4.5. EXERCISES 67

tp(m)=w’*x(:,m);

tp(m)=1./(1+exp(-tp(m)*beta)); %corrected by Zongcai

if tp(m)>=thresh;tpp(m)=1;end

if tp(m)<thresh;tpp(m)=0;end

end

subplot(131);plot(res(2:nit));

title(’a) RMS Error vs Iter. #’)

if io==0;text(nit/9,max(res)*.8,’Cross-entropy NN’);end

if io==1;text(nit/9,max(res)*.8,’Least-squares NN’);end

ylabel(’RMS Misfit’);xlabel(’Iteration #’)

subplot(132);plot([1:M],t,’r*’,[1:M],tp,’go’)

ylabel(’Example Class’);xlabel(’Example #’)

title(’b) (Obs=red, Pred=green)’)

[xx,thresh]=ginput(1)

for m=1:M

tp(m)=w’*x(:,m);

tp(m)=1./(1+exp(-tp(m)*beta)); %corrected by Zongcai

if tp(m)>=thresh;tpp(m)=1;end

if tp(m)<thresh;tpp(m)=0;end

end

subplot(133);plot([1:M],t,’r*’,[1:M],tpp,’g*’)

ylabel(’Example Class’);xlabel(’Example #’)

title([’c) Threshold Value = ’,num2str(thresh)])

text(M/9,.5,’Red * = Mistake’,’color’,’red’)

3. Create a large training set and tune the parameters (such as step length, starting
model etc) to give reasonably good convergence and a small error rate. Now take a
holdout data set that was not used for training and use the trained coefficients w to
classify each example in the holdout data set. Is the error rate similar to that of the
training data? Did you overfit the data? Was your training set sufficiently diverse to
account for the characteristics of the holdout data? if you overfitted, what are the
remedies.

4. Sprinkle noise into your training data (i.e., deliberately misclassify some of the training
data). Repeat the previous exercise.

5. Compare the two-node MATLAB algorithm with the single-node algorithm. Which
one is more tolerant to complexity and noise in the training examples.

6. What is the result if the starting model is w(0) = 0? What is the result if the starting
model is w(0) = (1111)T ? Show results.

7. In exercise 2, how do you determine if you are stuck in a local minima? Hint: try
different starting models. Show results.

68 CHAPTER 4. INTRODUCTION TO NEURAL NETWORKS

Chapter 5

Multilayer Neural Networks

The recursive equations for both the feed-forward and backward-propagation operations are
derived for a multi-layered neural network. For each iteration, the feed-forward and gradient
computations cost about O(N2M) algebraic operations for N layers, each one associated
with an M × M weight matrix. The workflow and pseudo-MATLAB codes are presented
for implementing the multi-layer neural network algorithm.

5.1 Introduction

A neural network consists of a sequence of computational nodes arranged in distinct layers
(see Figure 4.2). Each layer is a vertical sequence of computational nodes, where we assume
N layers in the neural network and each layer can have a different number of nodes. The
input nodes are not counted as a network layer because there is no computational processing
at these nodes.

There are two operations required for computing the gradient in equation 4.24: feed-
forward and back-propagation. The next two sections derive the formulas for these two
operations so they can be computed in an efficient recursive fashion.

5.2 Feed-forward Operation

The feed-forward operation of the neural network inputs the features a
[0]
i from the starting

0th layer and produces the predicted target value a[N]

i at the last N th layer:

a[N]

i = g(

z
[N]
i

︷ ︸︸ ︷
µN∑

j=1

w[N]

ij a[N−1]

j (

z
[N−1]
j

︷ ︸︸ ︷
µN−1∑

k=1

w[N−1]

jk a[N−2]

k (.... a[1]
m(

z
[1]
m

︷ ︸︸ ︷
µ1∑

n=1

w[1]
mna

[0]
n)))), (5.1)

where µi is the number of nodes in the ith layer. Here, the variable z
[k]
i and output pa-

rameters a
[k]
i = g(z

[k]
i) of the kth layer can be assembled into the µk × 1 vectors z[k] and

a[k] = g(z[k]), respectively. The activation function g() is applied to each element of a[k] so
that g(z[n]) is a vector of the same dimension as z[n].

69

70 CHAPTER 5. MULTILAYER NEURAL NETWORKS

The computation of the components of the µn×1 vector a[n] can be recursively computed
from the components of a[n−1] in the lower-order (n− 1)th layer. This recursion can lead to
a significant gain in efficient computations as seen in the pseudo-MATLAB code below.

load a[0];

for n = 1 : N

load W[n]

z[n] = W[n]a[n−1]

a[n] = g(z[n])

end

where the matrix coefficients w
[n]
kl for the nth layer are the elements of the µn × µn−1

matrix W[n] and the µn × 1 vector z[n] contains the components z
[n]
i in equation 4.22. For

convenience the bias terms b
[n]
i for the nth layer are implicitly represented in the first column

of the matrix W[n]. Assuming that all of the layers have the same number M of nodes, then
each matrix-vector product/layer costs O(M2) operations. Thus, the computational count
for computing the predicted target vector a[n] is O(M2N). Without using this recursive
procedure, the computational count is O(M2N2) to compute the activation vector a[n] at
each layer.

5.3 Back-propagation Operation

The gradient term in equation 4.24 can be recursively computed backward by updating
w[N−1]

ij from the higher-order terms in the N th layer. Unlike forward propagation where
recursion computes the higher-order activation term from the previous-order one, back-
propagation recursively computes lower-order terms from the higher-order ones. Similar to
forward propagation, the computational count for recursively computing gradients at all of
the layers is O(M2N).

5.3.1 Formula for ∂ǫ/∂w[N]

ij

The gradient of the misfit function in equation 4.24 for the weights in the N th layer is

∂ǫ

∂w[N]

jk

=

µN∑

i=1

residual
︷ ︸︸ ︷

(a[N]

i − yi)
∂a[N]

i

∂w[N]

jk

, (5.2)

where we set λ = 0 for pedagogical simplicity. From the chain rule and equations 4.21-4.22
we have

∂a[N]

i

∂w[N]

jk

=
∂a[N]

i

∂z[N]

i

∂
∑

p w
[N]
ip a

[N−1]
p

︷ ︸︸ ︷

∂z[N]

i

∂w[N]

jk

= g(z[N]

j)′a[N−1]

k δij , (5.3)

5.3. BACK-PROPAGATION OPERATION 71

and

∂a[N]
m

∂a[N−1]

i

=
∂g(z[N]

m)

∂z[N]
m

∂z[N]
m

∂a[N−1]

i

= g(z[N]
m)′w[N]

mi , (5.4)

where g(z[N]

j)′ =
∂g(z

[N]
j)

∂z
[N]
j

and δij represents the Kronecker delta function. Plugging equa-

tion 5.3 into equation 5.2 gives the gradient wrt w[N]

jk in the N th layer:

∂ǫ

∂w[N]

jk

=

δ
[N]
j

︷ ︸︸ ︷

(a[N]

j − yj)g(z
[N]

j)′ a[N−1]

k , (5.5)

where δ[N]

j is the jth component of the weighted residual that vector multiplies the ”forward”

field value a[N−1]

k at the kth node in the (N − 1)th layer. If g(z) is a sigmoid function then
g(z)′ = g(z)(1 − g(z)). Other types of activation functions will provide different formulas
for the derivative.

Can we recursively use the term δ[N]

j in the formula for the calculation of the next
lower-order gradient? The answer is yes as the next section demonstrates.

5.3.2 Formula for ∂ǫ/∂w[N−1]

ij

To derive the expression for ∂ǫ/∂w[N−1]

ij , recall the multidimensional chain rule where f(a1(t), a2(t),
a3(t)...aM (t)) is a regular function of M smooth functions ai(t). In this case the derivative
∂f(t)∂t can be expressed as

∂f(a
[N]
1 , a

[N]
2 , ...a

[N]
M)

∂t
=

M∑

m=1

∂f(a
[N]
1 , a

[N]
2 , . . . a

[N]
M)

∂a
[N]
m

∂a
[N]
m

∂t
, (5.6)

where we append the superscript [N] to the ai variables. Setting t → a[N−1]

i , this equation
says that, for forward propagation of the feature values, a perturbation in a[N−1]

i will affect
the values of the outputs a[N]

i in the next highest-order layer. Since this perturbation t
will also affect the misfit function ǫ(a[N]

1 , a[N]

2 , ...a[N]
µn), then according to the chain rule in

equation 5.6 the gradient w/r to the weights in the N − 1 layer becomes

∂ǫ

∂w[N−1]

jk

=

µN∑

m=1

(a
[N]
m −ym)
︷ ︸︸ ︷

∂ǫ

∂a[N]
m

µN−1∑

i=1

eq. 5.4: g(z[N]
m)′w

[N]
mi

︷ ︸︸ ︷

∂a[N]
m

∂a[N−1]

i

eq. 5.3: g(z
[N−1]
j)′a

[N−2]
k δij

︷ ︸︸ ︷

∂a[N−1]

i

∂w[N−1]

jk

,

=

µN∑

m=1

r[N]

︷ ︸︸ ︷

(a[N]
m − ym) g(z[N]

m)′g(z[N−1]

j)′a[N−2]

k

µN−1∑

i=1

w[N]

miδij ,

=

dg[N−1]

︷ ︸︸ ︷

g(z[N−1]

j)′

a[N−2]

︷ ︸︸ ︷

a[N−2]

k

W[N]T

︷ ︸︸ ︷
µN∑

m=1

w[N]

mj

dg[N]

︷ ︸︸ ︷

g(z[N]
m)′

r[N]

︷ ︸︸ ︷

(a[N]
m − ym)

. (5.7)

72 CHAPTER 5. MULTILAYER NEURAL NETWORKS

Here, the role of the {W[N]Tdg[N]. ∗ r[N]}j term is to back-propagate the weighted residual
vector from the N th layer to the jth node in the (N − 1)th layer. Note that dg. ∗a indicates
an element-by-element MATLAB multiplication of the two vectors and the summation

associated with the matrix-vector multiplication is over the first subscript m of w
[N]
mj . Thus,

we use the transpose symbol T in the superscript of W[N].

5.3.3 Formula for ∂ǫ/∂w[N−2]

ij

The previous section derived the gradient formula for the N − 1 hidden layer next to the
output layer N . We now derive the gradient ∂ǫ/∂w[N−2]

ij for the hidden layer surrounded
only by hidden layers. In this case the objective function will be a function of the activation
parameters in two neighboring links of the chain of layers. This means we need a two-link
chain rule for f = f(g(h(t))), where f(g) is a function of g and g(h) is a function of h(t).
Therefore, the single-link chain rule in equation 5.6 can be extended to the two-link chain
rule where ai(t) → ai(b1(t), b2(t) . . . bM (t)):

∂f(a1, a2, ...aM)

∂t
=

M∑

m=1

M∑

n=1

∂f(a1, a2, . . . aM)

∂am

∂am
∂bn

∂bn
∂t

. (5.8)

Setting ai → a
[N]
i , bi → a

[N−1]
i , f → ǫ and t → a

[N−2]
i gives the formula for ∂ǫ

∂w
[N−2]
jk

:

∂ǫ

∂w[N−2]

jk

=

µN−2∑

i=1

∂ǫ

∂a
[N−2]
i

∂a
[N−2]
i

∂w[N−2]

jk

,

=

µN∑

m=1

(a
[N]
m −ym)
︷ ︸︸ ︷

∂ǫ

∂a[N]
m

µN−1∑

n=1

g(z
[N]
m)′w

[N]
mn

︷ ︸︸ ︷

∂a[N]
m

∂a[N−1]
n

µN−2∑

i=1

g(z
[N−1]
n)′w

[N−1]
ni

︷ ︸︸ ︷

∂a[N−1]
n

∂a[N−2]

i

g(z
[N−2]
j)′a

[N−3]
k

δij
︷ ︸︸ ︷

∂a[N−2]

i

∂w[N−2]

jk

=

dg[N−2]

︷ ︸︸ ︷

g(z[N−2]

j)′

a[N−3]

︷ ︸︸ ︷

a[N−3]

k

W[N−1]T

︷ ︸︸ ︷
µN−1∑

n=1

w[N−1]

nj

dg[N−1]

︷ ︸︸ ︷

g(z[N−1]
n)′

W[N]T

︷ ︸︸ ︷
µN∑

m=1

w[N]
mn

dg[N]

︷ ︸︸ ︷

g(z[N]
m)′

r[N]

︷ ︸︸ ︷

(a[N]
m − ym)

,

(5.9)

where the boldface variables are also seen in equation 5.7 and g(z[N]
m)′(a[N]

m − ym) is the
residual component in equation 5.5.

Each layer of the neural network has the same type of structure, so the formula for the
gradient in the P th layer, where 1 < P < N − 2, is given by

∂ǫ

∂w
[P]
jk

= g(z[P]

j)′a[P−1]

k

(

V[P+1]V[P+2] . . .V[N−1]V[N]r[N]
)

j
, (5.10)

where

(V[P])ij = w[P]

ij g(z
[P]
i)′, i ∈ [1, 2 . . . µP], j ∈ [1, 2 . . . µP−1], (5.11)

5.4. MATLAB CODE 73

The numerical implementation of equation 5.10 is ripe for recursion. Unlike the recursive
algorithm of forward propagation that starts at layer 1, backward recursion starts from the
N th layer to get V[N]r[N], and then recursively computes the next lower-order terms until
reaching the layer of interest. This is known as backward propagation of the residual.

The pseudo-code for recursively computing theM×M gradient matrix dǫ at the (J−1)th

layer is given below. Here we assume the bias values are absorbed into the matrix W[N] and
N > J > 1, where J is a positive integer. Assume W[i], a[i], dg[i] are the M ×M weight,
M×1 activation and M×1 gradient ∂g

∂z matrices, respectively, that have been pre-computed
for all N layers. For notational simplicity we assume that the number of nodes in each layer
is M .

Load (a[0], a[1] . . . a[N]), y, (dg[0], dg[1] . . . g[N]), (W[0], W[1] . . .W[N])

in = a[N] − y

for i = N : −1 : J

in = dg[i]. ∗ in
in = W′[i] ∗ in

end

in = in. ∗ dg[i−1]

dǫ(j, k) = in(j) ∗ a(k)[i−2]

Each gradient calculation for a layer’s weights will cost about O(M2) algebraic operations
per iteration because of the matrix-vector product. If the number of layers is N then the
total cost will be about O(M2N) algebraic operations for computing the weight gradients
for all the layers.

5.4 MATLAB Code

The MATLAB code for the fully-connected neural network can be derived from the above
pseudo-code. There are two principal portions of the code, forward and backward propa-
gation in gradientnn.m and the main code NNode.m. Below is the major fragment from
NNode.m:

% To train your neural network, we will now use steepest decent and line search

fprintf(’\nTraining Neural Network... \n’)

for k=2:nit % Looping over iterations

alpha=1;

%gradientnn ouput: grad =gradient and res(k) = objective function value

[grad,res(k)]=gradientnn(M,x,t’,ww,layer_size,obj_option,act_option,lambda);

for ilayer=1:layer_num-1

ww{ilayer}=ww{ilayer}-alpha*grad{ilayer}; %update the weights

74 CHAPTER 5. MULTILAYER NEURAL NETWORKS

end

% Start line search

[~,res1]=gradientnn(M,x,t’,ww,layer_size,obj_option,act_option,lambda);

while (res1>res(k)) && (alpha>0.00001)

alpha=alpha*0.5;

for ilayer=1:layer_num-1

ww{ilayer}=ww{ilayer}-alpha*grad{ilayer};

end

[~,res1]=gradientnn(M,x,t’,ww,layer_size,obj_option,act_option,lambda);

end

%---

%kk=kk+1

end

A fragment of the pseudo-code for forward propagation modeling in gradientmm.m is
shown below

% Do forward propagation

for iter =1:layer_num-1 % N = # of layers

aa{iter} = [ones(1, M); aa{iter}]; % ones(1, m) is for bias

zz{iter}=ww{iter}*aa{iter}; % z[n]=W[n]a[n-1]

%%%----- a[n]=g(z[n])------%%%

if iter ==layer_num-1 % output layer sigmoid

[aa{iter+1},~] = activation(zz{iter},1);

else

[aa{iter+1},~] = activation(zz{iter},act_option);

end

penalize =penalize+ sum(sum(ww{iter}.^ 2)); % Bias regularization

end

% final output for forward propagation predicted target

t_pred = aa{layer_num};

% calculate the objective function and the derivative of objective

% function with respect to t_pred using likelihood or L2 type

% obj_option=1 for L2, 2 for likelihood

[res,in]= misfit(t_pred,t,1/M,obj_option);

res = res + (lambda/(2*M)) * penalize; % add regularization

and the back-propagation MATLAB code is below

% Implement back-propagation algorithm to compute the gradients

% written according to Back-propagation Operation

5.4. MATLAB CODE 75

% Implement back-propagation

for iter=layer_num-1:-1:1

%’sigmoidgrad’ means compute the gradient of the sigmoid function

if iter ==layer_num-1 %output layer = sigmoid

[~,dg]=activation(zz{iter},1);

else

[~,dg]=activation(zz{iter},act_option); % in=dg[i].*in

end

in=dg.*in; % in=backward field, A=forward field

grad{iter}=in*aa{iter}’+(lambda/M)*ww{iter};% de(j,k)=in*(a[i-2])^T

% update gradient with respect to next weights

in=ww{iter}’*in; % in=W’[i]*in

in = in(2:end, :);

end

end

The activation function activation.m is given by

function [g,dg] = activation(z,type)

%z - input- for activation function

%type: objective function type: 1 for sigmoid, 2 for ReLU

% g - output- value of the activation function

% dg- output- gradient of g with respective to z

if type==1 % for sigmoid

g = 1.0 ./ (1.0 + exp(-z));

dg = g .* (1 - g); %Compute the gradient of the sigmoid function

elseif type==2 % for ReLU

g=z*0.0; dg=z*0.0;

g(z>0)=z(z>0);

g(z<=0)=z(z<=0)*0.0;

dg(z>0)=1.0;

dg(z<=0)=0.0;

else

display(’You entered the wrong type for the activation function’);

stop

end

end

A vectorized version of the back-propagation and forward propagations algorithms are in
Appendix 5.9.

76 CHAPTER 5. MULTILAYER NEURAL NETWORKS

Data Display of 5x1 Vectors
 White indicates 1, Grey indicates 0

10 20 30 40 50 60

5

10

15

20

Figure 5.1: Examples of 5 × 1 vectors with element values equal to either 1 (gray) or 0
(white). Approximately half the vectors only contain 0 values.

5.5 Numerical Examples

As a test example, the input data were 5× 1 vectors where the vector-element values were
either 1s or 0s. Figure 5.1 graphically depicts a large number of vector examples, where gray
(white) means an element value of 1 (0). The goal is to train a network so that it can classify
any vector which only has 0 values as class 1, otherwise it is class 0. Using one-hundred
training examples and a 4-layer neural network (we don’t count the input layer) gives the
results shown in Figure ??. The top row of figures shows the results for a neural network
with an L2 loss function and a sigmoid activation function, while the bottom row is for a
ReLu activation function and a cross-entropy loss function. It is obvious that the ReLU
and cross-entropy network provides the fastest convergence and most accurate results.

Figure 5.3 is similar to Figure ?? except for different combinations of loss and activation
functions. It appears that the ReLu and the cross-entropy loss function in Figure ??c- ??d
gives the best results in terms of accuracy and fast convergence rate.

5.5. NUMERICAL EXAMPLES 77

0 5000 10000

Iteration #

0

0.02

0.04

A
vg

 M
is

fit

a) Misfit vs Iter. #
Number NN Layers =5

Sigmoid and L2

0 50 100 150 200

Example #

0

0.5

1

E
xa

m
pl

e
C

la
ss

b) Pred. (green) vs Obs. (red) Classes
NN structure = 5 15 10 5 1

0 50 100 150 200

Iteration #

0

0.2

0.4

0.6

A
vg

 M
is

fit

c) Misfit vs Iter. #
Number NN Layers =5

ReLu and cross-entropy

0 50 100 150 200

Example #

0

0.5

1

E
xa

m
pl

e
C

la
ss

d) Pred. (green) vs Obs. (red) Classes
NN structure = 5 15 10 5 1

Figure 5.2: Convergence plots and comparison of predicted (green) and observed (red)
classes of 5 × 1 input vectors for a 5-layer neural network. The 5 layers have 5, 15, 10, 5
and 1 nodes, starting from the input layer with 5 nodes. The top row is for the network
with a sigmoid activation function and L2 loss function, while the bottom row is for a ReLu
activation function and cross-entropy loss function. If only red stars appeared in the right
column of figures then no classification errors were encountered.

78 CHAPTER 5. MULTILAYER NEURAL NETWORKS

0 5000 10000

Iteration #

0

0.5

1

A
vg

 M
is

fit

a) Misfit vs Iter. #
Number NN Layers =5

Sigmoid and cross-entropy

0 50 100 150 200

Example #

0

0.5

1
E

xa
m

pl
e

C
la

ss

b) Pred. (green) vs Obs. (red) Classes
NN structure = 5 15 10 5 1

0 100 200 300 400 500

Iteration #

0

0.01

0.02

0.03

A
vg

 M
is

fit

c) Misfit vs Iter. #
Number NN Layers =5

ReLu and L2

0 50 100 150 200

Example #

0

0.5

1

E
xa

m
pl

e
C

la
ss

d) Pred. (green) vs Obs. (red) Classes
NN structure = 5 15 10 5 1

Figure 5.3: Same as previous figure except different combinations of activation and loss
functions.

5.6. SUMMARY 79

5.6 Summary

The recursive equations are derived for the forward propagation and back-propagation op-

erations of a neural network. These operations can be used to find the weights w
[n]
ij in each

layer that minimize the objective function. The recursive nature of these equations provide
for an efficient steepest descent procedure that requires O(M2N) computation per iteration,
where M is the number of nodes per layer and N is the number of layers. Here, we assume
that the number of nodes M is the same for each layer. Numerical examples are provided
that empirically demonstrate the superior performance of the ReLu+cross-entropy network
over the other types of networks.

5.7 Exercises

1. Derive the formula for the three-link chain rule.

2. Derive the formula for the weight gradient at the N = 12 layer.

3. Show that equation 5.7 reduces to equation 4.16 for the two-layer neural network.

4. Write the pseudo-MATLAB code where the bias vector and its gradient are explicitly
computed.

5. Derive the steepest descent formula for the cross-entropy objective function.

6. Write the pseudo-MATLAB code where regularization is used.

7. Write the pseudo-MATLAB code where the input is a batch matrix that represents
the training set.

8. Write the pseudo-MATLAB code where the number of nodes per layer is different
from one another.

5.8 Computational Labs

1. Go to Chapter Fully Connected Neural network lab in Lab1index.html and run the
Fully Connected Neural network Lab.

5.9 Appendix: Vectorized Steepest Descent Formula for Neu-

ral Networks

Assume a network architecture where there areM nodes per layer. The vectorized stochastic

steepest descent formula for computing w
[n]
ij for each layer is given by the following MATLAB

80 CHAPTER 5. MULTILAYER NEURAL NETWORKS

pseudo-code.

Load a[0], y; Initialize α, matrices W[i] for i = [1, 2, . . . N]

for m = 1 : N

a[m] =forw(a[0],W[1] . . .W[N]) Compute predicted data a[N]

dg[m] =deriv(a[m]) Compute predicted derivative dg[m]

end

for n = 1 : niter Iterate steepest descent

in = a[N] − y Residual

for i = N : −1 : 1 Compute W[i] at each layer

in = dg[i]. ∗ in
dǫ = (in. ∗ dg[i−1]) ∗ a[i−1]T

in = W′[i] ∗ in
W[i] := W[i] − αdǫ

end

for m = 1 : N Compute new prediction a[N]

a[m] = forw(a[0],W[1], . . .W[N])

dg[m] = deriv(a[m])

end

end

The above code is vectorized because we have almost entirely eliminated the explicit use of
for loops, which can speed up computations by more than order-of-magnitude. If the input
data are a batch of data then this can be accommodated by an outer loop over the different
training examples. However, this is inefficient so a vectorized version can be obtained by
replacing the input M × 1 data vector a[0] → A[0], where the M × P batch-data matrix
has P columns, each one a different training example of input values. Similarly, the M × 1
target vector y can be transformed into a M × P target matrix. This assumes that there
are M nodes per layer.

Chapter 6

Convolutional Neural Networks

The theory and practice of convolutional neural networks (CNNs) is introduced where
the fully-connected layers are replaced by convolutional layers. In a convolutional neu-
ral network the summation in ai = g(

∑M
j=1wijaj), is replaced by the weighted sum ai =

g(
∑M ′

j=1 ŵi−jaj) over a limited number M ′ << M of nodes in the layer, where ŵi−j = wij .
Thus the weights ŵi are spatially invariant and reused at every input node. Therefore, the
weight wij in the O(M×M)W[n] matrix is replaced by the convolutional weight wij → w i−j

with a memory requirement of O(M). This leads to a significant reduction in storage and
computational requirements. Moreover, the local nature of the ”convolution” operation
appears to be consistent with the local identification of objects by the brain’s neurons in
the visual cortex.

6.1 Introduction

The problem with the classical neural network is that it leads to enormous computational
and memory demands for input data of reasonable size. For example, if images of cats
are to be distinguished from those of other animals, then the training set might consist
of 1024 × 1024 photos of cats with O(106) pixels/photo. For a fully-connected layer, this
means that there are 106 nodes in the first layer, which will lead to a 106 × 106 W[1] weight
matrix. Thus, the storage and computational demands for large sized input vectors can be
prohibitive and discourage the use of neural networks in all but the largest computers.

Another problem with feeding in an entire image into a fully-connected layer (FCL) is
overfitting. In the previous example, all of the intensity values of a 1024 × 1024 image are
weighted and summed as an input value into any one node. Thus a FCL will lead to more
than a million unknowns with just one layer. This suggests that the conventional neural
network might lead to an undetermined set of equations that can almost exactly explain
the training data, but do very poorly on data outside the training set. This type of neural
network overfits the data.

To mitigate overfitting and reduce the storage and computational demands, convolu-
tional neural networks are now in widespread use today. Instead of feeding forward all of
the input data into each node, only a small localized portion is fed into each node. This
localized portion of data is weighted by the same weights for any node. This type of neural

81

82 CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS

network is known as a convolutional neural network (CNN) and is the most popular form
of supervised learning since the early 2000’s.

CNN can trace its roots back to the biology experiments in the 1950-1960s where it was
discovered that a cat’s visual cortex greatly responded to certain orientations of an object.
Figure 6.1 shows how a cat’s visual neurons are most responsive to horizontal or oblique
orientations of a bar that it views. Thus, a cluster of neurons in the cat’s brain was suited
to significantly responding to the view of a small orientation range of a long skinny object.
This is similar to the actions of a localized dip filter that only lights up for certain dips of
an object.

Electrical signal from brain

Figure 6.1: Cat and graph of its neural visual response for different orientations of the black
bar. Figure extracted from Youtube video of Deep Learning for Computer Vision (Andrej
Karpathy, OpenAI).

In the 1980s a spatially invariant neural-network architecture was inspired by the feline
visual processing system. Fukushima (1980) proposed a spatially invariant operation, the
summation of a localized set of input values with neural weights, as a working hypothesis
for some neural mechanisms of a cat’s visual pattern recognition. This is a classical neural
network model except the number of convolutional weights is much less than the number
of input nodes and the weights are spatial invariant. That is, ŵi−j = wij . Thus, the input
zi to ith node can be mathematically computed as a correlation of a small patch of input
image values with a small set of spatially invariant weights. Instead of feeding forward all
of the input data into each node, only a small localized portion, with the same weights, is
fed into each node.

More precisely, the fully-connected neural network input value at the ith node is given

6.1. INTRODUCTION 83

by

z
[n]
i =

M∑

j=1

w
[n]
ij a

[n−1]
j , (6.1)

while z
[n]
i for the convolutional network illustrated in Figure 6.2 is

z
[n]
i =

∑

j∈B

ŵ
[n]
i+ja

[n−1]
j . (6.2)

Here, wj for j ∈ [1, 2, 3 . . . M ′], M ′ << M , and B is a small set of integers that describe the
available weights ŵj . Thus, CNN has a computational and storage requirement of O(M)
compared to O(M2) for a fully-connected neural network. Moreover, the local nature of the
”convolution” operation appears to be consistent with the local identification of objects by
the brain’s neurons in the visual cortex.

Figure 6.2: Convolution where the input is the 32 × 32 × 3 image and the convolutional
filter has dimension 5× 5× 3. The output zi at the i

th node is computed by taking the dot
product of the weights and the activation values zi =

∑

j∈B ŵi−jaj , where B is the set of
indices associated with the small gray window on the left. Figure extracted from Youtube
video of Deep Learning for Computer Vision (Andrej Karpathy, OpenAI).

84 CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS

The earliest gradient-based learning of a convolutional network was presented by LeCun
et al. (1998). Its architecture is illustrated in Figure 6.3 and depicts the image of the letter
A as the input data. The intensities of the pixel values ai over a small patch of A centered
at the ith pixel are multiplied by the convolutional weights and summed to give the input
zi =

∑

j ŵi−jai to the ith node of the next layer. These gray patch is shifted over by one
pixel and the dot product operation is repeated with the same neural weights. There are
three images depicted in the C1 layer, which means that there are 6 different types of filters.

In this case, the index for the kth filter might be designated as ŵ
[n](k)
i for k ∈ [1, 2 . . . 6].

The reduction is storage and computational requirements is significantly less than that for

Figure 6.3: LeNet5 CNN architecture (LeCun et al. 1998). Each plane is a feature map.

fully-connected network, which is sometimes designated the classical neural network.
This chapter describes the technical characteristics of the CNN used in the past and

some of the ones now being used in 2018. The basis for using different architectures does
not currently have a theoretical justification, but it seems to evolve over time to latest
CNN architectures that have significantly reduced testing errors and sped up convergence.
As an example, Figure 6.4 depicts the speedups over the last decade for different CNN
architectures. The trend is deeper CNN networks with larger numbers of layers and more
accurate networks.

6.2 Building Blocks of CNN

There are five building blocks that comprise a typical CNN architecture are shown in Fig-
ure 6.5: convolution layer, filter, pooling layer, FCC, and Soft-Max Layer.

6.2.1 Convolution Layer

Assume the input image of the gray-scale robot is represented by a 32×32 matrix of intensity
values. The filter size for the first convolution layer in Figure 6.5 is a 5× 5× 1 filter for the

values of w
[n]
i in equation 6.2. In this case there is only one channel for the input image.

Taking the dot product of this 5× 5× 1 filter with different 5× 5× 1 patches of the input
A image gives rise to one of the four 5× 5× 1 feature maps. Each FM one has size 28× 28

6.2. BUILDING BLOCKS OF CNN 85

��
��
��
��

T
ra

in
in

g
E

rr
or

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

2013 20102015

7.3%

ResNet GoogleNet VGG ILSVRC13 ILSVR12 ILSVR11 ILSVR10

11.7%

28.2%

3.6%

25.8%

16.4%

8 layers

152 layers

22152

Revolution of CNN Depth

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

19

shallow

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

6.7%

Figure 6.4: Training error vs calendar years for different CNN architectures developed over
the last decade. Figure adapted from Youtube video of Deep Learning for Computer Vision
(Andrej Karpathy, OpenAI).

Subsampling
Subsampling

ConvolutionsConvolutions
5x5 filter

OutputInput

Fully-connected

F.M.
F.M. F.M.

 layer

Feature Map

Figure 6.5: Schematic of building blocks in a CNN where the input is a 32 × 32 image of
the letter A. Figure from en.wikipedia.org/wiki/Convolutional.neural.network.

and was created with a different 5× 5× 1 filter. In this case we say that the output of layer
1 has four channels, each with a 28 × 28 image. The reduced size of each FM results from
the fact that the filter is 5 pixels wide and tall, so that the filter can only be slid 28 pixels

86 CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS

across or down the image before part of it falls outside the input image.

Figure 6.6: Example of reduction in size of FMs by sequential convolutions with 5 × 5
filters with stride ns = 1. In this example the first layer has three FMs, the second one
has 6 because 2 unique filters are used for each FM. The evolution of CNN architectures
shows that the number of FMs per layer typically increase the deeper into the CNN. Figure
adapted from Youtube video of Deep Learning for Computer Vision (Andrej Karpathy,
OpenAI).

For the second layer associated with convolution, the filter will have a third dimension
equal to the number of channels in the previous layer. For example, the tan layer in
Figure 6.6 consists of three channels so the convolution filter will be of dimension 32×32×3.
In this example there are 6 different 5 × 5 × 3 filters to give the blue stack of six images,
each with dimension 28 × 28. To get the green images ten 5 × 5 × 6 filters are convolved
with the blue images.

In general, if the input image has size n× n× nnch then the filter size is nf × nf × nch

and the output feature map dimension is nc × nc. Here,

nc =
n− nf + 1

ns
+ np, (6.3)

and np is the width and height of the zero-padding added to the feature map. Here, nch

is the number of channels, n × n is the dimension of the input image, and ns is the stride
of the filter which is equal to the number of pixels the filter is shifted between each dot
product of the dot-product operation. In the Figure 6.5 example ns = 1, n = 32, np = 1
and nf = 32 to give nc = 28.

6.2. BUILDING BLOCKS OF CNN 87

6.2.2 Activation Functions

Most activation functions use the rectified linear unit (ReLU) defined as

g(zi) = max(0, zi), (6.4)

which eliminates negative values of the input z and gives has the same value of dg(zi)/dz
for any zi > 0. The steepest descent backpropagation formula contains the factor dg(zi)/dzi
so its value will determine the type of residuals that will be used to updates the weights.
Thus the dg(z)/dz term for the ReLU function weights the residuals with equal magnitude
to find the correct adjustment of the weights wi that minimize the objective function.

In comparison, the sigmoid activation function has the derivative dg(z)/dz = g(z)(1 −
g(z)) ≈ 0 unless zi ≈ 0. Since the backprojected residual is multiplied by dg(zi)/dzi at
the ith node, then updating occurs only when the input zi is nearly equal to zero. This
means that zi terms much larger than zero are ignored. Thus convergence can slow down
if the gradinet is mostly zero as evidenced by the observation that deep-layer CNNs with
sigmoid or tanh activation functions stall after a certain number of iterations, even though
the residual is far from zero. To include all non-zero residuals in the update of weights the
ReLU function is now preferred over most activation functions.

Figure 6.7: (Left) Input image and (right) activation image after convolution of the small
filter (see green patch on left) with the input image and application of the ReLU activation
function to the output. In this example, a ”same” convolution was used to output the
same sized-sized image after convolution. Notice that all the values in the activation image
are positive. Figure adapted from Youtube video of Deep Learning for Computer Vision
(Andrej Karpathy, OpenAI).

Figure 6.8 compares ReLU vs a sigmoid activation function for learning in a CNN with
9 layers. Obviously the ReLU learns the fastest for this test

A variation ReLU is Leaky ReLU as shown in Figure 6.9. Here α is a small number and
Leaky ReLU reduces to standard ReLU if α = 0. Leaky ReLU accelerates convergence in
some cases.

88 CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS

ReLU vs Sigmoid

Figure 6.8: Comparison of accuracy of CCN learning using ReLu compared against sigmoid
activation functions. Figure adapted from Hung-yi Lee PPT.

6.2.3 Feature Maps

There are four feature maps (FMs) just after the leftmost convolution in Figure 6.5 that
result from applying four different 5 × 5 filters w(i) (for i ∈ [1, 2, 3, 4]) to the input image.
The role of each filter is to, hopefully, decompose the original image into four different
images, each one associated with one of the four local features associated with the filters.
For example, if w(1) and w(2) are the matrices

w(1) =

0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0

; w(2) =

0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0

, (6.5)

then the FM for w(1) would be largely composed of the vertical parts of the letter A while
the FM for w(2) would consist of the horizontal parts. These filters act as matching filters
and extract parts of the image that are similar to the pattern in the filter.

6.2. BUILDING BLOCKS OF CNN 89

Leaky ReLU

Figure 6.9: Leaky ReLU on left and the parameter value α can be determined by gradient
descent on the right. Figure adapted from Hung-yi Lee PPT.

The one puzzle is that the backpropagation algorithm determines the patterns in these
filters w(i)so it is a mystery as to which patterns will emerge in the FM. What is not
mysterious is that these patterns are for small features in the original image because the
filters are usually very small and localized. They are equivalent to high-wavenumber pass
filters.

6.2.4 Pooling Layer

The pooling layer is created by a subsampling operation that reduces the size of the input
map by an integer multiple. For example, the leftmost pooling or subsampling operation in
Figure 6.5 reduces the 28 × 28 × 4 FMs to 14 × 14 × 4 FMs. After pooling, the activation
function is applied to each sample in the pixel to give four 14× 14 activation images a[1](i),
where i denotes the ith activation image in layer 1. Note, the layer number is in square
brackets and the channel number is in the rounded superscript1.

There are several pooling strategies such as replacing the intensity value at a pixel by

1We often eliminate an abundance of superscript or subscripts when trying to quickly get across a key
idea. For example, no channel superscripts are in equations 6.1 or 6.2.

90 CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS

the average value of its neighbors. The most widely used one is the maximum as illustrated
in Figure 6.10. Here, the maximum value of four neighbors replaces the intensity value of
the central point. The 2 × 2 patch is slid over by two pixels, i.e. a stride of 2, and the
max-pool process is repeated. In this example, the 4×4 patch of pixels is reduced to a 2×2
patch. Typically, a pooling filter no larger than 2× 2 is used, otherwise high-wavenumber

Figure 6.10: Example of max-pooling applied to a 4 × 4 image to reduce it to a 2 × 2
image. This size reduction leads to greater computational efficiency. According to Karpathy
and others, CNN architectures should move way from subsampling. Figure adapted from
Youtube video of Deep Learning for Computer Vision (Andrej Karpathy, OpenAI).

information gets lost.
The combination of the operations convolution − activation and pooling is considered

one layer. This sequence of layers is repeated with different hyperparameters for each layer
until we get to the last few layers. The hyperparameters are the design parameters, such
as number of filters, filter size, number of layers, that don’t get updated in the iterative

backprojection operations. In contrast, the weights w
[n]
i−j get updated every iteration and

are denoted as parameters.

6.2. BUILDING BLOCKS OF CNN 91

6.2.5 Fully-Connected Layer

The last few layers combine all the local FMs into a fully − connected image by concate-
nating all of the vectors associated with each FM into one tall vector. For example, if there
are two 3 × 3 FMs then each one can be transformed into a 9 × 1 vector, and these two
vectors are concatenated to form the tall 18 × 1 vector. This tall vector is then used as
input into a fully-connected layer. A fully-connected layer combines all other parts of the
input image into every node of the next layer. It can bring together many local features to
form a much larger image.

6.2.6 Soft-Max Layer

In image classification there might there might be dozens of classes, not just two as in binary
classification. In this case a soft-max activation function g(z) can be used in the output
layer such that

g(zi) =
ezi

∑M
i=1 e

zi
, (6.6)

where the summation is over all the M nodes in the last output layer. The typical output
vector will typically consist of positive numbers between 0 and 1 and can be interpreted as
the probability of the input image being in one of the M classes. Each of the M output
nodes is associated with a unique class. The one with the highest probability is selected as
the class of the input image.

6.2.7 Loss Function

Which loss function should be used? For binary classification the cross-entropy loss function

ǫ =

M∑

i=1

yi ln yi, (6.7)

over the mean square error (MSE) loss function

ǫ = 1/2
M∑

i=1

(ii − yobsi)2. (6.8)

is preferred (see Figure 6.11). Cross entropy has the fastest convergence rate as depicted in
the example shown in Figure 6.12.

6.2.8 Dropout Regularization

Too many fully-connected layers can lead to overfitting. Thus, a regularization method
such as damping is needed to stabilize the solution. However, overfitting does always occur
because with some deep networks the data cannot be fitted well even with many layers (see
Figure 6.13). There are many regularization methods, some of them are listed below.

1. More training sets? longer computation

92 CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS

Figure 6.11: Which loss function is preferred? Figure adapted from Hung-yi Lee PPT.

2. Early stopping

3. Marquardt damping: large weights are penalized or constrained

4. Bootstrap: classify different subsets of the training data, and fit a model which is
based on these subsets.

5. Limiting the number of hidden layers and units

6. Dropout: A successful way to prevent overfitting is to perform a dropout. Here units
are randomly removed from the neural network, which can also be seen as a form of
adding noise to the network. p=0.5and removing units in the input layer withp=0.2

A popular regularization method is dropout regularization (Nitish et al., 2014). As
indicated in the wikipedia page At each training stage, individual nodes are either ”dropped
out” of the net with probability 1− p or kept with probability p, so that a reduced network is
left; incoming and outgoing edges to a dropped-out node are also removed. Only the reduced
network is trained on the data in that stage. The removed nodes are then reinserted into
the network with their original weights.

6.2. BUILDING BLOCKS OF CNN 93

MSE vs Cross-Entropy

Figure 6.12: Accuracy vs iteration number for MSE and cross-entropy loss functions. Figure
adapted from Hung-yi Lee PPT.

In the training stages, the probability that a hidden node will be dropped is usually 0.5;
for input nodes, this should be much lower, intuitively because information is directly lost
when input nodes are ignored.

At testing time after training has finished, we would ideally like to find a sample average
of all possible 2n dropped-out networks; unfortunately this is unfeasible for large values of n.
However, we can find an approximation by using the full network with each node’s output
weighted by a factor of p, so the expected value of the output of any node is the same as
in the training stages. This is the biggest contribution of the dropout method: although it
effectively generates 2n neural nets, and as such allows for model combination, at test time
only a single network needs to be tested.

By avoiding training all nodes on all training data, dropout decreases overfitting. The
method also significantly improves training speed. This makes model combination practical,
even for deep neural nets. The technique seems to reduce node interactions, leading them
to learn more robust features that better generalize to new data.

94 CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS

Figure 6.13: Even with deep networks with many unknowns overfitting does not always
occur. The deeper the network for standard architectures, the more likely the gradient
tends to vanish so the convergence stalls. ResNet tends to fix this problem. Figure adapted
from Hung-yi Lee PPT.

6.2.9 DropConnect Regularization

Again, wikipedia saya the following about DropConnect regularization: DropConnect (Perez,
2013) is the generalization of dropout in which each connection, rather than each output
unit, can be dropped with probability 1− p. Each unit thus receives input from a random
subset of units in the previous layer.

DropConnect is similar to dropout as it introduces dynamic sparsity within the model,
but differs in that the sparsity is on the weights, rather than the output vectors of a layer.
In other words, the fully connected layer with DropConnect becomes a sparsely connected
layer in which the connections are chosen at random during the training stage.

6.2.10 Local Response Normalization(LRN) Regularization

Local Response Normalization(LRN) type of layer turns out to be useful when using neurons
with unbounded activations (e.g. rectified linear neurons), because it permits the detection

6.2. BUILDING BLOCKS OF CNN 95

of high-frequency features with a big neuron response, while damping responses that are
uniformly large in a local neighborhood. See https : //stats.stackexchange.com/questions/
145768/importance − of − local − response− normalization− in− cnn.

To excite all the neurons equally in a layer LRN is used. There are some reports that
claim it is not used very much anymore. However its definition is below.

Original Formula: For every particular position (x, y) and kernel ithat corresponds to
a single ’pixel’ output we apply a ’filter’, that incorporates information about outputs of
other n kernels applied to the same position. This regularization is applied before activation
function.

bixy =
aixy

(k + α
∑min(N−1,i+n/2)

max(0,i−n/2) (aixy)
2)β

(6.9)

where bixy is the regularized output for kernel i at position (x, y), where aixy is the source
output for kernel i applied at position (x, y), N is the total number of kernels, n is the size
of the normalization neighborhood, and α, β, k and n are hyperparameters.

In practice two approaches can be used:

1. Within Channel. Normalize over local neighborhood of a single channel (correspond-
ing to a single convolutional filter). In other words, divide response of a single channel
of a single pixel according to output values of the same neuron for pixels nearby.

2. Across Channels. For a single pixel normalize values of every channel according to
values of all channels for the same pixel.

LRN was used more often during the days of early convets like LeNet-5. Current imple-
mentation of GoogLeNet (Inception) in Caffe often uses LRN in connection with pooling
techniques, but it seems to be done for the sake of just having it. Neither original Incep-
tion/GoogLeNet (here) nor any of the following versions mention LRN in any way. Also,
TensorFlow implementation of Inception (provided and updated by the team of original
authors) networks does not use LRN despite it being available.

Many types of normalization layers have been proposed for use in ConvNet architectures,
sometimes with the intentions of implementing inhibition schemes observed in the biological
brain. However, these layers have recently fallen out of favor because in practice their
contribution has been shown to be minimal, if any.

6.2.11 Mini-Batch

The preferred approach to finding the weights is to divide up the training set into mini-
batches of training examples. The starting weights are randomized, and the updated weights
are found by one iteration for one mini-batch of input data (see Figure 6.14). That is, the
gradient is formed from

∇ǫ = ∇(l1 + l31...) (6.10)

where li represents the loss function in Figure 6.14. These updated weights are used as
the starting weights for the next mini-batch and this process is repeated until all the mini-
batches have been used. This is known as one epoch. In the next epoch the data are

96 CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS

resorted into non-overlapping mini-batches and the weights are updated for the next epoch.

Mini-Batch

Figure 6.14: Weights are updated by one pass through each mini-batch of data in the
training set. It is recommended that the training examples are reshuffled after each epoch.
Figure adapted from Hung-yi Lee PPT.

6.2.12 Step Length

The step length α in the steepest descent formula is also known as the learning rate. Typ-
ically the learning rate is large for the early iterations (e.g., α = .0.5) and then decrease α
after several epochs. One formula suggested by Hung-yi Lee is

αk =
α√
k + 1

, (6.11)

where k is the iteration index for different epochs.
Another strategy is to replace

√
k + 1 by

∑k
i=1 g

2
i where gi is the gradient for the ith

iteration. According to Hung-yi Lee this is known as John Duchi’s Adagrad. In this case
smaller gradients get greater learning rates in order to increase their importance. Of course
we should also use momentum as discussed in an earlier chapter.

6.3. ARCHITECTURES OF CNN 97

In summary the training strategy is summarized in Figure 6.15. We first train in the
training set and then test the validity of the weights on a non-overlapping validation set.
The validation sets should have the same character as the original training set and usually
it is about 20% in size.

CNN Workflow

Figure 6.15: Weights are updated by one pass through each mini-batch of data in the
training set. It is recommended that the training examples are reshuffled after each epoch.
Figure adapted from Hung-yi Lee PPT.

6.3 Architectures of CNN

There are several CNN architectures that are most popular today and their performances
are graphed in Figure 6.4. The VGG net is quite appealing from a programming point of
view because it uses the same number of nodes in each layer. These different architectures
appear to have evolved by trial and error, where some intuition is used to help improve the
design. No mathematical basis appears to justify their usage.

98 CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS

6.3.1 AlexNet

The AlexNet architecture is shown in Figure 6.16. Alexnet is one of the pioneer Deep
Neural Networks which aim to classify images. It was developed by Alex Krizhevsky, Ilya
Sutskever, and Geoffrey Hinton and won an Image classification Challenge (ILSVRC) in
2012 by a large margin. At that time the other competing algorithms were not based on
Deep Learning. Now, and since then, they almost all are. This net had a huge impact on
the domain and most of following nets were more or less based on its architecture. Alexnet
(Figure 6.16) is composed of 5 convolutional layers (C1 to C5 on schema) followed by two
fully connected (FC6 and FC7), and a final softmax output layer (FC8). It was initially
trained to recognize 1000 different objects.

The intuition behind this net is that each convolutional layer learns a more detailed
representation of the images (feature map) than the previous one. For example the first
layer is able to recognize very simple forms or colors, and the last one more complex forms
such as full faces for instance

AlexNet

Figure 6.16: AlexNet architecture. Figure and text from https :
//www.saagie.com/blog/object − detection − part1.

6.3.2 ZFNet

The ZFNet architecture is shown in Figure 6.17. ZFNet has the same global architecture
as Alexnet, that is to say 5 convolutional layers, two fully connected layers and an output
softmax one. The differences are, for example, better sized convolutional kernels.

6.3.3 VGGNet

The pleasing feature of VGGNet in Figure 6.18 is that the filter size (3× 3× nc and down-
sampling fraction stays the same for every layer. Figure 6.4 shows that it also outperforms
earlier architectures such as the LeCUN one shown in Figure 6.3.

6.3. ARCHITECTURES OF CNN 99

ZFNet

Figure 6.17: ZFNet architecture. Figure and text from https :
//www.saagie.com/blog/object − detection − part1.

c

VGGNet

3x3xn filters

Figure 6.18: Architecture of VGGnet where D is the number of channels and the x− z size
of each feature map decreases the deeper into the CNN.

A schedule for a VGG CNN is depicted in Figure 6.19 where the filter x−z size stays the
same for every layer. However, the number of channels or filter dimension in the channel
dimension doubles after every pooling. The input image has a dimension of 224×224×3 =
O(150K). There are 64 filters in the first layer so there are 64 feature maps in the first
layer, each of them with a dimension of 224× 224. The filter size is 3× 3××3 for each FM
so that the total number of unknowns in the 1st-layer is (3∗3∗3)∗64 = 1, 728, not counting
biases. The 64 FMs requires a total storage of 224 ∗ 224 ∗ 64 = O(3 106) variables. Another
convolution layer is used with the filter size of 3× 3××64 with O(36K) unknowns. Then
pooling is applied to halve the size of the FM. The number of channels doubles after every
pooling.

VGG is a very deep and simple net. In the most common version, it has 16 layers (The
blue pooling layers aren’t counted on the schema). However the global architecture is very
similar to the Alexnet one. Actually the Alexnet convolutionnal layers are here represented

100 CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS

Figure 6.19: Hyperparameter values for a VGG CNN. The input image has a dimension
of 224 × 224 × 3 = O(150K). Figure adapted from Youtube video of Deep Learning for
Computer Vision (Andrej Karpathy, OpenAI).

by two or three following convolutional layers. Another difference is that each convolutional
layers has a 3x3 kernel unlike the other nets thats have different sized kernels for each layer.

6.3.4 GoogleNet

The Google CNN architecture is depicted in Figure 6.20 and has an inception layer with
several convolutions with different filters and a pooling layer. It won the ILSVRC contest
for 2014 by having the lowest percent errors for the testing set.

6.3.5 ResNet

ResNet is the 2016 ILSVRC contest winner with an error rate of less than 5%. Its architec-
ture is shown in Figure 6.21, where the innovation is that it adds an identity operator to

the output of an activation function. Assume the ith input is z
[n]
i and the ith output of a

layer’s standard operations is a
[n]
i . The ResNet architecture says the ith output is a

[n]
i +z

[n]
i .

6.4. DEEP LEARNING SOFTWARE AND YOUTUBE CLASSES 101

Figure 6.20: Architecture for GoogLeNet CNN. The inception module contains several
convolution operations with different filters. Figure adapted from Youtube video of Deep
Learning for Computer Vision (Andrej Karpathy, OpenAI).

This can be modified by saying the ith output is a
[n+x]
i + z

[n]
i , where x is some integer larger

than 1.
ResNet-152 introduced the concept of residual learning in which the subtraction of

feature is learned from the input of that layer by using shortcut connections (directly con-
necting input of nth layer to some (n+ x)th layer, which is shown as curved arrow). It has
proven that the residual learning can improve the performance of model training, especially
when the model has deep network with more than 20 layers, and also revolve the problem
of degrading accuracy in deep networks.

Which CNN architecture should one use and should one try to innovate with new ones?
The answer according to Hinton, Karpathy and Ng is to ”not be a hero”. Use one of the
latest ones that work best with the ILSVRC contest, perhaps delete some parts. Karpathy
says to play with the regularization strength and dropout rates.

6.4 Deep Learning Software and Youtube Classes

Karpathy points out a number of CNN software packages, and recommends Keras as the
easiest to use, similar to Python. It is high level language based on the Torch/Tensorflow
software which is for pros. Once you master the Torch language, you can develop your

102 CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS

Figure 6.21: Architectures for (left) VGG and (middle) ResNet CNN.

own special architectures. For some reason he doesn’t list Cafe as one of his top three
favorites, but he notes the nice features of 1). Run a script to convert data, 2). define CNN
architecture, 3). define silver, and 4). train with pretrained weights. Now I understand,
you don’t train you simply feedforward! He doesn’t list Theano or Lasagne as his favorites.

What about MATLAB? More details of his course are at cs231n.stanford.edu, he seems
like an excellent lecturer. I also recommend Andrew Ng’s Youtube videos on Deep Learning.

If you want to start your own company, the advice in 2016 is to buy NVIDIA DGX-1
(P100 GPUs) or NVIDIA DIGITS DevBox (Titan X GPUs). Karpathy claims the cloud
does not offer good GPU services yet.

6.5 Seismic Fault Interpretation by CNN

Xiong et al. (2018) used a CNN system to identify faults in seismic data. Unlike previous
attempts that used features extracted from seismic data as input (Zhang et al., 2014), Xiong
et al. (2018) used three slices from the migration image as the input (see Figure 6.22) and
used an attribute image as the output image (see Figure ??). In the attribute image they
identified the faults and labeled them as such. Xiong et al.’s (2018) schematic for the CNN

6.5. SEISMIC FAULT INTERPRETATION BY CNN 103

architecture is shown in middle of Figure 6.22. Some examples from the training set are
given in Figure 6.23.

The target output values in the training set at each point O can be can be interreted
as faults or not by interpreters or auto-picking algorithms. In their paper, they classified
eight different 3D seismic image cubes of real data using a skeletonized-seismic-coherence-
based auto-picking method (Qi et al., 2017). After annotation, every point in the training
cubes is labeled as fault or non-fault using a threshold strategy: the points with skeletonized
coherence value larger than a predefined threshold is classified as fault, others are non-fault.

Before the input of three slices is fed into the network, it is normalized by subtract-
ing the mean and dividing by the standard deviation. Similar to the classical CIFAR-10
classification problem (Krizhevsky and Hinton, 2009; Google, 2017), the network consists
mainly of two convolutional (Conv) layers and two fully-connected (FC) layers followed by a
softmax classifier, which gives the label prediction output (Bishop, 2006). The Conv layers
both have 64 filters with sizes of 5 × 5. There are 384 and 192 feature maps in the two
FC layers, respectively. After every Conv layer and FC layer, they applied rectified linear
activation (ReLU). Max-pooling with both size and stride being 22 and local response nor-
malization (LRN) are used after both Conv layers. The final softmax classifier produces a
probability indicating the likelihood of a fault being presented in the center point of the
input. The prediction of the label is then generated by applying a threshold (0.5) to the
output likelihood values, such that the one above the threshold would be considered to be
a fault location, while those below would not.

The network is trained from scratch by initializing the weights of all the layers as in
the CIFAR-10 tutorial of Tensorflow (Google, 2017; Abadi et al., 2016). A gradient descent
optimizer is implemented in Tensorflow with the default parameters and the initial learning
rate, i.e. step length, being 0.1. The training samples are randomly shuffled before they
are fed into the network for every epoch, which is a critical step to obtain good network
performance. The model is saved when the error (or loss) function

ǫ =
1

n

n∑

i=1

ln p(Y = yi|xi) (6.12)

reaches a plateau during the optimization process, and it is then validated with the valida-
tion dataset. The saved model achieved classification accuracies of about 73% on both the
training and validation datasets.

The weights for the trained model are applied to the testing cube comprising a 3D
seismic image volume of real data. The cube size is 1000 × 655 × 1083. The top, front
and side panels are showing time section (T = 312), inline section (Y = 423) and cross-line
section (X = 417), respectively. Locations of the sections are marked by the black lines in
the figure. One of the eight cubes is randomly selected for validation and will not be seen by
the network during the training process, while the other seven cubes are used to generate the
training dataset. The training dataset is constructed by randomly selecting 50000 points
from each cube labeled as faults (which is approximately 0.2% of all fault points in the
cubes), and another 50000 points labeled non-fault. The number of non-fault points is
much larger than fault points in the cubes. For this real data cube, the CNN obtains about
74% classification accuracy; close to that obtained for training and validation datasets.

104 CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS

Figure 6.22: Three slices on the left are taken from a 3D migration cube and used as the
input data to the CNN. The output is the point yi at o on the right which is taken to be
either a fault (yi = 1) or not (yi = 0). The 24×24×3 filter is shifted over to a new position
o′, and the dot product of the filter with the image points is computed again. Repeating
this for all input points gives the first feature map. Note, the filter is not shifted up or
down and only shifted along the lateral directions for this training example. A new training
example will have the center point of the filter shifted up or down. Figure adapted from
Xiong et al. (2018).

Figure 6.23 shows some representative fault and non-fault samples randomly selected
from the training dataset. While it is not easy for human eyes to distinguish every single
fault and non-fault sample, we can see a systematic difference between the two classes.
Non-fault samples show more continuous seismic events. A validation dataset of the same
size is constructed in the same way as the training dataset, which is used to monitor the
training process and determine the termination of training.

The trained model is applied to the testing cube comprising a 3D seismic image volume
of real data as shown in Figure 6.24. The cube size is 1000×655×1083. The top, front and
side panels are showing time section (T=312), inline section (Y=423) and cross-line section
(X=417), respectively. Locations of the sections are marked by the black lines in the figure.
For this real data cube, the CNN obtains about 74% classification accuracy; close to that
obtained for training and validation datasets.

The fault probability cube output by the CNN is shown in Figure 6.24a along with results

6.5. SEISMIC FAULT INTERPRETATION BY CNN 105

Figure 6.23: Samples labeled as (a) fault and (b) non-fault. All samples are randomly
selected from the training dataset, except the first row showing synthetic samples. Each
sample is composed of front, side and top panels which are inline, cross-line and time slices,
respectively. The size of each slice is 24 × 24. The spatial grid size is 25 meters while the
vertical time sampling interval is either 0.002 or 0.004 seconds for different cubes. Figure
adapted from YXiong et al. (2018).

from a seismic coherence cube (Figure 6.24b). Seismic coherence is a well-known and widely
used attribute to highlight discontinuities in seismic image (Bahorich and Farmer, 1995).
As we can be seen in Figures 6.24 and 6.25, the CNN results show a higher resolution
compared to the coherence volume. The seismic faults as well as channels are clearer in
the CNN results. Recalling that the fault probability calculation is made independently
for different points, the clear continuous outlines of discontinuities in the fault probability
images show that the trained network performs robustly in the presence of noise.

For the test with the 3D image cube of size 1000 × 655× 1083, it took about 2.5 hours
to obtain the fault probability result using a computer cluster with 20 nodes (40 CPU cores
in each node). So this method is still practical even without possible improvements by
reducing duplicate calculations in adjacent locations.

106 CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS

Figure 6.24: Real data example showing the fault probability cube from the CNN prediction,
compared with the corresponding coherence cube. The cube size is 1000× 655× 1083. The
spatial grid size is 25 meters while the vertical time sampling interval is 0.002 seconds.
Figure adapted from Xiong et al. (2018).

6.6 Summary

The characteristics of a CNN are described. Its main advantage over classical neural net-
works is that its convolutional nature leads to a significant increase in computational effi-
ciency by more than several orders of magnitude. It also more closely mimicks the actual
processing of the brain’s neurons in processing visual information in the brain. The CNN
uses a weighted sum of local pixel values to give the input the jth node of the next layer.
The set of N weights wi for i ∈ [1, 2 ∈ N] are shared for computing the input into any
node of the next layer.

An example is presented for using a CNN to identify faults in a migration image. The
result is a more accurate identification of faults than provided by the interpretation of a
coherency cube. This is a promising result and gives optimism that CNN’s will be a useful
tool for many aspects of exploration geophysics.

6.7 Exercises

1. Describe how a migration deconvolution filter might be computed using CNN. De-
scribe the effects of using convolution filters less than a wavelength or much larger
than a wavelength.

2. Describe how a Hessian inverse might be obtained by computing m = LTd, Lm = d̃,
and m̃ = LT d̃, so that m̃ = LTLm. In this show how to design a CNN so that the

6.7. EXERCISES 107

Figure 6.25: Time slices of fault probability [(a) and (c)] from CNN prediction, compared
with seismic coherence [(b) and (d)], at two different time slices, T = 312 (top row) and
T = 387 (bottom row), respectively. The section size is 655× 1083. The spatial grid size is
25 meters. Figure adapted from YXiong et al. (2018).

weights for an inverse Hessian are obtained such that m = [LTL]−1m̃. Is this the
same inverse Hessian computed in exercise 1? Explain.

3. The first layer of a CNN supposedly decomp[oses an image into smaller components
associated with edges oriented at certain angles. How can one use local damped
regularization and local slant stacking to encourage the filters in the first layer to
output FMs with edges oriented in different directions?

4. Too large of a filter means that the high wavenumber data have been lost. Develop
a multiscale CNN that first finds weights that fit the low-wavenumber features of the
input data, and then finds the weights for the high-wavenumber features. Explain
why this might be important for speeding up convergence as is done in a multigrid
method. Would it be useful to have a low-pass filter or high-pass filter in each FM to
reduce noise?

5. Write the pseudo-MATLAB code for dropout regularization.

6. Sketch the outline for developing CNN as a perfect absorbing boundary condition near
the sides of the finite-difference computational grid. Should the constraint ||Lp = 0||2

108 CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS

be included in the objective function, where Lp represents the acoustic wave equation.
Test your CNN algorithm on analytical solutions to the acoustic wave equation in a
homogeneous 2D medium.

7. How can FWI be combined with CNN to improve the performance of FWI below salt?

Chapter 7

Wave Equation Inversion and
Neural Networks

We compare the full waveform inversion (FWI), skeletonized wave equation inversion (SWI),
and supervised Machine Learning (ML) algorithms with one another. For velocity inversion
the advantage of SWI over FWI is it is more robust and has less of a tendency in getting
stuck at local minima. This is because SWI only needs to explain the kinematic information
in the seismograms, which is less demanding than FWI’s difficult task of explaining all of
the wiggles in every arrival. The disadvantage of SWI is that it provides a tomogram with
theoretically less resolution than the ideal FWI tomogram. In this case, the SWI tomogram
can be used as an excellent starting model for FWI. SWI is similar to supervised Machine
Learning in that both use skeletonized representations of the original data. Simpler input
data lead to simpler misfit functions characterized by quicker convergence to useful solutions.
I show how a hybrid ML+SWI method and the implicit function theorem can be used to
extract almost any skeletal feature in the data and invert it using the wave equation. This
assumes that the skeletal data are sensitive to variations in the model parameter of interest.

7.1 Introduction

Full waveform inversion is very ambitious, it seeks an earth model m that explains every
complicated wiggle in a large set of very wiggly seismograms denoted by d (Tarantola,
1987). A basic assumption is that the forward modeling operator L (see Figure 7.1a) is
a ”good enough” representation of the actual physics of wave propagation in the Earth.
Such ambitions and assumptions can sometimes lead to getting stuck in local minima, slow
convergence and tomograms with unacceptable errors. To partly mitigate these problems a
multiscale strategy can be employed. As an alternative, we present wave equation inversion
of skeletonized data. Here, the large complicated data set is reduced to skeletonized data
d̃ which are much less complicated yet still contain essential information about the model
parameters of interest. This means that the skeletonized data lead to a less complicated
objective function that does not contain so many local minima associated with the one for
FWI.

To invert the skeletonized data, skeletonized wave equation inversion (SWI) uses nu-

109

110 CHAPTER 7. WAVE EQUATION INVERSION AND NEURAL NETWORKS

merical solutions to the wave equation to update the model by back-propagation of the
weighted skeletonized data residual (Luo and Schuster, 1991; Lu et al., 2017). The result
is a largely robust inversion algorithm free of layered media or high-frequency approxima-
tions. The main benefits are that the inversion algorithm is less prone to getting stuck in a
local minimum, but at the cost of a reduction in model resolution. However, the inverted
tomogram can be used as the starting model for FWI because it is likely to be sufficiently
close to the actual earth model.

Recent examples (Lu et al., 2017) of skeletonized wave equation inversion include the
following cases. 1). Inversion of Q(x) from diving waves and surface waves. Here the
skeletonized data d̃ are the peak frequencies associated with the arrivals of diving waves or
surface waves, and the output model is Q(x). 2). V(x) inversion by migration velocity
analysis. The skeletonized data d̃ are the depth residuals or static shifts associated with
plane-wave migration images in the common image gather domain. 3). Inversion of V (x)
from the dispersion curves of surface waves. Here, the input skeletonized data d̃ are
the dispersion curves of surface waves in the k − ω domain and the output model is the
shear velocity for Rayleigh waves, Love waves, and the P-velocity model for near-surface
guided waves.

The skeletonization strategy of SWI is similar to that of neural networks, where a
complex data set is often reduced to its essential features (Bishop, 2006). These skeletonized
”features” are input into the system of neural network layers depicted in Figure 7.1c. Here,
the original data can be very complex but complexity can be reduced by an unsupervised
learning algorithm such as a principle component analysis, singular value decomposition
(Bishop, 2006) or some statistical measure of important features (Patel and Chatterjee,
2016). In principle, these less complex features are still rich in information about the
model. As an example, Figure 7.2 depicts the workflow for classifying rock types using
a supervised learning method (Patel and Chatterjee, 2016). Here the original input data
consist of images d of thin sections and their classification m, each one classified as a type
of limestone by a geologist. For example, if there are three types of classified rocks then the
3× 1 target model vector m = (m1, m2, m3) might be assigned m = (1, 0, 0) if it is a pure
limestone, m = (0, 1, 0) if it is a weathered rock, and m = (0, 0, 1) if it is a shale-limestone.
In practice, the assignment is over a range of classification numbers and m is a 7× 1 vector
according to Figure 7.2.

To simplify the input data, the thin-slice images are skeletonized into histograms of
red, blue, and green colors. These histograms are further skeletonized into second-order
(variance), 3rd-order (skewness), and 4th-order (kurtosis) statistical parameters for each
color histogram. The examples from this skeletonized training set are denoted as (d̃,m),
where for each image the input is a 9×1 vector of statistical values from the three histograms.
For pedagogical simplicity we avoid the superscript notation that denotes the ith example
from the training set. After sufficient training with N training examples, the coefficients
of the neural network are inverted for and used to classify thin sections from out of the
training set. In their case history, Patel and Chatterjee achieved more than a 90% accuracy
in the classification of thin sections taken from outside the training set.

7.2. THEORY FOR WAVE EQUATION INVERSION OF SKELETONIZED DATA 111

Input
Data
d

Input
Data
d

~
d

~
d m

m

m

c). Neural Network

[L L] L
-1T T

b). Skeletonized WI

[L L] L
-1T T

a). FWI

W

~ ~ ~

d

Intuition

Asymptotic

Fe
at

ur
es

Unsupervised

Learning

Fe
at

ur
esInput

Data
(d,m)

Earth Model

Earth Model

Target Model

Figure 7.1: System diagrams for a) FWI, b) SWI, and c). a neural network. The neural
network and SWI are similar in that the input data are skeletonized features of the raw
data strongly influenced by small changes in the model. However, the neural network is
first trained to get an estimate of W, which is then used to estimate the target model m
from untrained data.

7.2 Theory for Wave Equation Inversion of Skeletonized Da-
ta

The starting point for wave equation inversion of skeletonized data is to define an objective
function

ǫ =
1

2

N∑

j=1

(d̃j − d̃obsj)2, (7.1)

where dj is the predicted data for jǫ[1, 2, ..N] and the obs superscript denotes the observed
data. Different norms can be employed, and different objective functions can be used
such as a correlation objective function. For simplicity of exposition, we do not include
regularization or preconditioning terms and assume that dj is always real.

An iterative gradient descent method can be used to find the model parameters that

112 CHAPTER 7. WAVE EQUATION INVERSION AND NEURAL NETWORKS

Figure 7.2: System diagram for the probabilistic neural network for classifying thin sections
(from Patel and Chatterjee, 2016).

best explain the data in the least squares sense:

m
(k+1)
i = m

(k)
i − α

N∑

j=1

rj=residual
︷ ︸︸ ︷

(d̃j − d̃obsj)

Fre′chet
︷ ︸︸ ︷

∂d̃j
∂mk

, (7.2)

where α is the step length and m
(k)
i is the model parameter of interest in the ith cell

at the kth iteration. If the skeletal data value di is not explicitly contained in the wave
equation, e.g. reflection traveltimes are not explicit variables in the wave equation, then a

connective function Φ(dj ,mk) is required to get a formula for the Fréchet derivative
∂d̃j
∂mk

.
For example, Luo and Schuster (1991) proposed the crosscorrelation between the observed
and predicted pressure traces for wave equation traveltime inversion. Lu et al. (2017)
presents examples where the correlation is between the observed and predicted magnitude
spectra of dispersion curves from surface waves. There are many other examples, some of
which are described in Lu et al. (2017). Once the connective function is properly defined
then the implicit function theorem (Luo and Schuster, 1991) can be used to define the
formula for the Fréchet derivative:

∂d̃j
∂mk

= A
∂Pj

∂mk
, (7.3)

where A is a scalar that acts as a normalization term and Pj is defined a fundamental
field variable that explicitly appears in the wave equation. Fortunately, the formula for the
Fréchet derivative

∂Pj

∂mk
of a fundamental field variable is straightforward to derive by the

adjoint-state method. For acoustic data, the field variable is the pressure field recorded at
the surface and the formula for its Fréchet derivative is well known. If more than one type
of unknown is inverted for the multidimensional implicit function theorem can be used to
compute the Fréchet derivatives for each type of model parameter (Lu et al., 2017). Note,

7.3. CONCLUSIONS 113

if di → Pi and mi denotes the velocity value in the ith cell then the update formula in
equation 7.1 is that for FWI.

7.2.1 Feature Extraction

The most important step in SWI is the identification of skeletonized features that are simple
and also greatly influenced by changes in the model parameter of interest. Towards this
goal we look to the past where theoreticians identified skeletal data and derived asymptotic
formulas that connected the skeletal data with the model parameter of interest. An obvi-
ous example is that of asymptotic ray-based tomography where, under the high-frequency
approximation, traveltimes can be quickly generated by tracing rays through a sufficiently
smooth model (Aki and Richards, 2002). If the physics of the problem is well understood,
then the identification of the skeletonized data can be straightforward. If the physics be-
tween skeletal data and the model parameters is not well understood, then the sensitivity of
the skeletal Frećhet derivative can be estimated by a combination of intuition and numerical
sensitivity tests.

Can we go one step further by asking a Machine Learning algorithm to identify an im-
portant skeletal data set. Once identified, these skeletonized data can be inverted by a SWI
method. For example, Figure 7.3 suggests a hybrid Machine Learning and SWI algorithm
where an unsupervised machine learning method can be used to extract simplified but im-
portant features in the data set. Then the SWI method and the implicit function theorem
can be used to discover the skeletal Frećhet derivative to be used in the update formula
in equation 7.2. One possibility is that the skeletonized data can be obtained by princi-
ple component analysis (PCA) and the connective function is the spatial crosscorrelation
between the observed and predicted PCA images. These PCA images can be localized in
space. Can a general machine learning algorithm be used to identify the connection be-
tween skeletal features which are most sensitive to the model parameters of interest? This
might be possible using a suitable training set obtained with numerically simulated data in
realistic models.

We can go beyond skeletal data and define skeletal models as well. But this is another
story.

7.3 Conclusions

We compared FWI, SWI and a supervised Machine Learning algorithm with one another.
The advantage of SWI over FWI is it is more robust but provides less resolution. Thus,
the SWI model can be used as the starting model for FWI. SWI is similar to supervised
Machine Learning in that both use skeletonized representations of the original data. The
next step is to combine the elements of SWI with Machine Learning to produce a Newtonian
Machine Learning algorithm that employs Machine Learning, Newton’s laws and solutions
to the wave equation to invert for the model parameters from the skeletonized features of a
complicated data set.

1. Derive the formula for the three-link chain rule.

2. Derive the formula for weight gradient at the N = 12 layer.

114 CHAPTER 7. WAVE EQUATION INVERSION AND NEURAL NETWORKS

Input
Data

d

~
d m[L L] L

-1T T~ ~ ~

Intuition
Fe

at
ur

es

Unsupervised
Learning

Earth Model
 Skeletonized WI

Machine Learning+Skeletonized WI

Figure 7.3: System diagram for a hybrid Machine Learning and SWI algorithm. Here,
the skeletonized data d̃ can be obtained by, for example, a principle component analysis
(PCA), where the connective function is the crosscorrelation between the observed and
predicted PCA images.Machine Learning combined with WI gives rise to a Newtonian
Machine Learning algorithm, where the optimal skeletonized features are learned from the
data and then inverted by numerical solutions to the wave equation.

3. Write the pseudo-MATLAB code where the bias vector and its gradient are explicitly
computed.

4. Derive the steepest descent formula where the objective function is the one where the
gradient is the cross-entropy term.

5. Write the pseudo-MATLAB code where regularization is used.

6. Write the pseudo-MATLAB code where the input is a batch matrix that represents
the training set.

7. Write the pseudo-MATLAB code where the number of nodes per layer is different
from one another.

Chapter 8

Support Vector Machines

A support learning machine (SVM) is a supervised learning method that classifies binary
data into two classes (Cortes and Vapnik, 1995). It has the same purpose as logistic regres-
sion in classifying data, but SVM is sometimes preferred because it can sometime provide
faster convergence and more robustness in the presence of classification errors. It can also
be generalized to classifying data that has more than two classes (Bishop, 2007) and its
popularity has been growing over the last two decades (see Figure 8.1).

8.1 Introduction

In the supervised learning problem of classification we are given a set of training data
consisting of N feature vectors

(x(i), y(i)), (8.1)

where x(i) is the ith feature vector with dimension D× 1 and y(i) = ±1 is the binary target
data value for classification. For a set of two-dimensional feature vectors x(i), the goal of
SVM is to find the best line that separates the two classes of data, denoted as +’s and -’s, in
Figure 8.2. Here, the best line is the dashed black one with the fattest margin width 2d and
is equidistant between the solid black lines that are parallel to one another. This dashed
line, also known as the decision line or decision boundary, is mathematically characterized
by the normal vector w and intercept value b, where any vector x on the decision line
satisfies w1x1 + w2x2 + b = 0. The black solid lines intersect the circled margin points x(i)

known as support vectors for the specified index values i. These support vectors define the
points with the closest perpendicular distance to the decision boundary.

A less than optimal decision line is represented by the red dashed line in Figure 8.2
that also separates the two classes of data. Here, the margin thickness is skinnier than the
one associated with the black lines. The skinnier the margin thickness, the easier it is to
misclassify data subject to errors in the training pair (x(i), y(i)).

Once the w is found after sufficient training, the SVM classifies new points x̃(i) that are
out of the training set. Figure 8.2 depicts points in a two-dimensional space, but points in
a D-dimensional space can be separated by a D − 1 dimensional hyperplane. In this case
the point x on the hyperplane satisfies w · x+ b = w1x1 + w2x2 + . . .+ wdxD + b = 0.

115

116 CHAPTER 8. SUPPORT VECTOR MACHINES

Citation Year
1998 2006 2014

1.0

0.0

SVM-related papers on Xiv

1998-2013
http://bookworm.cultuomics.org/arxiv

N
or

m
al

iz
ed

 %
 o

f
A

rt
ic

le
s

w
ith

 th
e

W
or

d
SV

M

Figure 8.1: Citations in books for the word support vector machines plotted against calendar
year.

The advantage of SVM over classification by logistic regression is that the optimal SVM
line has the thickest margin, which is not necessarily the case with logistic regression when
the points are linearly separable. The SVM procedure is very popular as a classification
method, as evidenced by its citations in Figure 8.1 and some of the examples shown in this
book. It is still one of the most effective classification methods, and can be adapted for
non-linear classification.

8.1.1 SVM Applications

Many fields of science and engineering use SVM for classification, which include the follow-
ing.

1. SVMs are helpful in text and hypertext categorization.

2. Classification of images can also be performed using SVMs. According to Wikipedi-
a (https : //en.wikipedia.org/wiki/Support vector machine) ”experimental results
show that SVMs achieve significantly higher search accuracy than traditional query
refinement schemes after just three to four rounds of relevance feedback. This is also
true of image segmentation systems, including those using a modified version SVM
that uses the privileged approach as suggested by Vapnik (DeCoste, 2002).”.

3. Hand-written characters can be recognized using SVM (DeCoste, 2002)..

4. According to Wikipedia (https : //en.wikipedia.org/wiki/Support vector machine)
”The SVM algorithm has been widely applied in the biological and other sciences.
They have been used to classify proteins with up to 90% of the compounds classified

8.1. INTRODUCTION 117

x1

w x + b = -1T.

x2

w x + b = 0T.

w x + b = +1T.

2/||w||

+

+
+

+

+

+

+

+ +

- -

-
-

-
-

-

-

--

-

-

-
-

-

-

+

+

d=

Figure 8.2: The points x(i) denoted by the class symbols ± are separable by a decision line.
The decision line with the thickest margin is the optimal one estimated by SVM and the
circled margin points x(i) are known as support vectors.

118 CHAPTER 8. SUPPORT VECTOR MACHINES

correctly. Permutation tests based on SVM weights have been suggested as a mecha-
nism for interpretation of SVMmodels (Gaokar and Davatzikos, 2013). Support vector
machine weights have also been used to interpret SVM models in the past. Support
vector machine models can be used to identify features in the biological sciences.”.

8.2 Linear SVM Theory

Define the N feature vectors (x(n), y(n)) for n ∈ [1, 2 . . . N], with the binary classification of
y(n) = ±1. We assume that the set of points (x(n), y(n)) are linearly separable so that there
exists lines that separate the positive and negative classes from one another in Figure 8.2.
SVM seeks the decision line with the fattest margin thickness. This margin thickness can
be defined by first defining the perpendicular distance d̃ between x on the decision plane in
Figure 8.3 and any other point x(n) as

d̃ =
1

||w|| |w
T · (x(n) − x)|,

=
1

||w|| |w
T · x(n) + b−

= 0 for x on margin line
︷ ︸︸ ︷

(wT · x+ b) |,

=
1

||w|| |w
T · x(n) + b|, (8.2)

where ŵ = w/||w|| is the unit vector in Figure 8.3. Note, if x(n) is on the decision line
then wT · x(n) + b = 0. If x(n) is on the same side of the decision plane that w is pointing
towards then wT · x(n) + b > 0. If x(n) is on the other side then wT · x(n) + b < 0.

The annoying absolute value operator in equation 8.2 can be eliminated by replacing it
with the product of the target value y(n) and wT · x(n) + b:

d̃ =
1

||w||y
(n)(wT · x(n) + b), (8.3)

which is always positive if x(n) is correctly classified as the value of y(n). For example, if
w in Figure 8.2 points to the right then the product y(n)(wT · x(n) + b) > 0 is positive for
x(n) to the right of the decision line. This is because y(n) = +1 and (wT · x(n) + b) > 0
are also positive. For points x(n) to the left of the decision line y(n) = −1, then the value
y(n)(wT · x(n) + b) > 0 is positive because both (wT · x(n) + b) < 0 and y(n) = −1 are
negative.

For a given w and b that cleanly separates the data, the margin thickness is given by
the perpendicular distance between the decision boundary and the closest point in the data
set that satisfies the following conditions:

1

||w|| min
x(n)

[y(n)(wT · x(n) + b)]

subject to y(n)(wT · x(n) + b) > 0 ∀ x(n), (8.4)

where the inequality constraint can be described as the clean-separation condition.

8.2. LINEAR SVM THEORY 119

�
�
�
�
�
�
�

�
�
�
�
�
�
�

w

ŵ

��

x

x(i)

d = w (x - x)^ (i)x - x(i)

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

~

Figure 8.3: The perpendicular distance between x on the plane defined by ŵT · x + b = 0
and x(i) is given by d̃ = |ŵT · (x(i) − x)|, where ŵ is the unit vector perpendicular to the
decision plane.

As illustrated in Figure 8.2, there are many different sets of (w, b) that satisfy the above
conditions. However, there is only one set of (w, b) that satisfies the following conditions:

argmax
w, b

{ 1

||w|| min
x(n)

[y(n)(wT · x(n) + b)] }, (8.5)

subject to y(n)(wT · x(n) + b) > 0 ∀ x(n). (8.6)

where the 1/||w|| term is outside the minx(n) operation because it does not depend on the

point x(n). This optimal set (w, b) and the support vectors on the margin boundary describe
the SVM slab with the thickest width.

The ratio 1
||w|| minx(n) [y(n)(wT ·x(n)+b)] } in equation 8.5 is the same value if the elements

of (w, b) are rescaled as α× (w, b), where α is a scalar. We choose the scalar α so that the
transformation (w, b) := α(w, b) transforms the inequality constraint in equation 8.6 to be

y(n)(wT · x(n) + b) ≥ 1 ∀ x(n), (8.7)

where

y(n)(wT · x(n) + b) = 1, ∀ x(n)∗, (8.8)

for x(n)∗ defined as a support vector on the margin boundary. There will be at least one
support vector at each of the two margin boundaries.

The vectors x(n) in equation 8.5 that minimize the numerator minx(n) [y(n)(wT ·x(n)+ b)
are the support vectors x(n)∗ on the margin boundaries. Therefore, equation 8.8 says that

120 CHAPTER 8. SUPPORT VECTOR MACHINES

the numerator in equation 8.5 can be replaced by the value 1 so that the optimization
problem defined by equations 8.7-8.8 can be redefined as finding (w, b) such that

argmax
w, b

{ 1

||w|| },

subject to y(n)(wT · x(n) + b) ≥ 1 ∀ x(n). (8.9)

It is algorithmically convenient to transform this maximization problem into a minimization
problem by replacing 1/||w|| with 1/2||w||2:

argmin
w,b

d =
1

2
||w||2,

subject to y(n)(wT · x(n) + b) ≥ 1 ∀ x(n). (8.10)

The inequality demands that (w, b) cleanly separates the training set (x(n), b) and the min-
imization equation is satisfied by the decision boundary with the shortest inverse thickness
1/d = ||w|| of the margin. Shortest inverse thickness is, of course, equivalent to maximum
thickness of the margin. A numerical solution by, e.g. quadratic programming (Nocedal
and Wright, 1999; Press et al., 2007), will give the optimal values of (w, b) that have the
fattest margin in Figure 8.2. We can treat quadratic programming as a black box, where
the algorithmic details are given in Nocedal and Wright (1999).

8.3 Nonlinear SVM

A set of training data might not be linearly separable, such as the data points shown in
Figure 8.4a. In this case, a line cannot separate the different classes of data but higher-
order polynomials might describe the separable boundary. To determine this non-linear
separation boundary we use a non-linear transformation zi = φ(x)i of the coordinates in x
to add extra dimensions to the solution space, just as we did for the motorcycle model in
equation 2.34.

As an example, the two classes of data in Figure 8.4a can be separated by the dashed
red circle. This decision boundary can be described by the transformation from 2D feature
coordinates (x1, x2) to the 3D space of (z1, z2, z3) defined by

(x1, x2) → (z1, z2, z3) = (

φ(x)1
︷︸︸︷
x1 ,

φ(x)2
︷︸︸︷
x2 ,

φ(x)3
︷ ︸︸ ︷
√

x21 + x22). (8.11)

A hyperplane in the transformed space is described by the 3 × 1 normal vector w̃ =
(w̃1, w̃2, w̃3)

T and the bias term b̃. Figure 8.4b depicts the data plotted in this transformed
coordinate system, which are now separated by the boundary defined by z3 = 3. Once
the coordinates (zb1, z

b
2, z

b
3) of the boundary are determined from (w̃, b̃), then the associated

decision boundary in the original space (x1, x2) can be found by the inverse mapping from
z to x. For convenience we did not include the affine coordinate in this transformation, but
it can easily be included.

8.3. NONLINEAR SVM 121

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

a) (x1, x2) Space b) (z1, z2, z3) Space

+
+

X1

X2

Z1

Z2

Z3

++
+

+
+
++

+

-

-

-
--

-

-
+

-
- -

-
-

-- -

-
- --

-

+ ++
+ +

++

-
-

-

-

--

+
-+

Figure 8.4: Data with a binary classification are plotted in a) the original 2D and b)
transformed 3D spaces using equation 8.11. The blue symbols above the plane z3 = 3 in b)
are cleanly separated from the red symbols below it.

Therefore, a non-linear SVM defines a non-linear transformation such that the new fea-
ture coordinates are zi = φ(x)i and we seek the solution (w̃, b̃) to the following optimization
problem with inequality constraints.

Box 8.3.1. Primal Optimization Problem with Inequality Constraints

(w̃∗, b̃∗) = argmin
w̃,b̃

d =
1

2
||w̃||2,

subject to y(n)(w̃T · z(n) + b̃) ≥ 1. (8.12)

where the linear inequality constraint is with respect to the z-coordinates and the tilde indicates
the parameters associated with the hyperplane in the z-space. The optimal values of (w̃∗, b̃∗)
define the hyperplane with the fattest margin that cleanly separates the transformed training
data in z-space.

As in the original problem, a quadratic programming method can be used to find the solu-
tion.

For the example described by equation 8.11, the inverse mapping is straightforward
because x1 = zb1 and x2 = zb2 so that the boundary in the x coordinates is described by
the equation

√

x21 + x22 = 3 for a circle. In general, the inverse map is more complicated
and an iterative gradient-search method can be used to find the mapping zb → xb. For
example, a steepest descent method can be used to find xb from zb = (zb1, z

b
2, z

b
3 . . . z

b
I) where

the objective function ǫ is

ǫ = 1/2

B∑

b=1

I∑

i=1

||zbi − φ(xb)i||2. (8.13)

122 CHAPTER 8. SUPPORT VECTOR MACHINES

The steepest descent algorithm is then used to find the coordinates of xb along the boundary
defined by the B boundary points zb. Here there are B boundary points and I is the
dimension of the coordinates in the z-space.

The penalty in going to a higher dimension is that it can increase the computational
cost by a significant amount. For example, if the feature vector is a D× 1 = 105 × 1 vector
and the non-linear transform increases the dimension by a factor of four, then the number
of unknowns is also increased by a factor of four. For quadratic programming the solution
cost is O(43D3) algebraic operations for increasing D by a factor of four. For D very large,
this extra cost can be reduced by solving the dual Lagrangian problem as discussed in the
next section.

8.4 Primal and Dual Solutions

The constrained optimization problem with inequality constraints in equation 8.10 or e-
quation 8.12 is defined as the primal problem. Its numerical solution requires about O(D3)
algebraic operations, where D is the dimension of the D×1 vector w. This can be expensive
for D >>> 1 so the alternative is to solve the dual problem.

Box 8.4.1. Dual Optimization Problem with Inequality Constraints

The dual problem is defined as finding w, b and α that maximize the Lagrangian L(w, b,α):

L(w, b,α) =
1

2
wT ·w−

N∑

n=1

αn(

dn

︷ ︸︸ ︷

y(n)(wT · x(n) + b)−1),

subject to αn ≥ 0 for n = 1, 2 . . .N, (8.14)

for αn > 0 and L is the Lagrangian function discussed in Appendix 8.12. Here, N is the
number of inequality constraints, αn is the Lagrange multiplier for the nth inequality equation
and α = (α1, α2 . . . αN)T is the N × 1 Lagrange multiplier vector. We will show that this
approach only requires finding N unknowns, the number of inequality constraints in the x
space; for SVM the number of inequality constraints is equal to the number of feature vectors
in a mini-batch of data. This can result in a significant reduction in computational costs if N
is much less than the number of elements in the D × 1 vector w.

The starting point for computing the solution to equation 8.14 is to find w and b in terms
of the αn. The resulting Lagrangian is denoted as the reduced Lagrangian. Once this is
done we can pass the problem to a quadratic programming code to solve for the N values
of αi.

We have replaced the primal problem with inequality constraints in equation ?? with a
similar one in equation 8.14, so what have we gained? Nothing is gained until we eliminate
the w and b in terms of the variables αn. This can be done by setting the gradients of the

8.4. PRIMAL AND DUAL SOLUTIONS 123

Lagrangian L w.r.t. to wi and b to zero:

∂L

∂wi
= wi −

N∑

n=1

αny
(n)x

(n)
i = 0 → w =

N∑

n=1

αny
(n)x(n), (8.15)

and

∂L

∂b
=

N∑

n=1

αny
(n) = 0. (8.16)

Inserting equation 8.16 into equation 8.14 gives the transformed Lagrangian:

L(w, b,α) =
1

2
wT ·w −

N∑

n=1

αn(y
(n)(wT · x(n) + b)− 1),

=
1

2
wT ·w −

N∑

n=1

αny
(n)wT · x(n) +

N∑

n=1

αn −

α
Ty=0 by eq. 8.16
︷ ︸︸ ︷

b
N∑

n=1

αny
(n) ,

=

N∑

n=1

αn +
1

2
wT ·w −

N∑

n=1

αny
(n)wT · x(n), (8.17)

where b is now eliminated.

Box 8.4.2. Reduced Dual Optimization Problem with Inequality Constraints

The w in equation 8.17 can be eliminated by pluggingw =
∑N

n=1 αny
(n)x(n) from equation 8.15

into equation 8.17 to get the reduced Lagrangian:

L(w, b,α) =

N∑

n=1

αn − 1

2

N∑

n=1

N∑

m=1

y(n)y(m)αnαmx(n)T · x(m),

αn ≥ 0; α
Ty = 0, (8.18)

where the only unknown are the N variables αn that maximize L(w, b,α) subject to the in-
equality constraints. Here, N is also the number of feature vectors in the training set which can
be small if the original training data set is broken up into mini-batches. In this case, solving
the reduced dual optimization problem is much more efficient if the dimension of the D × 1
feature vector is huge compared to the number N of feature vectors in a mini-batch.

Multiplying the reduced lagrangian by −1 transforms it to a minimization problem w.r.t.

124 CHAPTER 8. SUPPORT VECTOR MACHINES

αi:

min
α

1

2
α

T

quadratic coefficients
︷ ︸︸ ︷

y(1)y(1)x(1)T · x(1) y(1)y(2)x(1)T · x(2) . . . y(1)y(N)x(1)T · x(N)

y(1)y(2)x(2)T · x(1) y(2)y(2)x(2)T · x(2) . . . y(2)y(N)x(2)T · x(N)

.

y(N)y(1)x(N)T · x(1) y(N)y(2)x(N)T · x(2) . . . y(N)y(N)x(N)T · x(N)

α+ (−1T)α

(8.19)

subject to yT ·α = 0 andαn ≥ 0 ∀n. (8.20)

The N×N matrix of dot products is known as the Gram matrix, where the optimal solution
is found by a quadratic programming method with a computational cost as high as O(N3)
for inverting this matrix.

If the non-linear SVM method is used then we are seeking the (w̃, b̃) that gives rise
to the same type of Gram matrix seen in equation 8.19, except x(n)T · x(m) is replaced by
z(m)T · z(m):

min
α

1

2
α

T

quadratic coefficients
︷ ︸︸ ︷

y(1)y(1)z(1)T · z(1) y(1)y(2)z(1)T · z(2) . . . y(1)y(N)z(1)T · z(N)

y(1)y(2)z(2)T · z(1) y(2)y(2)z(2)T · z(2) . . . y(2)y(N)z(2)T · z(N)

.

y(N)y(1)z(N)T · z(1) y(N)y(2)z(N)T · z(2) . . . y(N)y(N)z(N)T · z(N)

α+ (−1T)α

(8.21)

subject to yT ·α = 0 andαi ≥ 0. (8.22)

Here, we have to construct z(m) and then use them to compute their dot products. However,
this is impractical if z(m) is of large or infinite dimension. The remedy is to specify the
analytical form of the dot product as a kernel k(x,x′) = z(x)T · z(x′), as will be shown in
the next section.

8.5 Kernel Methods

The problem with the non-linear SVM method is that the choice of a very high-order
transformation zi = φ(x) will increase the number of unknowns and therefore increase the
computational cost. It also can lead to overfitting of the training data if a highly oscillatory
polynomial is selected.

To overcome these two problems we can reformulate the non-linear SVM problem in the
dual space by specifying an infinite dimensional kernel function k(x,x′) = z(x)T · z(x′). In

8.5. KERNEL METHODS 125

this case, equation 8.21 becomes the Gram matrix:

min
α

1

2
α

T

y(1)y(1)k(x(1),x(1)) y(1)y(2)k(x(1),x(2)) . . . y(1)y(N)k(x(1),x(N))

y(2)y(1)k(x(2),x(1)) y(2)y(2)k(x(2),x(2)) . . . y(2)y(N)k(x(2),x(N))

.

y(N)y(1)k(x(N),x(1)) y(N)y(2)k(x(N),x(2)) . . . y(N)y(N)k(x(N),x(N))

α+ (−1T)α.

(8.23)
The stationary conditions in equation 8.17 become

∂L

∂w̃i
= w̃i −

Nz∑

n=1

αny
(n)z

(n)
i = 0 → w̃ =

Nz∑

n=1

αny
(n)z(n), (8.24)

and

∂L

∂b̃
=

Nz∑

n=1

αny
(n) = 0. (8.25)

Here b̃ and w̃ define, respectively, the bias and Dz × 1 hyperplane normal vector in the
z-space.

The main advantage of explicitly specifying only the kernel k(x,x′) in equation 8.27
rather than z(x)T ·z(x′) in equation 8.21 is that an infinite-dimensional vector z and its dot
product z(x)T · z(x′) cannot be practically computed. However, if k(x,x′) is analytically
specified as a, e.g. Gaussian kernel k(x,x′) = e−||x−x′||2 , then it can easily be computed
for any specified pair of vectors x and x′. Can k(x,x′) be constructed as a dot product of
z(x′)T · z(x)? As an example, take the scalar case where

k(x′, x) = e−(x′−x)2 ,

= e−x2
e−x′2

e−2xx′

,

= e−x2
e−x′2

∞∑

k

2xkx′k

k!
,

= e−x2
e−x′2

Taylor series
︷ ︸︸ ︷

(1 + 2xx′ + x2x′2 + . . .),

= (

z(x)
︷ ︸︸ ︷

e−x2
(1,

√
2x, x2, . . .),

z(x′)
︷ ︸︸ ︷

e−x′2
(1,

√
2x′, x′2, . . .))T . (8.26)

Here, the infinite dimensional vector z(x) and its inner product with z(x′) cannot be prac-
tically computed, but the computation of the kernel k(x,x′) = e−||x−x′||2 is trivial.

The kernel k(x,x′) must satisfy two properties in order to be used as a substitute for
z(x′) · z(x) in equation 8.21:

• k(x,x′) must be symmetric such that k(x,x′) = k(x′,x).

126 CHAPTER 8. SUPPORT VECTOR MACHINES

• The Gram matrix must be positive semi-definite. Symmetry for the Gaussian kernel is
proven by inspection and the positive semi-definite property can be empirically tested
by using an example matrix.

8.5. KERNEL METHODS 127

Box 8.5.1. SVM Algorithm

In summary, the non-linear SVM algorithm with an infinite-dimensional kernel is the following.

1. Specify the functional form of the kernel, e.g. k(x(n),x(m)) = e−β||x(n)−x
(m)||2 , and

compute the N × N Gram matrix in equation 8.24. Here, β is a constant specified by
the user where large values of β indicate that the main influence of this basis function is
only around points x(n) and x(m) that are close neighbors to one another. Use quadratic
programming (QP) or the Lagrangian barrier method (Nocedal andWright, 1999) method
to solve for αn ∀n. If the number of feature vectors is huge, then the entire data set
is broken up into small mini-batches and the non-linear optimization method is used
to inexpensively invert the mini-batch of data to find (w, b); this is computationally
inexpensive because the number of mini-batch feature vectors is small. This solution is
then the starting model for inverting the next mini-batch of data, and the procedure is
repeated until all the mini-batches are used.

2. Define the feature vector x so that its predicted classification value y is given by
sign(w̃ · z(x) + b̃). Substituting w̃ from equation 8.24 gives the predicted classification
value:

y = sign(
N∑

n=1

αny
(n)z(x)T · z(x)(n) + b̃),

= sign(
∑

n∈Bsupport

αny
(n)k(x,x(n)) + b̃), (8.27)

where Bsupport is the set of indices associated with the support vectors where αi 6= 0.

The value of b̃ in equation 8.27 is obtained by noting that the support vector z(xi) for
i ∈ Bsupport is associated with the non-zero Lagrange multiplier αn 6= 0 that satisfies the
constraint equation

y(i) = w̃T · z(x(i)) + b̃,

=
∑

n∈Bsupport

αny
(n)z(x(n))T · z(x(i)) + b̃ for i ∈ Bsupport, (8.28)

where equation 8.24 is used for w̃. Substituting k(x(n),x(i)) = z(x(n))T · z(x(i)) and
equation 8.24 for w gives

∑

n∈Bsupport

αny
(n)k(x(i),x(n)) + b̃ = y(i). (8.29)

This equation is now solved for in terms of b̃. To get a more robust estimate of b̃, compute
the average of the different support vectors to get b̄:

b̄ =
1

Nsupport

∑

i∈Bsuport

[y(i) −
∑

n∈Bsupport

αny
(n)k(x(i),x(n))], (8.30)

where Nsupport is the number of support vectors in the dual space where αi 6= 0.

3. All of the feature vectors in the validation set can now be classified with equations 8.27
and 8.30. An example is given in Figure 8.5.

128 CHAPTER 8. SUPPORT VECTOR MACHINES

Decision Boundary

. ..
.

..
.

.

.

.

. ..
.

.. .
. ...

..

.
...

. . . .
.

.....
.

...��
��
��
��
��

�
�
�
�

����

X1

X2

Figure 8.5: Feature points in (x1, x2) space with the black-decision boundary computed by
the Gaussian-kernel method in the dual space. The support points are the large filled circles
and the input examples are classified as either blue or red points. Image redrawn from the
Youtube video of Dr. AbuMostafa.

8.6 Numerical Examples

Recall that seismic migration is an imaging method that identifies the geometries and
strengths of subsurface reflectors from seismic data; the final result is the migration image
m(x). For example, seismic data recorded on the top horizontal surface were migrated
to give the large amplitude values of m(x) in Figure 8.6a, which denote the locations of
reflecting interfaces. Some of the large amplitude values are artifacts from the migration
method and do not indicate an actual reflector. A simple description of seismic migration is
in Appendix 8.14 and more details are in Yilmaz (2001). We will now use the SVM method
to denoise migration images computed from synthetic seismic data.

The goal is to use SVM to distinguish noise from the yellow signal in the Figure 8.6a
migration image. The elliptical features are typically due to aliasing artifacts in the migra-
tion image and can be identified as noise by a trained interpreter. The SVM can then be
trained to distinguish noise from signal in the classified images, and then it can be used to
identify noise in the rest of the data. Once identified, a suitable filtering method can be
used to suppress the noisy artifacts in the migration image.

To train the SVM, the first step is to define a small 5×5 window centered at the ith pixel.

8.6. NUMERICAL EXAMPLES 129

0 2 0 2

2 0 2 0

0

2

a) Migration Image b) Dip Angle Image

Z
 (

km
)

2

Z
 (

km
)

X (km)X (km)

0

c) Coherency Image d) Amplitude Image

Figure 8.6: Images of the a) raw migration section, b) dominant dip angle at each pixel,
c) migration coherency, and d) amplitudes. The yellow areas in the Figure 8.7c migration
image a) correspond to the label of signal (y = 1) and the other areas are labeled noise
(y = −1). Images courtesy of Yuqing Chen.

130 CHAPTER 8. SUPPORT VECTOR MACHINES

Three skeletonized characteristics are then computed for the image in this small window:
dominant dip angle, coherency and maximum amplitude as described in Appendix 8.14.
The user classifies each point in the training migration image as either noise or signal. The

computer computes the three skeletal characteristics (x
(i)
1 , x

(i)
2 , x

(i)
3) at each point of m(x)

and assigns the classification value y(i). Therefore, the input feature vectors are the 4 × 1

vectors (x
(i)
1 , x

(i)
2 , x

(i)
3 , y(i)). For the migration examples, only 70 image points are selected

for training from the 201×201 migration image m(x), which means that only 0.17 % of the
original migration image for training.

What should we use for the skeletal characteristics of m(x) that can be used to dis-
tinguish noise from signal? The answer is to use intuition and experience to identify the
most significant characteristics that distinguish noise from signal. For example, we recog-
nize that migration artifacts should have weak coherency φi, large dip angles θi, and weak
amplitudes Ai at the ith pixel, while the reflection signal should mostly be characterized
by strong coherency, modest dip angles, and strong amplitudes. As an example, Figure 8.6
plots the φi values at all pixels where weak coherency is indicated by the deep-blue color.
Therefore we use (θi, φi, A

(i), y(i)) as the skeletonized characteristics of the migration image
to distinguish noise from signal. Other characteristics might be more effective and should
be used if needed for more accuracy.

The input training set is now defined as (x(i), y(i)) = (θi, φi, A
(i), y(i)) for 70 points in

the migration image in Figure 8.6a. Each pixel in the training migration images is manually
classified as either signal (+1) or noise (−1). The SVM procedure is then used to find the
3 × 1 vector w = (w1, w2, w3) and the bias b that cleanly separate the labeled noise and
signal. This generates a hyperplane in feature space as shown in Figure 8.7a, where the
yellow colored plane defines the decision hyperplane in 3D. Once the w and b are found then
the other parts of the migration image (i.e., out-of-the-training-set data) are automatically
labeled by determining the sign of w ·x(n)+b. If the amplitude of the automatically labeled
image is noise then that amplitude can later be filtered by some method.

The automatically labeled features are shown in Figure 8.7c, where yellow indicates
signal and deep blue indicates noise. In comparison, when regularization is included in the
SVM method the surface is shown in Figure 8.7b, with the resulting labeled signal denoted
by the yellow portions. As a comparison, logistic regression with orders n = 1 and n = 2
are used to classify the same training set used with SVM. See the diagram on the left of
Figure 8.8 for the architecture of the logistic regression. In this case n = 1 means the input
is a 3 × 1 feature vector (x1, x2, x3) while n = 2 means that the input is the 9 × 1 vector:
(x1, x2, x3, x

2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3). The results are shown in Figure 8.9, where there is

not much of a difference in any of the images.

These results are to be compared to those in Figure 8.10 where the features are classified
by a fully connected neural network with two layers and 15 nodes in the hidden layer. The
neural network appears to provide a similar classification of image points compared to
logistic regression, even though it misclassified a data point.

Finally, a realistic migration image is used as the input data to get the three features of
maximum dip angle, coherence, and amplitude for each pixel. The signals in the images are
colored yellow in Figure 8.11 as classified by a) two-node logistic regression, b) a two-layer
neural network, c) SVM with a Gaussian kernel without regularization, and d) SVM with
a Gaussian kernel with regularization. The SVM image w/o regularization in Figure 8.11c

8.6. NUMERICAL EXAMPLES 131

0 0 2 2

0.8
0.0

1.0

0.4

0.0

Angle (deg.)

0.0

X (km)X (km)

Coherency

c) Linear SVM Migration Image d) Non-linear SVM Migration Image

a) SVM Decision Surface b) Non-Linear SVM Decision Surface

Z
 (

km
)

0

2

A
m

pl
itu

de

Angle (deg.)

0.0

0.4
0.0 0.8

Coherency

0.0

1.0

A
m

pl
itu

de

Figure 8.7: Decision boundaries computed by a) linear SVM and b) non-linear SVM with
regularization. The corresponding migration images are directly below the feature plots.
Here, the yellow colors denote signal and the black colors denote noise. The amplitudes
classified as noise are suppressed by muting and the resulting migration images are shown
in c) and d).

132 CHAPTER 8. SUPPORT VECTOR MACHINES

b) Two-layer Neural Networka) One-Layer Neural Network

Figure 8.8: Architectural diagrams for a) one- and b) two-layer neural networks. The one-
layer one-node network diagram is for the logistic network and the two-layer multi-node
architecture is for the neural network used in the examples. Images courtesy of Yuqing
Chen.

is judged to be the best result because it picks out most of the steeply dipping interfaces
in the red box. This suggests that the regularization strategy should be improved to not
exclude steep dips.

8.7 Multiclass SVM

Sometimes the data need to be divided into more than two types of data, in which case
a multiclass SVM method can be used. In this case the one-versus-the-rest approach of
Vapnik (1998) is often used. In this method if there are K classes of data, one of the data
types, denoted as the k = 1 class, is assigned one binary value by the SVM method and the
rest of the data are assigned the other one. This procedure is repeated for the k = 2 class,
and then again one at a time until all the classes are separated.

The problem with this approach is that the data are imbalanced, with fewer data in
the specified class than the rest of the data. This can lead to an imbalanced gradient that
prefers reducing the residuals for the rest of the class compared to that for the specified
class. This can lead to both slow convergence and a large percentage error in the predicted
classifications. Balancing the gradient, also known as preconditioning (Schuster, 2017) in
full waveform inversion, can be a partial remedy where the weight of the specified class has
+1 while the other data have a weight of −1/(K − 1). If the number of points in each class
differs significantly from one another then each point in a class is divided by the number of
points in that class.

Sometimes data points are assigned by the one-versus-the-rest SVM to more than one
class, which is an error in classification. This contradiction is sometimes resolved by as-

8.7. MULTICLASS SVM 133

0 2 2 0

0.0
0.8

0.0

0.0

1.0

Angle (deg.)

1.0

0.0

Coherency
0.8

X (km)

0.00.4

0.0

Angle (deg.)
Coherency0.4

X (km)

c) Linear SVM Migration Image d) Non-linear SVM Migration Image

a) Log. Reg. Decision Surface (n=1)

Z
 (

km
)

0

2

b) Log. Reg. Decision Surface (n=2)
A

m
pl

itu
de

A
m

pl
itu

de

Figure 8.9: Same as Figure 8.7 except logistic regression with a)-c) order n = 1 and b)-d)
n = 2 is used for classification of the features. Notice the misclassified point denoted by a
red circle. Images courtesy of Yuqing Chen.

134 CHAPTER 8. SUPPORT VECTOR MACHINES

0 2 0 2

1.0

Coherency
0.8

0.0

A
m

pl
itu

de

0.4

0.0

X (km)

Angle (deg.)

X (km)

0.0

0.0

c) NN n=1 Migration Image d) NN n=2 Migration Image

a) NN Decision Surface n=1 b) NN Decision Surface n=2

Z
 (

km
)

0

2

A
m

pl
itu

de

Angle (deg.)

0.0

0.4

0.0

0.8
Coherency

1.0

Figure 8.10: Same as Figure 8.7 except a neural network with a)-c) n=1 and b)-d) n=2
layers are used for classification. Images courtesy of Yuqing Chen.

8.7. MULTICLASS SVM 135

B’

Migration: Smear and Sum Refl. Amp. Along Ellipses

A ΒA Β

T
im

e
Z

τ ref.

reflector somewhere inside ellipse

event
smeared

reflector somewhere inside
common overlap

a) One−trace migration.

G(B|A)
T}

b) Two−trace migration.

G(B’|B)

}

0.5vT

Figure 8.11: Migration images classified as signal (yellow) by a) logistic regression of order
two, b) a neural network with 2 layers and 15 nodes in the hidden layer, c) SVM with a
Gaussian kernel w/o regularization and d) SVM with a Gaussian kernel with regularization.
Images courtesy of Yuqing Chen.

136 CHAPTER 8. SUPPORT VECTOR MACHINES

signing the misclassified point to the class with the largest value of the predicted target
function y.

A number of other heuristic approaches to multiclass SVM are described in Bishop
(2007), but he states that the all-versus-one approach is the one that is most widely used
today. Research into better multiclass SVM methods is still an ongoing effort.

8.8 Soft-Margin SVM

The linear SVM assumes that the data are linearly separable with the consequence that
the QP solution to the dual problem will give a hard-margin decision boundary. This is
sometimes referred to as hard-margin SVM. However, data are often polluted with errors in
misclassification and/or feature coordinates. To account for these errors soft-margin SVM
adds a regularization function γ(x(n)) to the SVM objective function ǫ, where

γ(x(n)) = max(0, 1 − y(n)(w · x(n) − b)). (8.31)

This regularization term, also known as a penalty function, is denoted as the hinge-loss
function in the ML community.

If the data are properly classified then 1 − y(n)(w · x(n) − b) ≤ 0 so that γ(x(n)) = 0;
hence, ǫ collapses to the hard-margin objective function. However, misclassified data points
x(n) lead to progressively larger penalty functions the farther away they are from the correct
side of the margin boundary. For example if x(n) is on the actual decision boundary then
y(n)(w · x(n) − b) = 0 so that the penalty value is γ(x(n)) = 1. Therefore the regularized
SVM objective function is

ǫ = λ||w||2 + 1

N

N∑

n=1

max(0, 1 − y(n)(w · x(n) − b)), (8.32)

where the parameter λ determines the tradeoff between maximizing the margin width and
ensuring that x(n) is on the correct side of the margin boundary. For a large enough value
of λ > 0 the decision boundary is the same as that for unregularized SVM. In this case the
margin thickness can be quite skinny if there are slight errors in the feature coordinates.
However, the margin thickness can get larger in the presence of such errors if λ becomes
smaller. A concern is that strong outliers might unduly influence the final solution.

8.9 Practical Issues for Implementing SVM

For migration denoising, the three skeletonized characteristics had different units. There-
fore, one feature characteristic might consist of numbers that are much bigger or smaller
than the other two feature characteristics. This will lead to a scaling problem so that the
resulting matrix for QP can be ill-conditioned. In addition, a wide range of examples should
be used in order to characterize any type of example outside the training set. If not enough
examples are available for training then data augmentation can be used.

8.10. SUMMARY 137

8.9.1 Scaling

Each of the feature values need to be normalized before they are input into the SVM
algorithm. This scaling can take the form of dividing each feature xi at the ith pixel by its
standard deviation:

x̂i =
xi − x̄

σ
, (8.33)

where the data are also demeaned by subtracting the mean value x̄ from the feature value
xi. An alternative is the mean normalization formula:

x̂i =
xi − x̄

max(xi)−min(xi)
, (8.34)

where max and min take the maximum and minimum values of the feature values for all
examples. This will provide an input data set with feature values varying between 1 and
−1 with a zero mean.

8.9.2 Data Augmentation

Data augmentation is used to increase the size the training data. Inexpensive data aug-
mentation methods are the following.

1. Image flip. The images are flipped, i.e. reflected, along different axes to create new
images with different orientations. Flipping along the vertical or horizontal axes is
the easiest augmentation method.

2. Image rotation. Images are rotated by a rotation transform to create new images.

3. Scaling. Images are either magnified or demagnified to create new images. Care must
be taken to not distort images too much.

4. Croping. Crop images so that the main features are still present but the background
is reduced in size.

5. Additive Gaussian noise. Add Gaussian noise to images to emulate actual noise in
input images.

8.10 Summary

The linear SVM is a binary classification method that finds (w, b) which gives the fattest
margin distance in a D − 1 hyperplane. This defines the optimization problem with linear
inequality constraints, also known as the primal problem. The optimal (w, b) can be com-
puted by a quadratic programming method. If the dimension of the D × 1 feature vector
is huge compared to the number N of feature vectors in a mini-batch, then solving the
reduced dual problem is the only way to go.

If the data are not separable by a hyperplane, then a higher-order SVM surface can be
found by applying a non-linear transformation zi = φ(x)i to the original feature vectors

138 CHAPTER 8. SUPPORT VECTOR MACHINES

x, where the new Dz × 1 feature vector is z and Dz > D. To reduce the computational
costs, the primal SVM problem is transformed into the dual Lagrangian problem, where
the number of unknowns D is the same as that for original linear problem.

Kernel methods are used to avoid the problems of highly oscillatory basis functions
with a non-linear transform. The first step is to specify the functional form of a kernel
k(x,x′) = z(x)T · z(x′), where there is no explicit specification of z. The solution to the
reduced Lagrangian is then obtained by a QP method, and the validation data can now be
classified.

8.11 Exercises

1. Form the Lagrangian for the dual problem of soft-margin SVM in equation 8.32. Write
down the equations for the stationarity conditions of L(α,w, b). The derivative of the
max operator cannot be strictly defined. Replace it with a suitable approximation
that can be differentiated.

2. Reformulate the objective to be ǫ = 1/2||w||2 + C
∑N

n=1 ηn with the constraint

w · x(n) + b− 1 ≥ ηn, (8.35)

where ηn ≥ 0. Here, C is a specified tradeoff parameter. What are the KKT condi-
tions? See section 8.13 for the definition of the KKT conditions.

3. Derive the reduced Lagrangian for the above problem and state the constraints. See
page 333 in Bishop (2007).

4. Derive the gradient for the misfit function in equation 8.13. Write a pseudo-MATLAB
code for finding xb from zb by a steepest descent method.

8.12 Appendix: Defining the Dual Problem with a Lagrangian

Finding the optimal x that minimizes or maximizes a quadratic functional f(x) subject
to N inequality constraints g(x)(n) ≥ 0 can be recast as the solution to the dual problem.
The objective function for the dual problem is formed by adding N weighted inequality
constraints onto f(x) to form what is known as the Lagrangian: L = 1/2f(x)−∑

n αng(x)
(n)

subject to the simpler inequality constraints αn ≥ 0. There is an unknown weight αn, also
known as the Lagrange multiplier, for each constraint so that there are N more unknowns
to be determined. This dual problem is sometimes computationally less expensive to solve
than the primal problem, as discussed in section 8.4. We now give a heuristic and intuitive
derivation of a Lagrangian function for one inequality constraint, i.e. n = 1.

Consider the following minimization problem with one inequality constraint:

minimize
x

f(x)

subject to g(x) ≥ 0,
. (8.36)

Figure 8.12a shows a 2D example where f(x) describes the red elliptical contours and
g(x) =

√

x21 + x22 describes a circle for the inequality constraint. In this case all points

8.12. APPENDIX: DEFINING THE DUAL PROBLEM WITH A LAGRANGIAN 139

x
1

x2

and gradient of f(x)- g(x) = 0

�
�
�
�

αa) Optimal point at minimum of f(x)x* b) Optimal point at g(x)=0

3

-1

4 5

f(x)

x*g(x)

+2 +1 0

3

+4

4 5

f(x)

x*
g(x)

+1 +2 +3

x*
1/2+x

1
x2g(x) = () > 02 2 1/2+x

1
x2g(x) = -() + 3 > 02 2

g(x)>0 denoted by green zones

Figure 8.12: Red and black contours for the functions f(x) and g(x), respectively; the
green areas define the points x ∈ Vo that satisfy the inequality constraint g(x) ≥ 0. In a)
the constraint g(x) =

√

x21 + x22 ≥ 0 is satisfied everywhere so the minimum of f(x) is at
the origin. In b), g(x) = −

√

x21 + x22 +3 ≥ 0 so the feasible solution points x are inside the
small green disk. The points x ∈ Bo on the dashed circular boundary satisfy g(x) = 0, and
the optimal point where L is stationary and a maximum is at the ”kiss” point x∗ on Bo

where ∇L(x, α) = ∇f(x)− α∇g(x) = 0. The points along the dashed blue line are defined
to be the ones where the elliptical and circular contours ”kiss” each other, i.e. they satisfy
the stationary condition ∇f(x)− α∇g(x) = 0 where α = |∇f(x)|/|∇g(x)|.

in the infinitely-extended green region in Figure 8.12a satisfy the inequality constraint
g(x) ≥ 0 so that the solution to equation 8.36 is at the center point x∗ of the red ellipse.
An unconstrained steepest descent method can then be used to search for x that satisfies
∇f(x) = 0.

If g(x) = −
√

x21 + x22 +3 ≥ 0 then the feasible points x are only in the small green disk
in Figure 8.12b. Which of these feasible points minimizes f(x)? It is geometrically clear
that the dashed red ellipse with the contour value f(x) = 4 just kisses the boundary of the
green disk at x∗. No other ellipse contour with a smaller value intersects the green region.
Therefore, x∗ must be the solution that minimizes f(x) and also satisfies the inequality
constraint in equation 8.36. As discussed below, L achieves a maximum at this stationary
point.

Notice that the circular contour at x∗ in Figure 8.12b is tangent to the red dashed
contour of the ellipse. This means that the normal vectors ∇g(x) and ∇f(x) at x∗ are
parallel1 to one another at the minimization point x∗. This suggests that we can define a
new function L that is the weighted sum

L(x, α) = f(x)− αg(x), (8.37)

1The values of the ellipse and circle are both increasing to the left at x∗. Hence, the gradients are parallel
to one another, not anti-parallel.

140 CHAPTER 8. SUPPORT VECTOR MACHINES

which has the property of being stationary at the kissing point x∗:

∇L(x, α)|x=x∗ = [∇f(x)− α∇g(x)]x=x∗ ,

= 0, (8.38)

if α = |∇f |/|∇g| ≥ 0. The weight α ≥ 0 because the gradients of both functions are parallel
and have the same sign at x∗, so α ≥ 0 to satisfy equation 8.38. In the third quadrant of
b), the gradients ∇f and ∇g at their kissing points are anti-parallel so α ≥ 0 excludes the
stationarity condition in equation 8.38.

Equation 8.38 is a necessary but not sufficient condition for x∗ to be a minimizer of f(x).
For example, the dashed blue curve in Figure 8.12b is denoted as the kiss curve where the
circular and elliptical contours just kiss one another so that ∇L(x, α)|x=kiss pts = 0 for
α = |∇f |/|∇g|. These kiss points along the blue curve can be continued into the green disk.

So we need another mathematical condition in addition to equation 8.38 to pick out the
optimal kiss point x∗ at the dashed black boundary. This new condition is that, for all the
kiss points on the blue kiss curve2 (and its extension into the green zone), the optimal x∗ is
where L(x, α) is maximum. This can be proven by noting that the values of α = |∇f |/|∇g|
vary continuously on the ”kiss” curve, so that differentiating equation 8.37 w/r to α gives

∂L

∂α
= −g(x). (8.39)

At the boundary point x∗ we have ∂L
∂α |x=x∗ = −g(x∗) = 0, and at points just to the left

of x∗ the slope is negative and to the right the slope is positive. This is the condition for
L(x, α) to be a maximum at x∗ along the kiss curve. Therefore, the two conditions that are
necessary and sufficient for x∗ to minimize f(x) subject to the inequality constraint are

maximize
x,α

f(x)− αg(x),

subject to ∇f(x)− α∇g(x) = 0

α ≥ 0,

(8.40)

The next section shows a 1D example for solving the Lagrangian dual problem.

8.12.1 Simple Example of a Dual Solution

For a simple 1D convex minimization problem with inequality constraints, the optimization
problem is defined as

minimize
x

f(x)

subject to g(x) ≥ 0,
. (8.41)

For the example f(x) = x2 and one inequality constraint, equation 8.41 becomes

minimize
x

f(x) = x2

subject to g(x) = 0.7x− 0.14 ≥ 0,
(8.42)

2The blue kiss curve is defined by the kissing points where ∇L = 0 for α = |∇f |/|∇g|

8.12. APPENDIX: DEFINING THE DUAL PROBLEM WITH A LAGRANGIAN 141

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.05

0

0.05

0.1

0.15

0.2

h(
x)

h(x) vs x

solid red: h(x) --> f(x) = x2

solid green: h(x) --> g(x) = 0.7x - 0.14

dashed curves: --> h(x) = - α f(x) g(x)

x*

α = 0

α = 0.29

α = 0.57

α = 0.86

α = 1.14

Figure 8.13: Plots of f(x) = x2, g(x) = 0.7x − 0.14, and f(x)−αg(x), where x∗ is the
optimal solution that minimizes L subject to the inequality constraint. The Lagrangian
L(x, α) = f(x)− αg(x) is plotted as dashed lines for various values of α.

where f(x) = x2, g(x) = 0.7x − 0.14, and h(x) = f(x) − αg(x) are plotted in Figure 8.13.
The inequality constraint is g(x) = 0.7x−0.14 ≥ 0 so that the feasible points are for x ≥ 0.2.
It is obvious that x∗ = 0.2 at the green star minimizes f(x) for the feasible points x ≥ 0.2.
In contrast, the global minimum of f(x) is at x = 0 to the left of x∗, but x = 0 will violate
the inequality constraint x ≥ 0.2.

An alternative to the above optimization problem is to find x that minimizes the La-
grangian

minimize
x

L(x, α) = f(x)− αg(x),

subject to α > 0,
. (8.43)

and also maximizes L(x, α) w.r.t. α, where α is the Lagrange multiplier. These two sta-

142 CHAPTER 8. SUPPORT VECTOR MACHINES

tionarity conditions are expressed as

∂L

∂x
=

∂f

∂x
− α

∂g

∂x
= 0

∂L

∂α
= −g(x) = 0 subject to α > 0. (8.44)

For the equation 8.42 example,

L(x, α) = x2 − α(0.7x − 0.14), (8.45)

so that equation 8.44 becomes

∂L

∂x
=

∂x2

∂x
− α

∂(0.7x − 0.14)

∂x
= 2x− 0.7α = 0 → α = x/0.35, (8.46)

∂L

∂α
= −0.7x+ 0.14 = 0 → x = 0.2. (8.47)

Plugging equation 8.47 into equation 8.46 gives α = 0.2/0.35 = 0.57, which is associated
with the dashed blue curve L(x, α = 0.57) plotted in Figure 8.13. This value of α = 0.57 > 0
satisfies the positivity constraint and also balances out the gradients of df/dx and dg/dx
so that the sum ∂L/∂x = ∂f/∂x− α∂g/∂x = 0 is stationary at x∗ = 0.2.

At each value of x there is a unique value of α = x/0.35 (see equation 8.46) that
allows ∂L/∂x = 0. Setting α → α(x) = x/0.35 from equation 8.46 says that L(x, α(x))
is a maximum at x∗ = 0.2 because it satisfies the maximality conditions: ∂L/∂α = 0 for
x = 0.2 and its second derivative

∂2L(x = 0.35 ∗ α,α)
∂α2

=
∂2(0.1225α2 − 0.245α2 + 0.049α)

∂α2
,

= −.245 (8.48)

is negative3 Thus, the values of L(x, α(x)) plotted against x intersect the circled points in
Figure 8.13 where L(x, α(x)) is a maximum at x∗ = 0.2.

8.13 Karush-Kuhn-Tucker Conditions

If x is in the inactive region where g(x) > 0 then the inequality constraint g(x) ≥ 0 is
denoted as inactive and α = 0 for the solution to the Lagrangian problem. This constraint
is not needed when x is in the inactive region so it makes sense to set λ = 0 because it leads
to a smaller Lagrangian, i.e.

x ∈ inactive region; [f(x)− αg(x)] α>0 > [f(x)− αg(x)]α=0. (8.49)

However, if x is on the boundary defined by g(x) = 0 then the constraint is active and
λ > 0.

3The negative second-derivative is an alternative to the first-derivative maximum conditions we used
earlier.

8.14. APPENDIX: DIFFRACTION STACK MIGRATION 143

Assigning α to be either 0 or > 0 is compactly summarized by the condition αg(x) = 0,
where α > 0 for x on the boundary or α = 0 for x in an inactive region where g(x) > 0.
Thus, this leads to three constraints for the Lagrangian problem known as the Karush-
Kuhn-Tucker (KKT) conditions:

g(x) ≥ 0,

α ≥ 0,

αg(x) = 0. (8.50)

If there are N inequality constraint such that g(x)(n) ≥ for n = [1, 2, . . . N] then there are
N Lagrange multipliers with αn ≥ 0 and g(x)(n)αn = 0 for n = [1, 2, . . . N]. See Nocedal
and Wright (1999) for more details.

8.14 Appendix: Diffraction Stack Migration

Integral equation migration is a popular seismic imaging method (Yilmaz, 2001) used in
the oil industry. It can be described as summing the weighted reflection data along pseudo-
hyperbolas associated with each trial image point at x and placing that summation number
at x to give the migration image m(x). This summation is described by the diffraction-stack
migration formula

m(x) =
∑

A

∑

B

∑

ω

[iωD(B|A)e−iω(τAx+τxB)],

=
∑

A

∑

B

ḋ(B, τAx + τxB|A), (8.51)

where D(B|A) is the frequency-domain representation of the trace in Figure 8.14, its inverse
Fourier transform is given by d(B, t|A), and the summations run over the indices for the
source at A and the receiver at B. For a homogeneous medium having velocity c the time
for waves to propagate from the source at A down to the scatterer at x0 and back up to
the receiver at B is given by

τAx + τxB =

√

(xA − x0)2 + (zA − z0)2 +
√

(xB − x0)2 + (zB − z0)2

c
, (8.52)

where zA = zB = 0 for sources and receivers on a horizontal datum. This two-way traveltime
equation describes a hyperbola in xB − time coordinates for any image point at x and a
source fixed at A; the apex of the hyperbola is centered over the point scatterer at xo. If the
reflection time on the leftside of equation 8.52 is fixed at a specific time then the values of x
that satisfy this traveltime equation form an ellipse with the foci at A and B, as depicted
in Figure 8.14.

The observed data for a single scatterer can be approximated by

D(B|A) = e−iω(τAxo+τxoB), (8.53)

where geometric spreading and the reflection coefficient are conveniently ignored. Substi-
tuting equation 8.53 into equation 8.51 gives

m(x) =
∑

A

∑

B

∑

ω

[iωe−iω(τAx+τxB−τAxo−τxoB)]. (8.54)

144 CHAPTER 8. SUPPORT VECTOR MACHINES

If the trial image point at x coincides with the actual scatterer at xo then the phases
cancel one another exactly and the summation over the sources at A and receivers at B is
completely coherent and sums to a very large number to be placed at xo. On the other hand,
if x is far from the actual scatterer then the predicted hyperbola will not match the actual
hyperbola of recorded events. The consequence is that the summation in equation 8.54 will
be largely incoherent and sum to a small number to be placed at the trial image point at
x 6= x0. data along.

This type of imaging is also known as diffraction-stack migration (Yilmaz, 2001). For a
single source and single receiver the above equation becomes

m(x) = ḋ(B, τAx + τxB|A). (8.55)

In a 2D homogeneous medium, the reflection traveltime τ ref. = τAx + τxB associated with
the trial scattering point at x can be expressed as

τ ref. = [
√

(xA − x)2 + (zA − z)2 +
√

(xB − x)2 + (zB − z)2]/v,

(8.56)

which, for τ ref. = cnst, describes an ellipse in model-space coordinates (x, z) with the foci
at A = (xA, zA) and B = (xB , zB). It follows from equation 8.55 that the reflectivity
image m(x) is approximated by smearing the trace amplitude at time τ ref. over the ellipse
described by equation 8.56 in model space.

Smearing the seismic amplitude over an ellipse is shown in Figure 8.14a; here, the temporal
interval T of the trace’s source wavelet determines the thickness c/T of the fat ellipse in
(x, z) space. Somewhere along this ellipse is a scatterer that gave rise to the event at time
τ ref. for the receiver at d. The scatterer’s location can be better estimated by stacking (see
equation 8.51) the ”smears” from other traces into the model, as illustrated in Figure 8.14b.
Figure 8.15 gives an example of migration of poststack data (where the source is at the
receiver) for a homogeneous velocity model with 6 scattering points. The lateral spatial
resolution of the image becomes worse with increasing depth.

8.15 Dip Angles, Coherency and Amplitudes of a Migration

Image

Dip angle, coherency and amplitude of a migration image are skeletonized characteristics
that can be used to possibly distinguish noise from signal. We now describe the computation
of each feature.

To compute these three skeletonized characteristics we first define a 5× 5 window cen-
tered at the ith pixel in the migration image. A 5x5 window is used because it is about one
wavelength in size. To compute the dip angle in this window we apply a local slant stack
(Yilmaz, 2001) to the windowed data centered at the ith pixel to get the dip angle that has
the dominant energy; this dip angle θi is assigned to the ith pixel. Slant stacking consists of
summing the amplitudes of the data that intercept a line with a specified dip angle. This
dip angle is iteratively incremented by about 15 degrees and the dip angle with the largest
summed amplitude is assigned to be θi.

8.15. DIP ANGLES, COHERENCYAND AMPLITUDES OF AMIGRATION IMAGE145

B’

Migration: Smear and Sum Refl. Amp. Along Ellipses

A ΒA Β

T
im

e
Z

τ ref.

reflector somewhere inside ellipse

event
smeared

reflector somewhere inside
common overlap

a) One−trace migration.

G(B|A)
T}

b) Two−trace migration.

G(B’|B)

}

0.5vT

Figure 8.14: Migration is the smearing of trace amplitudes along the appropriate fat ellipses
in (x, z) for each source-receiver pair A−B (Claerbout, 1992). Migration of two traces in
b) has better spatial resolution than migrating just one trace in a), and the thickness of
each fat ellipse is c/T , where T is the dominant period of the source wavelet.

The window is shifted over by one pixel to the i+1 pixel and the slant stack procedure is
repeated to give θi+1. Repeating this procedure for all the training set pixels in Figure 8.6a
gives the dip angle image shown in Figure 8.6b. In practice, only 70 pixels are in the actual
training set.

The coherency φi at the ith pixel of Figure 8.6a is computed by forming a common
image gather (CIG) or a common angle gather (CAG) from the prestack migration images
(Yilmaz, 2001). If the migration velocity is accurate then summing along the offset axis
(or angle axis if the CAG is used) should give a strong coherency value φi at the ith pixel.
Repeating this procedure for all the pixels in Figure 8.6a gives the coherency image shown
in Figure 8.6c.

The amplitude image in Figure 8.6d is obtained by computing the Hilbert transform of
a trace in the migration image (Yilmaz, 2001). Then the envelope of the migration trace is
computed in the window centered at the ith pixel and its maximum amplitude gives Ai.

146 CHAPTER 8. SUPPORT VECTOR MACHINES

X−offset (m)

D
ep

th
 (

m
)

Poststack Migration Image

200 400 600 800 1000 1200 1400 1600 1800

0

500

1000

1500

−1

−0.5

0

0.5

Offset (m)

T
im

e
(s

)

Poststack AGC Data in 1−Way Time

200 400 600 800 1000 1200 1400 1600 1800

0

0.2

0.4

0.6

0.8

1
−0.5

0

0.5

Figure 8.15: (Top) Poststack data and (bottom) migration image where there are 6 point
scatterers indicated by the white stars. See MATLAB codes in Appendix 5 to duplicate
this figure. Note, the spatial resolution of the image becomes better with decreasing depth
of the scatterers.

References

Aki, K. and P. Richards, 2002, Quantitative Seismology: University Science Books.

Ball, G. and Hall, D., 1965, ISODATA, a novel method of data analysis and pattern classi-
fication: Technical report NTIS, AD 699616. Stanford Research Institute, Stanford, CA.

Barghout, L., 2015, Spatial-Taxon information granules as used in iterative fuzzy-decision-
making for image segmentation: Granular Computing and Decision-Making, Springer In-
ternational Publishing, 285–318.

Bishop, C., 2006, Pattern Recognition and Machine Learning: Springer Press.

Boonyasiriwat, C., P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster, 2009, A mul-
tiscale method for time-domain waveform tomography: Geophysics 74, WCC59–WCC68.

Boyd, S. and L. Vandenberghe, 2004, Convex Optimization, Cambridge University Press.
p. 216.

Bunks, C., F. Saleck, S. Zaleski, and G. Chavent, 1995, Multiscale seismic waveform inver-
sion: Geophysics, 60, 1457–1473.

Chen, Y., 2018, K-means clustering for picking stacking velocity curves in semblance panels:
CSIM midyear report.

Claerbout, J. F., 1992, Earth Soundings Analysis: Processing vs Inversion: Blackwell Sci-
entific Inc.

Coates, A., H. Lee, and A. Ng, 2011, An analysis of single-layer networks in unsupervised
feature learning: Proceedings of the Fourteenth International Conference on Artificial In-
telligence and Statistics, PMLR, 215–223.

Cortes, C., and V. Vapnik, 1995, Support-vector networks: Machine Learning, 20, 273–297.

DeCoste, D., 2002, Training Invariant Support vector machines: Machine Learning. 46,
161–190.

147

148 CHAPTER 8. SUPPORT VECTOR MACHINES

Gaonkar, B. and Davatzikos, C., 2013, Analytic estimation of statistical significance maps
for support vector machine based multi-variate image analysis and classification: Neuroim-
age, 78, 270-283.

Geoffrion, A. M., 1971, Duality in nonlinear programming: A simplified applications-
oriented development: SIAM Review, 13, 1–37.

Fukushima, K., 1980, Neocognitron: A self-organizing neural network model for a mecha-
nism of pattern recognition unaffected by shift in position: Biol. Cybernetics, 36, 193–202.

Gill, P., W. Murray, and M. Wright, 1981, Practical Optimization: Academic Press Inc.

Golub, G. and C. van Loan, 1996, Matrix Computations (4th edition): John Hopkins Uni-
versity Press.

Golub, G. and U. von Matt, 1997, Generalized cross-validation for large-scale problems:
Journal of Computational and Graphical Statistics, 6, 1–34.

Goodfellow, I., Y. Benigo, and A. Courville, 2016, Deep Learning, MIT Press.

Google, 2017, Tensorflow tutorials: convolutional neural networks, https : //www.tensorflow.org/
tutorials/deep − cnn, August 2017.

Hotelling, H., 1936,. Relations between two sets of variates: Biometrika, 28, 321–377.

Hornik, K., 1991, Approximation capabilities of multilayer feedforward networks: Neural
Networks, 4(2), 251-257.

Hornik, K., M. Stinchcombe, and H. White, 1989, Multilayer feedforward networks are u-
niversal approximators: Neural Networks, 2(5), 359-366.

Hubel, D. and T. Wiesel, 1962, Receptive fields, binocular interaction and functional archi-
tecture in Cat’s visual cortex: J. Physiol., 160, 106–154.

Jain, A., 2010, Data clustering: 50 years beyond K-means: Pattern Recognition, 31, 651–
666.

Jolliffe I.T., 2002, Principal Component Analysis: Springer Series in Statistics, 2nd ed.,
Springer, NY, 428 pages.

Krizhevsky, A., and G. Hinton, 2009, Learning multiple layers of features from tiny images:
M.S. thesis, University of Toronto.

8.15. DIP ANGLES, COHERENCYAND AMPLITUDES OF AMIGRATION IMAGE149

Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012, Imagenet classification with deep
convolutional neural networks: Advances in neural information processing systems, 25, no.
2, 1097–1105.

Li, J., S. Hanafy and G.T. Schuster, 2018, Wave equation dispersion inversion of guided P
waves in a waveguide of arbitrary geometry: J. of Geophys. Research: Solid Earth, 123,
10.1029/2018JB016127.

Lines, L. R. and S. Treitel, 1984, Tutorial, review of least-squares inversion and its appli-
cation to geophysical problems: Geophysical Prospecting, 32, 159–186.

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner, 1998, Gradient-based learning applied to
document recognition: Proceedings of the IEEE.

Lloyd, S., 1982. Least squares quantization in PCM: IEEE Trans. Inform. Theory 28,
129–137. Originally as an unpublished Bell laboratories Technical Note (1957).

Lu, K., J. Li, B. Guo, L. Fu, and G. Schuster, 2017, Tutorial for wave-equation inversion of
skeletonized data: Interpretation, SO1–SO10.

Luo, Y., and G. T. Schuster, 1991a, Wave equation inversion of skeletonized geophysical
data: Geophysical Journal International, 105, 289–294.

Luo, Y. and G. T. Schuster, 1991b, Wave equation traveltime inversion: Geophysics, 56,
645–653.

MacQueen, J., 1967. Some methods for classification and analysis of multivariate observa-
tions: In Fifth Berkeley Symposium on Mathematics. Statistics and Probability, University
of California Press, 281–297.

Menke, W., 1984, Geophysical Data Analysis: Discrete Inverse Theory: Academic Press
Inc., NY, NY.

Nitish, N., C. G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, 2014, Dropout:
A Simple Way to Prevent Neural Networks from overfitting: Journal of Machine Learning
Research, 15, 1929–1958.

Nocedal, J. and S. Wright, 1999, Numerical Optimization: Springer Verlag Inc.

Patel, A. B., T. Nguyen, R. Baraniuk, 2016, A probabilistic framework for deep learning:
2016, arXiv:1612.01936P.

Patel, A. and S. Chatterjee, 2016, Computer vision-based limestone rock-type classification
using probabilistic neural network: Geoscience Frontiers, 7, 53–60.

150 CHAPTER 8. SUPPORT VECTOR MACHINES

Pearson, K., 1901, On lines and planes of closest fit to systems of points in space: Philo-
sophical Magazine, 2 (11), 559–572.

Perez, C., 2013, Regularization of neural networks using DropConnect: ICML and JMLR,
W and CP., jmlr.org.

Press, W., S. Teukolsky, W. Vetterling, and B. Flannery, 2007, Numerical Recipes: The Art
of Scientific Computing: Cambridge University Press Inc.

Qi, J., G. Machado, and K. Marfurt, 2017, A workflow to skeletonize faults and stratigraph-
ic features: Geophysics, 82, no. 4, O57–O70.

Rickett, J., 2003, Illumination-based normalization for wave-equation depth migration:
Geophysics, 68, 1371–1379.

Ripley, B. D., 1996, Pattern Recognition and Neural Networks: Cambridge University Press.

Rosenblatt, F., 1958, The Perceptron: A probabilistic model for information storage and
organization in the brain: Cornell Aeronautical Laboratory, Psychological Review, v65, No.
6, 386–408. doi:10.1037/h0042519.

Rosenblatt, F., 1962, Principles of Neurodynamics: Washington, DC:Spartan Books.

Steinhaus, H., 1956, Sur la division des corp materiels en parties: Bull. Acad. Polon. Sci.
IV (C1.III), 801–804.

Sun, Y. and G. T. Schuster, 1992, Hierarchic optimizations for smoothing and cooperative
inversion: SEG Technical Program Expanded Abstracts, 745–748.

Tarantola, A., 1987, Inverse Problem Theory Methods for Data Fitting and Model Param-
eter Estimation: Elsevier Science Publication.

Wiener, N., 1948, Cybernetics, or Control and Communication in the Animal and the Ma-
chine. Cambridge: MIT Press.

Vapnik, V. N., 1998, Statistical Learning Theory: Wiley.

Xiong, W., X. Ji, Y. Ma1, Y. Wang, N. Ben-Hassan and Y. Luo, 2018, Seismic fault detec-
tion with convolutional neural network: Geophysics (in press).

Yilmaz, O., 2001, Seismic Data Analysis: SEG Press Book.

Zhang, C., C. Frogner, M. Araya-Polo, and D. Hohl, 2014, Machine-learning based auto-

8.15. DIP ANGLES, COHERENCYAND AMPLITUDES OF AMIGRATION IMAGE151

mated fault detection in seismic traces: 76th Conference and Exhibition, EAGE, Extended
Abstract. doi: 10.3997/2214–4609.20141500.

	Preface
	Abbreviations
	Introduction to Machine Learning in the Geosciences
	Introduction
	Three Classes of Machine Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Summary

	Data Prediction by Least Squares Inversion
	Least Squares Inversion
	Overdetermined, Inconsistent, and Ill-conditioned Equations
	Least Squares Solution
	Regularized Least Squares Solution
	Gradient of
	Preconditioning
	Overfitting Data
	Inclusion of Bias Factor

	Steepest Descent Optimization
	Summary
	Exercises
	Appendix: Exact Step Length

	Non-Linear Gradient Optimization
	Non-linear Gradient Optimization
	Rigorous Derivation of the Newton Formula
	MATLAB Examples of Newton's Method
	Inexact Newton Method

	Multiscale Optimization
	 Diagram for Matrix-Vector Multiplication
	Summary
	Exercises

	Introduction to Neural Networks
	Neural Networks
	Single-node Neural Network
	One-node Neural Network with Cross-Entropy Objective Function
	Two-node Neural Network
	Multiple-node and Multiple-layer Neural Network

	Multinomial Classifiers
	ReLu Activation Function
	Summary
	Exercises

	Multilayer Neural Networks
	Introduction
	Feed-forward Operation
	Back-propagation Operation
	Formula for /wij[N]
	Formula for /wij[N-1]
	Formula for /wij[N-2]

	MATLAB Code
	Numerical Examples
	Summary
	Exercises
	Computational Labs
	Appendix: Vectorized Steepest Descent Formula for Neural Networks

	Convolutional Neural Networks
	Introduction
	Building Blocks of CNN
	Convolution Layer
	Activation Functions
	Feature Maps
	Pooling Layer
	Fully-Connected Layer
	Soft-Max Layer
	Loss Function
	Dropout Regularization
	DropConnect Regularization
	Local Response Normalization(LRN) Regularization
	Mini-Batch
	Step Length

	 Architectures of CNN
	AlexNet
	ZFNet
	VGGNet
	GoogleNet
	ResNet

	Deep Learning Software and Youtube Classes
	Seismic Fault Interpretation by CNN
	Summary
	Exercises

	Wave Equation Inversion and Neural Networks
	Introduction
	Theory for Wave Equation Inversion of Skeletonized Data
	Feature Extraction

	Conclusions

	Support Vector Machines
	Introduction
	SVM Applications

	Linear SVM Theory
	Nonlinear SVM
	Primal and Dual Solutions
	Kernel Methods
	Numerical Examples
	Multiclass SVM
	Soft-Margin SVM
	Practical Issues for Implementing SVM
	Scaling
	Data Augmentation

	Summary
	Exercises
	Appendix: Defining the Dual Problem with a Lagrangian
	Simple Example of a Dual Solution

	Karush-Kuhn-Tucker Conditions
	Appendix: Diffraction Stack Migration
	Dip Angles, Coherency and Amplitudes of a Migration Image

